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Toeplitz theorem and applications

Toeplitz theorem

Toeplitz theorem

Let {cn,k : 1 ≤ k ≤ n, n ≥ 1} be an array or real numbers such that

(i) limn→∞ cn,k = 0 for k ∈ N.

(ii) limn→∞
∑n

k=1 cn,k = 1.

(iii) There is C > 0 such that

sup
n∈N

n∑
k=1

|cn,k | ≤ C .

Then for any sequence (an)n∈N so that limn→∞ an = a its transformated
sequence

bn =
n∑

k=1

ck,nak

also converges and limn→∞ bn = a.
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Toeplitz theorem and applications

Toeplitz theorem - example
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Toeplitz theorem and applications

Proof: 1/2

If an = a for all n ∈ N, then

lim
n→∞

bn = a lim
n→∞

cn,k = a.

Thus, it suffices to consider the case when limn→∞ an = 0.

Then, for any m > 1 and n ≥ m:

(*)

|bn − 0| =

∣∣∣∣∣
n∑

k=1

cn,kak

∣∣∣∣∣ ≤
m−1∑
k=1

|cn,k ||ak |+
n∑

k=m

|cn,k ||ak |.

Since limn→∞ an = 0 thus for any ε > 0 there is N1
ε ∈ N so that

n ≥ N1
ε implies |an| <

ε

2C
.
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Toeplitz theorem and applications

Proof: 2/2

Of course |an| ≤ M for all n ∈ N and some M > 0. If follows from (i) that
there is N2

ε ∈ N so that n ≥ N2
ε implies

N1
ε−1∑
k=1

|cn,k | <
ε

2M
.

Applying (*) with m = N1
ε we obtain

|bn| ≤ M

N1
ε−1∑
k=1

|cn,k |+
ε

2C

n∑
k=N1

ε

|cn,k | ≤
ε

2
+
ε

2
= ε

for all n ≥ max(N1
ε ,N

2
ε ). Thus we conclude

lim
n→∞

bn = 0.

(MATH 311, Section 4, FALL 2022) Lesson 13 October 21, 2022 5 / 23



Toeplitz theorem and applications

Proposition

Proposition

Let (an)n∈N and (bn)n∈N be two sequences such that

1 bn > 0, n ∈ N and limn→∞ bk = +∞,

2 limn→∞
an
bn

= g .

then

lim
n→∞

a1 + . . .+ an
b1 + . . .+ bn

= g .

Proof. We apply Toeplitz theorem to the sequence (an/bn)n∈N with

cn,k =
bk

b1 + . . .+ bn
.
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Toeplitz theorem and applications

Proof

Then for (i) we note

lim
n→∞

cn,k = lim
n→∞

bk
b1 + . . .+ bn

= bk lim
n→∞

1

b1 + . . .+ bn
= bk · 0 = 0.

For (ii) we have

n∑
k=1

cn,k =
n∑

k=1

bk
b1 + . . .+ bn

=
b1 + . . .+ bn
b1 + . . .+ bn

= 1.

Since bk > 0 (iii) follows from (ii). Thus by Toeplitz theorem we conclude

g = lim
n→∞

n∑
k=1

cn,k
ak
bk

= lim
n→∞

n∑
k=1

akbk
(b1 + . . .+ bn)bk

= lim
n→∞

a1 + . . .+ an
b1 + . . .+ bn

.
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Toeplitz theorem and applications

Proposition

Proposition

Let (an)n∈N and (bn)n∈N be two sequences such that

1 bn > 0, n ∈ N and limn→∞
∑n

k=1 bk = +∞.

2 limn→∞ an = a.

Then

lim
n→∞

a1b1 + . . .+ anbn
b1 + . . .+ bn

= a.

Proof. We apply Toeplitz theorem with the sequence (an)n∈N and

cn,k =
bk

b1 + . . .+ bn
.

Then

a = lim
n→∞

n∑
k=1

cn,kak = lim
n→∞

n∑
k=1

akbk
b1 + . . .+ bn

= lim
n→∞

a1b1 + . . .+ anbn
b1 + . . .+ bn

.
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Toeplitz theorem and applications

Stolz theorem

Stolz theorem

Let (xn)n∈N, (yn)n∈N be two sequences so that

(i) (yn)n∈N strictly increases to +∞, i.e. yn < yn+1 for all n ∈ N and
limn→∞ yn = +∞.

(ii) Also we have

lim
n→∞

xn − xn−1
yn − yn−1

= g .

then
lim
n→∞

xn
yn

= g .

Proof. Apply the previous proposition with

an =
xn − xn−1
yn − yn−1

, and bn = yn − yn−1.
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Exponential function

Euler’s number

We know that

lim
n→∞

(
1 +

x

n

)n
= ex .

for any x ∈ R.

Also

∞∑
n=0

1

n!
= e.

Theorem

Let x ∈ R, then
∞∑
n=0

xn

n!
= ex .
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Exponential function

Proof: 1/2

Proof. Let Sn =
∑n

k=0
xk

k! , then by the binomial theorem we may write

∣∣∣Sn − (1 +
x

n

)n∣∣∣ =

∣∣∣∣∣
n∑

k=2

(
1−

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

))
xk

k!

∣∣∣∣∣
≤

n∑
k=2

(
1−

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

))
|x |k

k!
.

Let us also note that(
1− 1

n

)
· . . . ·

(
1− k − 1

n

)
≥ 1−

k−1∑
j=1

j

n
= 1− k(k − 1)

n

for 2 ≤ k ≤ n.
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Exponential function

Proof: 2/2

Thus ∣∣∣Sn − (1 +
x

n

)n∣∣∣ ≤ n∑
k=2

k(k − 1)

2n

|x |k

k!
=

1

2n

n∑
k=2

|x |k

(k − 2)!
.

Using the Stolz theorem

lim
n→∞

1

2n

n∑
k=2

|x |k

(k − 2)!
= lim

n→∞

1

2

|x |n

(n − 2)!
= 0.

Thus
lim
n→∞

Sn = lim
n→∞

(
1 +

x

n

)n
= ex

as desired.
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Exponential function

Exponential function

Exponential function

The function E : R→ (0,∞) defined by E (x) = ex is called the
exponential function.

Properties of exponential function

(i) For all x , y ∈ R one has

ex+y = exey .

(ii) If limn→∞ an = a, then limn→∞ ean = ea.

(iii) E is one-to-one and onto. Thus the inverse for E exists.
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Exponential function

Natural logarithm

Natural logarithm

The inverse of E exists. It will be denoted by E−1 : (0,∞)→ R,

E−1(x) = ln(x) = log(x)

and it is called the natural logarithm.

Simple properties of natural logarithm

1 log(x) is increasing.

2 For x , y ∈ (0,∞) we have

log(xy) = log(x) + log(y).

3 We also have xα = eα log(x) for all α ∈ R.
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Exponential function

Proposition

Proposition

For x > 0 we have
x

x + 2
< log(x + 1) < x .

Proof. We prove that for 0 < x < m with m ∈ N, we have(
1 +

x

n

)n
< ex <

(
1 +

x

n

)n+m
.

thus
n log

(
1 +

x

n

)
< x < (n + m) log

(
1 +

x

n

)
.

Hence
x

n + m
< log

(
1 +

x

n

)
<

x

n
if m > x .
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Exponential function

Proof:

Taking n = 1 we obtain

log(1 + x) < x for all x > 0.

Now set m = bxc+ 1 > x , then

log
(

1 +
x

n

)
>

x
n

2 + x
n

.

Thus for n = 1 we obtain

log(1 + x) >
x

2 + x
.

Remark

In fact, for every x > 0 the following inequality holds

x

x + 1
< log(x + 1) < x .
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Exponential function

Euler–Mascheroni constant

Divergence of harmonic series

∞∑
n=1

1

n
= +∞.

Theorem

The sequences

an =
n−1∑
k=1

1

k
− log(n) and bn =

n∑
k=1

1

k
− log(n)

are increasing and decreasing respectively and bounded, and

lim
n→∞

an = lim
n→∞

bn = γ.

where γ is known as the Euler (or Euler–Mascheroni) constant.
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Exponential function

Proof: 1/2

Remark

It is not even known whether γ is irrational.

γ is called Euler-Mascheroni constant, and γ ' 0, 5772 . . ..

Proof. We know (
1 +

1

n

)n

< e <

(
1 +

1

n

)n+1

thus

n log

(
1 +

1

n

)
< 1 < (n + 1) log

(
1 +

1

n

)
,

and consequently

log

(
n + 1

n

)
<

1

n
,

log

(
n + 1

n

)
>

1

n + 1
.
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Exponential function

Proof: 2/2

Thus

an+1 − an =
n∑

k=1

1

k
− log(n + 1)−

n−1∑
k=1

1

k
+ log(n) =

1

n
− log

(
n + 1

n

)
> 0.

Hence (an)n∈N is increasing. Similarly,

bn+1 − bn =
1

n + 1
− log

(
n + 1

n

)
< 0,

thus (bn)n∈N is decreasing. Also it is clear

a1 ≤ an ≤ bn ≤ b1.

Thus by the (MCT) the limits exist

lim
n→∞

an = lim
n→∞

bn = γ,

since bn = an + 1
n .
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Bolzano–Weierstrass theorem

Bolzano–Weierstrass theorem

Bolzano–Weierstrass theorem

Every bounded sequence contains convergent subsequence.

Proof. Let (an)n∈N be bounded. Then there is M > 0 such that

|an| ≤ M for all n ∈ N.

Thus an ∈ [−M,M] for all n ∈ N.

Step 1. Divide [−M,M] into two closed intervals [−M, 0], [0,M].
We can assume (wlog) that I1 = [0,M] contains infinitely many
elements of (an)n∈N. Moreover, the length of I1 is M.

Step 2. Divide I1 into two closed intervals of the same length and
select the one which contains infinitely many elements of (an)n∈N.
Call it I2 ⊂ I1 and note that has length M

2 .
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Bolzano–Weierstrass theorem

Proof: 1/2

Step 3. Proceeding inductively as above we obtain a sequence of
decreasing closed intervals

I1 ⊃ I2 ⊃ I3 ⊃ I4 ⊃ . . .

where each Ik contains infinitely many elements of (an)n∈N and has
length M

2k−1 .
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Bolzano–Weierstrass theorem

Proof: 2/2

Step 4. By the Nested Intervals Property
⋂∞

k=1 Ik 6= ∅. In fact,
∞⋂
k=1

Ik = {x} for some x ∈ R.

Now for each k ∈ N select an element ank ∈ Ik so that

n1 < n2 < . . . < nk < . . .

where an1 is any element of I1.

Step 5. Let ε > 0 and choose Nε ∈ N so that

M

2k−1
< ε for k ≥ Nε.

Then for every k ≥ Nε we have

|ank − x | ≤ M

2k−1
< ε,

thus limn→∞ ank = x .
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Bolzano–Weierstrass theorem

Bolzano–Weierstrass theorem - example

Example

Let us consider a sequence

an = (−1)n.

It in NOT convergent, but the subsequence (−1)2n = 1 converges to 1.

(MATH 311, Section 4, FALL 2022) Lesson 13 October 21, 2022 23 / 23


	Toeplitz theorem and applications
	Exponential function
	Bolzano–Weierstrass theorem

