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Divergence of a sequence

Divergence of a sequence

We say that a sequence (an)n∈N diverges to +∞ and write

lim
n→∞

an = +∞

iff for any M > 0 there exists NM ∈ N such that for all n ≥ NM

an > M.

We have a similar definition for limn→∞ an = −∞.

Example

(n2)n∈N diverges to +∞, whereas (
√
n − n)n∈N diverges to −∞.
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Euler’s number

Euler’s sequences: 1/4

Consider two sequences (an)n∈N and (bn)n∈N defined by

an =

(
1 +

1

n

)n

, bn =

(
1 +

1

n

)n+1

for all n ∈ N

We have the following properties.

1 Observe that an < bn for all n ∈ N. Indeed,

an =

(
1 +

1

n

)n

<

(
1 +

1

n

)n+1

= bn,

since 1 < 1 + 1
n for all n ∈ N.
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Euler’s number

Euler’s sequences: 2/4

2 The sequence (an)n∈N is strictly increasing, i.e.

an < an+1 for all n ∈ N.

Proof. By the geometric-arithmetic mean inequality Gn+1 < An+1

(which is strict unless x1 = x2 = . . . = xn+1) with

x1 = 1 and x2 = x3 = . . . = xn+1 = 1 +
1

n
,

we obtain

Gn+1 =

((
1 +

1

n

)n)1/(n+1)

<
1 + n

(
1 + 1

n

)
n + 1

= 1 +
1

n + 1
= An+1.

Thus

an =

(
1 +

1

n

)n

<

(
1 +

1

n + 1

)n+1

= an+1.
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Euler’s number

Euler’s sequences: 3/4

3 The sequence (bn)n∈N is strictly increasing, i.e.

bn+1 < bn for all n ∈ N.

Proof. By the harmonic-geometric mean inequality Hn+1 < Gn+1

(which is strict unless x1 = x2 = . . . = xn+1) with

x1 = 1 and x2 = x3 = . . . = xn+1 = 1 +
1

n − 1
=

n

n − 1
.

Then

Hn+1 =
n + 1

1 + n n−1
n

<

(
1 +

1

n − 1

)n/(n+1)

= Gn+1,

thus

bn =

(
1 +

1

n

)n+1

<

(
1 +

1

n − 1

)n

= bn−1.

(MATH 311, Section 4, FALL 2022) Lesson 12 October 18, 2022 5 / 29



Euler’s number

Euler’s sequences: 4/4

Collecting (1),(2),(3) we have

2 = a1 < an < bn < b1 = 4 for all n ≥ 2.

By the (MCT) the limits limn→∞ an and limn→∞ bn exist and

lim
n→∞

bn = lim
n→∞

(
1 +

1

n

)
an =

(
lim
n→∞

(
1 +

1

n

))(
lim
n→∞

an
)

= lim
n→∞

an.

Euler number

The limit of the sequences (an)n∈N and (bn)n∈N is called the Euler
number

lim
n→∞

(
1 +

1

n

)n

= lim
n→∞

(
1 +

1

n

)n+1

= e ' 2, 718 . . . .
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Euler’s number

Subsequences

Definition

Let (an)n∈N be a sequence of real numbers, and n1 < n2 < . . . < nk < . . .
be an increasing sequence of positive integers. Then the sequence

(an1 , an2 , . . . , ank , . . .)

is called a subsequence of (an)n∈N and is denoted by (ank )k∈N.

Example

Let (an)n∈N =
(
1, 12 ,

1
3 ,

1
4 . . . ,

)
, then

(
1
2 ,

1
4 ,

1
6 , . . .

)
and

(
1
10 ,

1
100 ,

1
1000 , . . .

)
are subsequences of (an)n∈N. The sequences(

1

10
,

1

2
,

1

100
, . . .

)
and (1, 1, . . .) are NOT!.
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Euler’s number

Limit of a subsequence

Theorem

Subsequences of a convergent sequence converge to the same limit as the
original sequence.

Proof. Assume limn→∞ an = a and let (ank )k∈N be a subsequence. Given
ε > 0 there is Nε ∈ N so that

n ≥ Nε implies |an − a| < ε.

Because nk ≥ k for all k ∈ N, the same Nε will suffice for the
subsequence, that is

|ank − a| < ε whenever k ≥ Nε.
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Euler’s number

Euler’s number - fact

Fact

If limn→∞ an = +∞ or limn→∞ an = −∞, then

lim
n→∞

(
1 +

1

an

)an

= e.

In particular, limn→∞
(
1 + x

n

)n
= ex for any x ∈ N.

Proof. Let limn→∞ an = +∞ and consider bn = banc. Then
bn ≤ an < bn + 1, hence(

1 +
1

bn + 1

)bn

<

(
1 +

1

an

)an

<

(
1 +

1

bn

)bn+1

.
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Euler’s number

Proof: 1/4

By the squeeze theorem it suffices to prove that

lim
n→∞

(
1 +

1

bn + 1

)bn

= lim
n→∞

(
1 +

1

bn

)bn+1

= e

or even

lim
n→∞

(
1 +

1

bn

)bn

= e.

If (bn)n∈N were increasing then as a subsequence of (n)n∈N we could

conclude limn→∞

(
1 + 1

bn

)bn
= e, since limn→∞

(
1 + 1

n

)n
= e.

But we only know that limn→∞ bn = +∞. It does not mean that
(bn)n∈N is increasing.
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Euler’s number

Proof: 2/4

Let ε > 0 be given. Since limn→∞
(
1 + 1

n

)n
= e we can find Ñε ∈ N so

that n ≥ Ñε implies ∣∣∣∣(1 +
1

n

)n

− e

∣∣∣∣ < ε.

But limn→∞ bn = +∞ thus we can find Nε ∈ N so that n ≥ Nε implies
bn ≥ Ñε. In particular, we conclude that∣∣∣∣∣

(
1 +

1

bn

)bn

− e

∣∣∣∣∣ < ε

for all n ≥ Nε and thus

lim
n→∞

(
1 +

1

bn

)bn

= e.

Consequently, limn→∞

(
1 + 1

an

)an
as limn→∞ an = +∞.
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Euler’s number

Proof: 3/4

Moreover,

lim
n→∞

(
1− 1

an

)an

= e−1,

because

lim
n→∞

(
1− 1

an

)an

= lim
n→∞

1(
1 + 1

an−1

)an =
1

e
.

this implies

lim
n→∞

(
1 +

1

an

)an

= e if lim
n→∞

an = −∞.
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Euler’s number

Proof: 4/4

For the second part we take

an =
n

x
,

then either
lim
n→∞

an = +∞ or lim
n→∞

an = −∞.

Hence

lim
n→∞

[(
1 +

1

an

)an]x
= ex .

Here we have used the following simple fact: if limn→∞ an = a, then
for any α ∈ R we have

lim
n→∞

aαn = aα.

Prove it!
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Euler’s number

Limit of a subsequence - example

Exercise

Find limn→∞
(
1 + 1

2n

)4n
.

Solution. Since (2n)n∈N is a subsequence of (n)n∈N we have

lim
n→∞

(
1 +

1

2n

)2n

= e.

Therefore,

lim
n→∞

(
1 +

1

2n

)4n

=

(
lim
n→∞

(
1 +

1

2n

)2n
)(

lim
n→∞

(
1 +

1

2n

)2n
)

= e · e = e2.

(MATH 311, Section 4, FALL 2022) Lesson 12 October 18, 2022 14 / 29



Euler’s number

Limit of a subsequence - example

Exercise

Find limn→∞

(
1 + 1

n2+1

)4n2+1
.

Solution. Since (n2 + 1)n∈N is a subsequence of (n)n∈N we have

lim
n→∞

(
1 +

1

n2 + 1

)n2+1

= e.

Therefore,

lim
n→∞

(
1 +

1

n2 + 1

)4n2+1

=

(
lim
n→∞

(
1 +

1

n2 + 1

)n2+1
)4(

lim
n→∞

(
1 +

1

n2 + 1

)−3)
= e4.
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Convergence of series

Series

Convergence of a series

Let (bn)n∈N be a sequence. An infinite series is a formal expression of
the form

∞∑
n=1

bn = b1 + b2 + b3 + . . .

We define the corresponding sequence of partial sums (sn)n∈N by

sm =
m∑

n=1

bn = b1 + b2 + . . .+ bm.

We say that
∑∞

n=1 bn converges to B if

lim
n→∞

sn = B.
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Convergence of series

Example

Exercise

If 0 ≤ x < 1, then
∑∞

n=0 x
n = 1

1−x . If x ≥ 1, the series diverges.

Solution. If x < 1, then

sn =
n∑

k=0

xk =
1− xn+1

1− x

and the result follows if we let n→∞.

For x ≥ 1 note that
1 + 1 + . . .+ 1︸ ︷︷ ︸

n

≤ sn.

We have limn→∞ n = +∞, thus limn→∞ sn = +∞.
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Convergence of series

Example

Exercise
∞∑
n=1

1

k2
<∞.

Solution. Because the terms in the sum are all positive the sequence

sn =
n∑

k=1

1

k2
is increasing.

We now show that (sn)n∈N is bounded.

Then the (MCT) will prove that the series converges.
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Convergence of series

Solution

To prove boundedness of (sn)n∈N we note that

sn = 1 +
1

2 · 2
+

1

3 · 3
+

1

4 · 4
+ . . .+

1

n · n
< 1 +

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ . . .+

1

(n − 1)n

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ . . .+

(
1

n − 1
− 1

n

)
= 2− 1

n
< 2.

Thus by the (MCT) the limit limn→∞ sn exists.

One can also prove that
∑∞

n=1
1
n2

= π2

6 . This is also Euler’s result.
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Convergence of series

An example of a diverging series

Harmonic series
∞∑
n=1

1

n
=∞.

Solution. Note that

1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ . . .+

1

16

)
+

(
1

17
+ . . .

≥ 1 +
1

2
+ 2 · 1

4
+ 4 · 1

8
+ 8 · 1

16
+ 16 · 1

32
+ . . .

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+ . . . = 1 + lim

n→∞

n

2
=∞.

Thus sn =
∑n

k=1
1
k
−−−→n→∞ ∞.
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Convergence of series

Cauchy Condensation Test

Cauchy Condensation Test

Suppose that (bn)n∈N is decreasing and bn ≥ 0 for all n ∈ N. Then the
series

∞∑
n=1

bn <∞ converges

iff the series
∞∑
n=1

2nb2n <∞ converges.

Proof. Let
sn = b1 + b2 + . . .+ bn,

tk = b1 + 2b2 + . . .+ 2kb2k .
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Convergence of series

Proof: 1/2

For n < 2k one has

sn ≤ b1 +

2︷ ︸︸ ︷
b2 + b3 + . . .+

2k︷ ︸︸ ︷
b2k + . . .+ b2k+1−1

≤ b1 + 2b2 + . . .+ 2kb2k = tk .

(*)

so that sn ≤ tk for n < 2k .
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Convergence of series

Proof: 2/2

If n > 2k one has

sn ≥ b1 + b2 + (b3 + b4) + . . .+ (b2k−1+1 + . . .+ b2k )

≥ 1

2
b1 + b2 + 2b4 + . . .+ 2k−1b2k =

1

2
tk .

(**)

Thus 2sn ≥ tk for n > 2k .

By (*) and (**) the sequences (sn)n∈N and (tk)k∈N are either both
bounded or both unbounded.
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Convergence of series

Corollary

Corollary

The series
∞∑
n=1

1

np
<∞ iff p > 1

Proof. The sequence bn = 1
np is decreasing and bn ≥ 0 for all n ∈ N. By

the Cauchy condensation test we obtain

∞∑
n=1

1

np
<∞ ⇐⇒

∞∑
n=1

2n

2pn
<∞.

But the latter converges provided that

∞∑
n=1

2n

2pn
=
∞∑
n=1

2(1−p)n =
1

1− 1
2p−1

<∞ ⇐⇒ p > 1.
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Convergence of series

Theorem

Theorem
∞∑
n=0

1

n!
= e.

Proof. Let sn =
∑n

k=0
1
k! . Then

1 sn < sn+1 for all n ∈ N,

2 sn =
∑n

k=0
1
k! = 1 + 1 +

∑n
k=2

1
k! < 2 +

∑
k=2

1
2k−1 < 3.

Thus the limit limn→∞ sn exists.

Let tn =
(
1 + 1

n

)n
, then limn→∞ tn = e. By the binomial theorem

tn =

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk
.
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Convergence of series

Proof: 1/2

Then

tn =

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk

=
n∑

k=0

n(n − 1) · · · (n − k + 1)

k!

1

nk

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . .

+
1

n!

(
1− 1

n

)(
1− 2

n

)
· . . . ·

(
1− n − 1

n

)
=

n∑
k=0

1

k!
= sn.

Thus

e = lim
n→∞

tn ≤ lim
n→∞

sn.
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Convergence of series

Proof: 2/2

Next if n ≥ m

tn ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ . . .+

1

m!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− m − 1

n

)
.

Let n→∞ keeping m fixed, we get

e = lim
n→∞

tn ≥
m∑

k=0

1

k!
.

Letting m→∞ we see limm→∞ sm ≤ e.

lim
m→∞

sm = lim
m→∞

m∑
k=0

1

k!
= e.

This completes the proof of the theorem.
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Convergence of series

Remark

We have sn =
∑n

k=0
1
k! < e for all n ∈ N. Indeed

e − sn =
∞∑

k=n+1

1

k!
=

1

(n + 1)!
+

1

(n + 2)!
+ . . .

=
1

(n + 1)!

(
1 +

1

n + 2
+

1

(n + 2)(n + 3)
+ . . .

)
<

1

(n + 1)!

(
1 +

1

n + 1
+

1

(n + 1)2
+ . . .

)
≤ 1

(n + 1)!

1

1− 1
n+1

=
1

(n + 1)!

n + 1

n
=

1

n!n
.

Hence we conclude

The error estimate (*)

0 < e − sn <
1

n!n
.
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Convergence of series

Euler’s number e is irrational

Theorem

The Euler number e is irrational.

Proof. Suppose e is rational. Then e = p
q where p, q ∈ N. By (*) we have

0 < q!(e − sq) <
1

q
.

By our assumption
q!e ∈ N is an integer.

Since

q!sq = q!

(
1 + 1 +

1

2!
+ . . .+

1

q!

)
∈ N,

we see q!(e − sq) ∈ N, but if q > 1 and this is impossible since

0 < q!(e − sq) < 1/q < 1.

Hence e must be irrational.
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