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Sequences

Exercise

Exercise

Two a, b,∈ R are equal iff for every ε > 0 it follows

|a− b| < ε.

Proof (⇐). If a = b, then |a− b| = 0 < ε for any ε > 0.

Proof (⇒). Suppose that for any ε > 0 we have |a− b| < ε. If a = b,
then we are done. Assume that a 6= b and take ε0 = |a− b| > 0.
Taking any 0 < ε < ε0 one have

0 < ε0 = |a− b| < ε < ε0,

which is impossible.
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Sequences

Sequences

Definition

A sequence is a function whose domain is N.

Example

Common ways to describe sequences:

(i)
(
1, 12 ,

1
3 ,

1
4 ,

1
5 , . . .

)
,

(ii)
(
n+1
n

)∞
n=1

=
(
n+1
n

)
n∈N =

(
2
1 ,

3
2 ,

4
3 , . . .

)
,

(iii) (xn)n∈N, where xn = 2n for each n ∈ N,

(iv) (an)n∈N, where a1 = 2 and an+1 = an
2 .
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Sequences

Graph of a sequence

Consider xn = 1
n , then
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Sequences

Asymptotic behaviour of a sequence

Question

Is there a reasonable way how to measure how small the sequence (xn)n∈N
of real numbers is asymptotically (≡ at infinity)?

We take an arbitrary ε > 0 and since xn = 1
n then by the Archimedian

property we always find Nε ∈ N so that 1
Nε

< ε.

Moreover, since xn+1 = 1
n+1 < 1

n = xn for every n ∈ N thus

1

n
< ε for any n ≥ Nε. (∗)

Since ε > 0 is arbitrary and (*) holds for all n ≥ Nε (we will usually
say that (*) holds for all but finitely many integers or for all
sufficiently large integers).

One can also think that the sequence (xn)n∈N is asymptotically small
or small at infinity.
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Convergence of a sequence

Convergence of a sequence

Convergence of a sequence

A sequence (xn)n∈N converges to a real number x ∈ R if, for all ε > 0
there exists Nε ∈ N such that whenever n ≥ Nε it follows that

|x − xn| < ε.

To indicate that (an)n∈N converges to a ∈ R we will write either

lim
n→∞

an = a or lim an = a or an −−−→n→∞ a or an → a.
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Convergence of a sequence

ε-neighbourhood

ε-neighbourhood

Given a ∈ R and ε > 0 the set

Vε(a) = {x ∈ R : |x − a| < ε}

is called the ε-neighbourhood or an open ball centered at a and radius ε.
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Convergence of a sequence

Convergence - illustration
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Convergence of a sequence

Convergence - topological version

Convergence - topological version

A sequence (xn)n∈N converges to a ∈ R if, given any ε-neighbourhood
Vε(a) of a contains all but finitely many terms of (xn)n∈N.
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Convergence of a sequence

Convergence of a sequence - exercise 1/2

Exercise

Prove limn→∞
1√
n

= 0.

Solution.

1 Let ε > 0 be arbitrary, but fixed.

2 Determine the choice of Nε ∈ N. In our case we take

Nε =
⌊ 1

ε2

⌋
+ 1.

3 Now show that Nε actually works. Assume that n ≥ Nε, then

1√
n
≤ 1√

Nε
=

1√⌊
1
ε2

⌋
+ 1

<
1√
1/ε2

= ε.
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Convergence of a sequence

Convergence of a sequence - exercise 2/2

4 With this Nε, we have |xn − x | < ε for all n ≥ Nε. Indeed,∣∣∣∣ 1√
n
− 0

∣∣∣∣ =
1√
n
< ε.

Hence

lim
n→∞

1√
n

= 0.
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Convergence of a sequence

Convergence of a sequence - exercise 1/2

Exercise

Prove limn→∞
3n+2
2n+1 = 3

2 .

Solution.

1 Let ε > 0 be arbitrary, but fixed.

2 Determine the choice of Nε ∈ N. In our case we take

Nε =
⌊2

ε

⌋
+ 1.

3 Now show that Nε actually works. Assume that n ≥ Nε, then∣∣∣∣3n + 2

2n + 1
− 3

2

∣∣∣∣ ≤ ∣∣∣∣3n + 2

2n + 1
− 3n

2n + 1

∣∣∣∣+

∣∣∣∣ 3n

2n + 1
− 3n

2n

∣∣∣∣
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Convergence of a sequence

Convergence of a sequence - exercise 2/2

3 Furthermore, for n ≥ Nε we have∣∣∣∣3n + 2

2n + 1
− 3n

2n + 1

∣∣∣∣ =
2

2n + 1
≤ 1

n
<

ε

2
.

∣∣∣∣ 3n

2n + 1
− 3n

2n

∣∣∣∣ =
3n(2n + 1− 2n)

2n(2n + 1)
<

3

4n
<

ε

2
.

4 Hence

lim
n→∞

3n + 2

2n + 1
=

3

2
.
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Convergence of a sequence

Convergence of a sequence - exercise 1/2

Exercise

Prove limn→∞
n

n3+3
= 0.

Solution.

1 Let ε > 0 be arbitrary, but fixed.

2 Determine the choice of Nε∈N. In our case we take

Nε =
⌊ 1√

ε

⌋
+ 1.

3 Now show that Nε actually works. Assume that n ≥ Nε, then

n

n3 + 3
≤ n

n3
=

1

n2
< ε.
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Convergence of a sequence

Convergence of a sequence - exercise 2/2

4 Thus for n ≥ Nε we have∣∣∣∣ n

n3 + 3
− 0

∣∣∣∣ =
1

n2
< ε.

Hence
lim
n→∞

n

n3 + 3
= 0.
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Convergence of a sequence

Uniqueness of the limit

Uniqueness of the limit

The limit of the sequence, when it exists, must be unique.

Proof. Suppose that

lim
n→∞

xn = x and lim
n→∞

xn = y .

We have to prove that x = y . Let ε > 0 be arbitrary, then it suffices to
show |x − y | < ε. Note that

(*)

limn→∞ xn = x ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |xn − x | < ε1.
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Convergence of a sequence

Proof: uniqueness of the limit

(*)

limn→∞ xn = y ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |xn − y | < ε2.

Applying (*) and (*) with ε1 = ε2 = ε
2 we know that there are

N1
ε1 ,N

2
ε2 ∈ N so that

n ≥ N1
ε1 implies |xn − x | < ε1,

n ≥ N2
ε2 implies |xn − y | < ε2.

Setting Nε = max(N1
ε/2,N

2
ε/2), taking n ≥ Nε and using the triangle

inequality

|x − y | = |(x − xn) + (xn − y)| ≤ |xn − x |+ |xn − y | < ε

2
+

ε

2
= ε.
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Convergence of a sequence

Bounded sequence

Bounded sequence

A sequence (xn)n∈N is bounded if there exists M > 0 such that

|xn| ≤ M

for all n ∈ N.

Geometrically, this means that the interval [−M,M] contains all terms of
the sequence (xn)n∈N.

Example(
5 + 1

n

)
n∈N is bounded by 6,

(n2)n∈N is not bounded.
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Convergence of a sequence

Every convergent sequence is bounded

Theorem

Every convergent sequence is bounded.

Proof. Assume that limn→∞ xn = x . This is equivalent to the fact that
for every ε > 0 there is Nε ∈ N so that

n ≥ Nε implies |xn − x | < ε. (∗)

Applying (*) with ε = 1 we obtain

|xn − x | < 1 for any n ≥ N1.

Thus |xn| < 1 + |x | for any n ≥ N1. Consider

M = max{|x1|, |x2|, . . . , |xN1−1|, |x |+ 1}

we see that |xn| ≤ M for all n ∈ N and we are done.
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Convergence of a sequence

Algebraic limits theorem

Theorem

Let limn→∞ an = a and limn→∞ bn = b. Then

(i) limn→∞(can) = ac,

(ii) limn→∞(an + bn) = a + b,

(iii) limn→∞ anbn = ab,

(iv) limn→∞
an
bn

= a
b provided that bn, b 6= 0 for all n ∈ N.

Proof of (i). If c = 0 then there is nothing to do since can = 0 for all
n ∈ N, thus limn→∞ can = 0 = ca.

Assume that c 6= 0. Let ε > 0 be arbitrary but fixed and note that
limn→∞ an = a ⇐⇒ for every ε0 > 0 there is Nε0 ∈ N such that

n ≥ Nε0 implies |a− an| < ε0. (∗)
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Convergence of a sequence

Proof of (i)

Applying (*) with ε
c in place of ε0 one gets that

|can − ca| = |c ||an − a| < |c | ε
|c |

= ε.

Thus we have shown that for any ε > 0 there is Ñε = Nε/|c| ∈ N such

that if n ≥ Ñε, then
|can − ca| < ε.

Hence limn→∞ can = ca.
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Convergence of a sequence

Proof of (ii): 1/2

limn→∞ an = a ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |an − a| < ε1. (∗)

limn→∞ bn = b ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |bn − b| < ε2. (∗)

Let ε > 0 be arbitrary but fixed. Applying (*) and (*) with
ε1 = ε2 = ε

2 one obtains

n ≥ N1
ε1 implies |an − a| < ε/2,

n ≥ N2
ε2 implies |bn − b| < ε/2.
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Convergence of a sequence

Proof of (ii): 2/2

By the triangle inequality for any n ≥ Nε = max(N1
ε1 ,N

2
ε2) we see

|an + bn − (a + b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b|

<
ε

2
+

ε

2
= ε.

Since ε > 0 was arbitrary we proved that

lim
n→∞

(an + bn) = a + b.
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Convergence of a sequence

Proof of (iii): 1/3

limn→∞ an = a ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |an − a| < ε1. (∗)

limn→∞ bn = b ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |bn − b| < ε2. (∗)

We begin by observing that

|anbn − ab| = |anbn − abn + abn − ab|
≤ |bn(an − a)|+ |a(bn − b)|
≤ |bn||an − a|+ |a||bn − b|.
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Convergence of a sequence

Proof of (iii): 2/3

But |a| ≤ |an − a|+ |an| thus

|anbn − ab| ≤ |bn||an − a|+ |bn − b|(|an − a|+ |an|)
≤ (|bn|+ |bn − b|)|an − a|+ |bn − b||an|.

Since limn→∞ an = a and limn→∞ bn = b then there are M1,M2 > 0
such that

|an| ≤ M1 and |bn| ≤ M2 for all n ∈ N.

Consequently

|anbn − ab| ≤ (M2 + |bn − b|)|an − a|+ M1|bn − b|.

Let ε > 0 be arbitrary but fixed. We apply (*) with ε1 = ε
2(M2+1) and

(*) with ε2 = min
{

ε
2M1

, 1
}

, which implies respectively
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Convergence of a sequence

Proof of (iii): 3/3

n ≥ N1
ε/2 implies |a− an| <

ε

2(M2 + 1)
,

n ≥ N2
ε/2 implies |b − bn| < min

{ ε

2M1
, 1
}
.

Thus taking n ≥ Nε = max
(
N1
ε1 ,N

2
ε2

)
we see that

|anbn − ab| ≤ (M2 + |bn − b|)|an − a|+ M1|bn − b|

<
(
M2 + min

{ ε

2M1
, 1
}) ε

2(M2 + 1)
+ M1 min

{ ε

2M1
, 1
}

≤ (M2 + 1)
ε

2(M2 + 1)
+ M1

ε

2M1
≤ ε

2
+

ε

2
= ε.

Since ε > 0 was arbitrary we proved that

lim
n→∞

anbn = ab.
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Convergence of a sequence

Proof of (iv): 1/3

limn→∞ an = a ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |an − a| < ε1. (∗)

limn→∞ bn = b ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |bn − b| < ε2. (∗)

By (iii) it suffices to prove that limn→∞ bn = b implies

lim
n→∞

1

bn
=

1

b

whenever bn, b 6= 0 for n ∈ N.

Let ε > 0 be arbitrary. Note that∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|bn − b|
|bn||b|

.
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Convergence of a sequence

Proof of (iv): 2/3

Applying (*) with ε2 = min
{
|b|
2 , ε|b|

2

2

}
one has

n ≥ Nε2 implies |bn − b| < ε2.

But |b|2 > |bn − b| ≥ |b| − |bn|, hence

|b| − |bn| <
|b|
2

for all n ≥ Nε2 .

Consequently |b|2 < |bn| for all n ∈ N. This shows that∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|bn − b|
|bn||b|

<
2|bn − b|
|b|2

for all n ≥ Nε2 .
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Convergence of a sequence

Proof of (iv): 3/3

Furthermore, for n ≥ Nε2 we also know that∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ < 2|bn − b|
|b|2

<
2ε2
|b|2
≤ 2ε|b|2

2|b|2
= ε.

Thus

lim
n→∞

1

bn
=

1

b
.

This completes the proof of the Theorem.
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Convergence of a sequence

Order limit theorem

Order limit theorem

Assume that limn→∞ an = a and limn→∞ bn = b.

(i) If an ≥ 0 for all n ∈ N, then a ≥ 0.

(ii) If an ≤ bn for all n ∈ N, then a ≤ b.

(iii) If there is c ∈ R so that c ≤ bn for each n ∈ N, then c ≤ b. Similarly,
if an ≤ c for all n ∈ N, then a ≤ c .
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Convergence of a sequence

Proof

Proof of (i). Assume for contradiction that a < 0. We know that
limn→∞ an = a ⇐⇒ for every ε0 > 0 there exists Nε0 ∈ N so that

n ≥ Nε0 implies |an − a| < ε0. (∗)

Applying (*) with ε0 = |a| one sees

|an − a| < |a| for all n ≥ Nε0 .

Hence an < 0 for all n ≥ Nε0 which is impossible since an ≥ 0 for all
n ∈ N. Thus we must have a ≥ 0.

Proof of (ii). limn→∞(bn − an) = b − a. But bn − an ≥ 0 for all n ∈ N
thus b − a ≥ 0 by (i) and we are done.

Proof of (iii). Take an = c (or bn = c) for all n ∈ N and apply (ii).
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