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Convergence of a sequence

Convergence of a sequence

A sequence (xn)n∈N converges to a real number x ∈ R if, for all ε > 0
there exists Nε ∈ N such that whenever n ≥ Nε it follows that

|x − xn| < ε.

Order limit theorem

Assume that limn→∞ an = a and limn→∞ bn = b.

(i) If an ≥ 0 for all n ∈ N, then a ≥ 0.

(ii) If an ≤ bn for all n ∈ N, then a ≤ b.

(iii) If there is c ∈ R so that c ≤ bn for each n ∈ N, then c ≤ b. Similarly,
if an ≤ c for all n ∈ N, then a ≤ c .
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Squeeze Theorem

Squeeze Theorem

If xn ≤ yn ≤ zn for all n ∈ N and if limn→∞ xn = limn→∞ zn = L, then
limn→∞ yn = L.

Proof. Let ε > 0 be arbitrary, but fixed.

(*)

limn→∞ xn = L ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |xn − L| < ε1.

(*)

limn→∞ zn = L ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |zn − L| < ε2.
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Proof:

We apply (*) and (*) with ε1 = ε2 = ε, then for n ≥ Nε = max(N1
ε1 ,N

2
ε2)

one has

(∗) ⇐⇒ L− ε < xn < L + ε,

(∗) ⇐⇒ L− ε < zn < L + ε.

Since xn ≤ yn ≤ zn for all n ∈ N we obtain for n ≥ Nε that

L− ε < xn ≤ yn ≤ zn < L + ε.

Thus if n ≥ Nε, then
|yn − L| < ε,

which proves that limn→∞ yn = L.
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(MCT) - example

Exercise

Prove that limn→∞
√
n2 + 1− n = 0.

Solution. We will use the squeeze theorem. On the one hand,

0 ≤
√
n2 + 1− n.

On the other hand,√
n2 + 1− n =

(
√
n2 + 1− n)(

√
n2 + 1 + n)√

n2 + 1 + n
=

n2 + 1− n2√
n2 + 1 + n

≤ 1

n
.

Since limn→∞
1
n = limn→∞ 0 = 0, by the squeeze theorem

lim
n→∞

√
n2 + 1− n = 0.
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Application

Theorem

For every a ∈ R there is a sequence of rational numbers (rn)n∈N such that

lim
n→∞

rn = α.

Proof. Recall the Dirichlet principle.

Theorem (Dirichlet)

Let α,Q be real numbers, Q ≥ 1. There exist a, q ∈ Z such that
1 ≤ q ≤ Q and (a, q) = 1 and∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ
≤ 1

q2
.
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Proof

Applying Dirichlet’s theorem with Q = n ∈ N one finds for each n ∈ N
integers an, qn ∈ Z such that 1 ≤ qn ≤ n and (an, qn) = 1 and∣∣∣∣α− an

qn

∣∣∣∣ < 1

qnn
<

1

n
.

Now let ε > 0 be arbitrary but fixed and let Nε ∈ N be such that 1
Nε
< ε,

then for every n ≥ Nε one has

1

n
≤ 1

Nε
< ε.

thus taking rn = an
qn
∈ Q and n ≥ Nε one gets

|α− rn| <
1

n
< ε.

Hence limn→∞ rn = α.
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Increasing and decreasing sequences

Increasing and decreasing sequences

A sequence of real numbers (an)n∈N is

increasing if an ≤ an+1 for all n ∈ N;

decreasing if an ≥ an+1 for all n ∈ N.

Monotone sequence

A sequence is monotone if it is either increasing or decreasing.

Example(
3 + 1

n

)
n∈N is decreasing, so it is monotone.(

n3
)
n∈N is increasing, so it is monotone.

((−1)n)n∈N is neither increasing nor decreasing, so it is not monotone.
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Monotone convergence theorem

Monotone convergence theorem (MCT)

If a sequence is monotone and bounded then it converges.

Proof. Assume that (xn)n∈N is increasing and bounded. Consider the set

E = {xn : n ∈ N} ⊆ R,

which is nonempty and bounded. Let x = supE ∈ R, which exists by the
axiom of completeness (AoC). We will show that limn→∞ xn = x .

Let ε > 0 and note that there exists Nε ∈ N so that

x − ε < xNε ≤ x .

But (xn)n∈N is increasing thus for any n ≥ Nε one has

x − ε < xNε ≤ xn ≤ x < x + ε.

Hence |xn − x | < ε for all n ≥ Nε, which shows that limn→∞ xn = x .
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Binomial theorem

Binomial theorem

For every n ∈ N and x , y ∈ R one has

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k , where

(
n

k

)
=

n!

k!(n − k)!
,

and n! = 1 · 2 · 3 · . . . · n, for all n ∈ N and 0! = 1.

Example for n = 3:

(x + y)3 = x3 + 3x2y + 3xy2 + y3.

Example for n = 5:

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.
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Theorem

Theorem

(a) If p > 0, then limn→∞
1
np = 0.

(b) If p > 0, then limn→∞ n
√
p = 1

(c) limn→∞ n
√
n = 1.

(d) If p > 0 and α ∈ R, then limn→∞
nα

(1+p)n = 0.

(e) If |x | < 1, then limn→∞ xn = 0.

Proof of (a): Take ε > 0 be arbitrary, but fixed. Then

n >

(
1

ε

)1/p

,

which is possible by the Archimedian property.
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Proof of (b):

Proof of (b): If p > 1 set xn = n
√
p − 1, then xn > 0 and by Bernoulli’s

inequality
1 + nxn ≤ (1 + xn)n = p,

so that

0 < xn ≤
p − 1

n
.

But

lim
n→∞

p − 1

n
= 0,

thus by the squeeze theorem we conclude

lim
n→∞

xn = 0

as desired.
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Proof of (c):

Proof of (c): Set xn = n
√
n − 1. Then xn ≥ 0 and by the binomial

theorem

n = (1 + xn)n ≥
(
n

2

)
x2n =

n(n − 1)

2
x2n .

Hence

0 ≤ xn ≤
(

2

n − 1

)1/2

for n ≥ 2.

But

lim
n→∞

(
2

n − 1

)1/2

= 0.

Thus by the squeeze theorem

lim
n→∞

xn = 0

as desired.
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Proof of (d) and (e):

Proof of (d): Let k ∈ N so that k > α. For n > 2k by the binomial
theorem

(1 + p)n >

(
n

k

)
pk =

n(n − 1) . . . (n − k + 1)

k!
pk >

nkpk

2kk!
,

since n ≥ n
2 , n − 1 ≥ n

2 , . . . , n − k + 1 ≥ n
2 . Hence

0 <
nα

(1 + p)n
<

2kk!

pk
nα−k for n > 2k .

Since α− k < 0 thus limn→∞ nα−k = 0 by (a) and by the squeeze
theorem limn→∞

nα

(1+p)n = 0.

Proof of (e): Take α = 0 in (d) and observe that if 0 < x < 1 then the
sequence xn = xn is decreasing and bounded. Thus limn→∞ xn = 0.
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Proposition

Proposition

If a > 0 and limn→∞ xn = x0, then limn→∞ axn = ax0 .

Proof. It suffices to prove that limn→∞ axn = 1 if limn→∞ xn = 0.
Assume a > 1. By the previous theorem we know that

lim
n→∞

a1/n = lim
n→∞

a−1/n = 1.

Thus for any ε > 0 there is Mε ∈ N such that for any m ≥ Mε

1− ε < a−1/m < a1/m < 1 + ε.

Now since limn→∞ xn = 0 we find Nm,ε ∈ N so that for n ≥ Nε,m

|xn| <
1

m
⇐⇒ − 1

m
< xn <

1

m
.
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Proof of Proposition

Thus
1− ε < a−1/m < axn < a1/m < 1 + ε

which proves |axn − 1| < ε for any n ≥ Nm,ε proving that

lim
n→∞

axn = 1.

If 0 < a < 1 we note that

lim
n→∞

axn = lim
n→∞

1(
1
a

)xn
and this completes the proof of the proposition.
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Weighted arithmetic and geometric means

Theorem

For all positive real numbers a1, a2, . . . , an and all positive weights
q1, q2, . . . , qn satisfying the following convexity condition

q1 + . . .+ qn = 1,

we have
aq11 · . . . · a

qn
n ≤ q1a1 + . . .+ qnan.

If q1 = q2 = . . . = qn = 1
n , then we have

aq11 · . . . · a
qn
n = (a1 · . . . · an)1/n ≤ a1 + . . .+ an

n
= q1a1 + . . .+ qnan,

which recovers the inequality between geometric and arithmetic means.
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Proof: 1/2

Proof: We first assume

q1, . . . , qn ∈ Q and q1, . . . , qn > 0.

We can assume that qi = ki
m for 1 ≤ i ≤ n and

k1 + . . .+ kn = m.

Invoking the inequality between geometric and arithmetic means we obtain

n∑
i=1

qiai = k1
a1
m

+ . . .+ kn
an
m

≥ m

((a1
m

)k1
· . . . ·

(an
m

)kn)1/m

= a
k1/m
1 · . . . · akn/mn

= aq11 · . . . · a
qn
n .
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Proof: 2/2

If now all weights q1, . . . , qn > 0 are real numbers, then for any 1 ≤ i ≤ n,
we choose a sequence of positive rationals (qi ,k)k∈N so that

lim
k→∞

qi ,k = qi

and so that
n∑

i=1

qi ,k = 1 for all k ∈ N.

Then by the previous part

a
qi,k
1 · . . . · aqn,kn ≤ q1,ka1 + . . .+ qn,kan.

Passing with k →∞ we conclude that

aq11 · . . . · a
qn
n ≤ q1a1 + . . .+ qnan.
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Hölder’s inequality

Hölder’s inequality

Let 1 < p, q <∞ be such that 1
p + 1

q = 1. Then for any real numbers
x1, . . . , xn and y1, . . . , yn one has

n∑
j=1

|xjyj | ≤
( n∑

j=1

|xj |p
)1/p( n∑

j=1

|yj |q
)1/q

.

Proof. By the previous theorem for any a1, b1 > 0 we have

a
1
p

1 b
1
q

1 ≤
1

p
a1 +

1

q
b1,

which for a1 = ap and b1 = bq yields

(*)

ab ≤ 1

p
ap +

1

q
bq.
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Proof of Hölder’s inequality 1/2

Let

aj :=
|xj |(∑n

j=1 |xj |p
)1/p , bj :=

|yj |(∑n
j=1 |yj |q

)1/q
Applying (*) to each 1 ≤ j ≤ n one gets

n∑
j=1

ajbj ≤
n∑

j=1

(
1

p
apj +

1

q
bqj

)

=
n∑

j=1

(
|xj |p

p
(∑n

j=1 |xj |p
) +

|yqj |
q
(∑n

j=1 |yj |q
))

=
1

p

∑n
j=1 |xj |p∑n
j=1 |xj |p

+
1

q

∑n
j=1 |yj |q∑n
j=1 |yj |q

=
1

p
+

1

q
= 1.
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Proof of Hölder’s inequality 2/2

Thus we have proved
n∑

j=1

ajbj ≤ 1,

which is equivalent to

n∑
j=1

|xjyj | ≤
( n∑

j=1

|xj |p
)1/p( n∑

j=1

|yj |q
)1/q

and the proof of Hölder’s inequality is completed.
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