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Sequences

Exercise

Exercise
Two a, b, € R are equal iff for every € > 0 it follows

la—b| <e.

Proof (<). If a= b, then |a— b| =0 < & for any € > 0.

Proof (=). Suppose that for any £ > 0 we have |a— b| < e. If a= b,
then we are done. Assume that a # b and take g9 = |a — b| > 0.
Taking any 0 < € < g9 one have

0<eo=|a—b|<e<ep,

which is impossible. []
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Sequences

Sequences

Definition
A sequence is a function whose domain is N.

Example

Common ways to describe sequences:
1111
Q@ (1727374 57”')'

1 1 2 3
@ ()= (e = (3.5,
ii] (x,,),,eN, where x, = 2" for each n € N,
Q@ (an)nen, where a; =2 and apy1 = 3.
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Sequences

Graph of a sequence

Consider x, = % then

05
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Sequences

Asymptotic behaviour of a sequence

Question

Is there a reasonable way how to measure how small the sequence (x,)nen
of real numbers is asymptotically (= at infinity)?

@ We take an arbitrary € > 0 and since x, = % then by the Archimedian
property we always find N. € N so that N% <e.

@ Moreover, since Xp41 = ﬁ < % = X, for every n € N thus

1
- <e forany n>N.. (%)

@ Since € > 0 is arbitrary and (*) holds for all n > N. (we will usually
say that (*) holds for all but finitely many integers or for all
sufficiently large integers).

@ One can also think that the sequence (x,)nen is asymptotically small
or small at infinity.
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Convergence of a sequence

Convergence of a sequence

Convergence of a sequence

A sequence (x,)nen converges to a real number x € R if, for all e > 0
there exists N. € N such that whenever n > N it follows that

|x — xp| < e.

To indicate that (ap)nsen converges to a € R we will write either

lim a,=a or lima,=a or a,ssxxa or ap,—a J
n—00
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Convergence of a sequence

e-neighbourhood

e-neighbourhood
Given a € R and € > 0 the set

Vi(a)={xeR : |[x—a|<e}

is called the e-neighbourhood or an open ball centered at a and radius €.

v

Ve(a)
/_\
£ [ n
- | ] "4
a—¢e a ate
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Convergence of a sequence

Convergence - illustration

X4
[o]
a-+e
Xn
o [} o
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Convergence of a sequence

Convergence - topological version

Convergence - topological version

A sequence (x,)nen converges to a € R if, given any e-neighbourhood
V.(a) of a contains all but finitely many terms of (x,)nen.

X1X2X3 3—¢
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Convergence of a sequence

Convergence of a sequence - exercise 1/2

Exercise

Prove lim,_ s % =0.

Solution.
@ Let € > 0 be arbitrary, but fixed.
@ Determine the choice of N. € N. In our case we take

1
N, = [?J +1

© Now show that N actually works. Assume that n > N., then

1 1 1
= < =€
VN \/1/€2

<

Si=
S
)
—
L=
| I—
_|._
[y
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Convergence of a sequence

Convergence of a sequence - exercise 2/2

© With this N, we have |x, — x| < e for all n > N.. Indeed,

L 0 L <
- —_ g
Vn vn
Hence 1
lim — =0
n—o0 n
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Convergence of a sequence

Convergence of a sequence - exercise 1/2

Exercise
3n+2 3

2n+1 2"

Prove lim,_oso

Solution.
@ Let € > 0 be arbitrary, but fixed.
@ Determine the choice of N. € N. In our case we take

2

=[5+t

© Now show that N actually works. Assume that n > N., then

’3n+2 3’<‘

3n+2 3n 3n 3n
2n+1 2

2n+1 2n+1 + 2n+1 2n
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Convergence of a sequence

Convergence of a sequence - exercise 2/2

© Furthermore, for n > N. we have

3n+2 3n | 2 <1<£

2n+1 2n+1| 2n+1~n 2
3n 3n _3n(2n+1—2n)<i<§
2n+1 2n 2n(2n+1) 4n 2’

H
® Hence 3n+2 3

li = —.
nLrT;o 2n+1 2
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Convergence of a sequence

Convergence of a sequence - exercise 1/2

Exercise
0.

. n
Prove limp_—oso wE =

Solution.
Q@ Let £ > 0 be arbitrary, but fixed.

@ Determine the choice of N.cy. In our case we take

N, = L}EJ +1.

© Now show that N actually works. Assume that n > N., then
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Convergence of a sequence

Convergence of a sequence - exercise 2/2

© Thus for n > N, we have

n 1 <
- P g
nm+3 n?
Hence
nILrgo n3 +3 =0.
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Convergence of a sequence

Uniqueness of the limit

Uniqueness of the limit
The limit of the sequence, when it exists, must be unique. J

Proof. Suppose that

lim x, =x and lim x, =y.
n—o0 n—o0

We have to prove that x = y. Let € > 0 be arbitrary, then it suffices to
show |[x — y| < e. Note that

(*)

lim, 00 Xp = x <= for every €1 > 0 there exists Ngl1 € N so that

n> N

., implies  [x; — x| < e1.
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Convergence of a sequence

Proof: uniqueness of the limit
(*)
lim, so0 X, =y <= for every 5 > 0 there exists N§2 € N so that

n> Ni_.lz2 implies  |x, — y| < e2.

Applying (*) and (*) with 1 = €2 = 5§ we know that there are
N2, N2 € N so that

n> Nsl1 implies  |xp, — x| < €1,

n> N€22 implies  |x, — y| < 2.

Setting N. = max(Nel/27 N52/2)' taking n > N and using the triangle
inequality

3 €
x =yl =10x =xa) + (0 = y)| < o = x| + xa =yl < S+ 5 =e. O
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Bounded sequence

Bounded sequence

A sequence (x,)nen is bounded if there exists M > 0 such that
Ixa] < M

for all n € N.

Geometrically, this means that the interval [— M, M| contains all terms of
the sequence (xp)nen-

Example

o 5+ %)neN is bounded by 6,

o (n?)nen is not bounded.

(MATH 311, Section 4, FALL 2022) Lesson 10 October 7, 2022 18 /31




Convergence of a sequence

Every convergent sequence is bounded

Theorem

Every convergent sequence is bounded. J

Proof. Assume that lim,_. x, = x. This is equivalent to the fact that
for every £ > 0 there is N. € N so that

n>N. implies |x,— x| <e. (%)
Applying (*) with e = 1 we obtain
|xn — x| <1 forany n> Nj.

Thus |xp| < 1+ |x| for any n > Nj. Consider

M = max{|x, [xa], ..., |X/V1*1|7 x|+ 1}
we see that |x,| < M for all n € N and we are done. O
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Convergence of a sequence

Algebraic limits theorem

Theorem

Let limp—oo an = @ and lim,— o bp = b. Then
@ limysoo(cap) = ac,

@ limyoo(an+ bp) =a+ b,

Q@ limy o0 anb, = ab,
2 provided that by, b # 0 for all n € N.

H a
Q limpseo F: =

Proof of (i). If ¢ = 0 then there is nothing to do since ca, = 0 for all
n €N, thus lim, - ca, =0 = ca.

@ Assume that ¢ # 0. Let € > 0 be arbitrary but fixed and note that
lim,_o0 an = @ <= for every g9 > 0 there is N, € N such that

n> N, implies |a—ap| < eo. (%)

October 7, 2022 20/31
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Proof of (i)

@ Applying (*) with £ in place of g9 one gets that

|cap — ca| = |c|lan — a|] < |c|— =e.

<
el
@ Thus we have shown that for any € > 0 there is /Vg = N_/|c| € N such

that if n > Ng, then
|cap, — ca| < e.

@ Hence lim,_, ca, = ca. O
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Proof of (ii): 1/2

@ lim, 00 an = a <= for every g1 > 0 there exists Ngl € N so that
n> Nal1 implies  |a, — a| < e1. (%)

@ lim, 00 by = b <= for every €, > 0 there exists N£22 € N so that
n> N2 implies |b, — b| < eo. (%)

@ Let € > 0 be arbitrary but fixed. Applying (*) and (*) with
€1 = €2 = 5 one obtains

n> N{_:l1 implies  |a, — a| < €/2,
n> NE22 implies  |b, — b| < /2.
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Proof of (ii): 2/2

e By the triangle inequality for any n > N. = max(NZ , N2)) we see

£€1?

lan + by — (a+ b)| = \(a,, —a)+ (b, — b)|
—al + by — b

@ Since € > 0 was arbitrary we proved that

lim (a, + b,) = a+ b.

n—oo
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Proof of (iii): 1/3

o lim,_ o0 a,=a <= for every €1 > 0 there exists Ngl1 € N so that
n> N€11 implies  |a, — a|] < e1. (%)

@ lim, 00 by = b <= for every €5 > 0 there exists N€22 € N so that
n> N2 implies |b, — b| < 2. (%)

@ We begin by observing that

|anb, — ab| = |apb, — ab, + ab, — ab|
< |bn(an, — a)| + |a(b, — b)|
< |bn||an — a| + |a||bn — b].

(MATH 311, Section 4, FALL 2022) Lesson 10 October 7, 2022 24 /31



Proof of (iii): 2/3

e But |a|] < |a, — a| + |ap| thus

|anbn — ab| < |bp||an — a| + |bn — b|(|an — a| + |an])
< (|bn| + |bn — b|)|an — a| + |bn — bl|as|.

@ Since lim,_o0 @, = a and lim,,_, b, = b then there are My, M, >0
such that

lan] < My and  |by| < My forall neN.
Consequently
|anbn — ab| < (My + |b, — b|)|an — a| + M1|b, — b.

@ Let £ > 0 be arbitrary but fixed. We apply (*) with £; = y and

2(M§+1
(*) with 2 = min {QEWl’ 1}, which implies respectively
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Proof of (iii): 3/3

&£
2(My 4+ 1)’
n> N{f/2 implies  |b— b,| < m|n{

nZNsl/2 implies  |a— a,| <

ai

o Thus taking n > N. = max (N2, N2,) we see that

|anbn, — ab| < (My + |b, — bl|)|a, — a| + My|b, — b

£ g
My + mi 1 Mymin{ 51
<< 2+m'“{2M1 }>2(M2+1)+ 1mm{2M1/ }
9 9 9
<My+1)—t M < Z
=M Do P Moy S5 F

@ Since € > 0 was arbitrary we proved that

=¢&.

N[ ™

lim a,b, = ab.
n—o00
L]
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Proof of (iv): 1/3

o lim, o0 a, =a <= for every €1 > 0 there exists Ngl1 € N so that

n> N€11 implies  |a, — a|] < e1. (%)
@ lim, 00 by = b <= for every g5 > 0 there exists N§2 € N so that
2 . .
n> N7, implies |b, — b| < ea. (%)

e By (iii) it suffices to prove that lim,_, b, = b implies

lim 1 = 1
n—oo b, b
whenever b,, b # 0 for n € N.
@ Let € > 0 be arbitrary. Note that
1 1| |by— b
‘bn R b’ ~ [ballb]
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Proof of (iv): 2/3

e Applying (*) with e = min {@, @} one has
n> N, implies |b,— b|< .
o But 2 > |b, — b| > |b| — |b,|, hence

|b]

|b| — |bn| < > forall  n>N,,.

o Consequently % < |by| for all n € N. This shows that

forall n>N,,.

1 1‘_|b,,—b| 2|by — b

by b| [ballb] |bI?
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Convergence of a sequence

Proof of (iv): 3/3

e Furthermore, for n > N., we also know that

‘1 1‘ _ 2lby — b| _ 2ep _ 2e|b]*

b, b b2 TP T 2B
@ Thus

lim i = 1

it by b

This completes the proof of the Theorem.
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Order limit theorem

Order limit theorem

Assume that lim,_,s a, = @ and lim,_ by, = b.
@ Ifa,>0forall neN, then a> 0.
@ If a, < b, forall n €N, then a < b.

@ If thereis c € R so that ¢ < b, for each n € N, then ¢ < b. Similarly,
if a, < cforall neN, then a <c.
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Proof

Proof of (i). Assume for contradiction that a < 0. We know that
lim,_00 an = a <= for every g9 > 0 there exists N, € N so that

n> N, implies |a,— a| < ep. (%)
Applying (*) with g9 = |a| one sees
lap —a| < |a|] forall n>Ng.

Hence a, < 0 for all n > N, which is impossible since a, > 0 for all

n € N. Thus we must have a > 0. O

Proof of (ii). lim, o (by —an) =b—a. But b,—a,>0forallneN
thus b—a > 0 by (/) and we are done.

Proof of (iii). Take a, = ¢ (or b, = ¢) for all n € N and apply (ii). O
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