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Toeplitz theorem and applications

Toeplitz theorem

Toeplitz theorem

Let {chx : 1 < k < n,n>1} be an array or real numbers such that
@ limpooCpk =0 for k € N.

@ limpsood pq Cnk = 1.
@ Thereis C > 0 such that

n
supz lcn k| < C.
neN, —

Then for any sequence (ap)nen so that lim,_,~ a, = a its transformated

sequence
n
bn: E Ck,ndk
k=1

also converges and lim, ., b, = a.
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Toeplitz theorem and applications

Toeplitz theorem - example
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Proof: 1/2

If a, = aforall n €N, then

lim b, =a lim ¢, = a.
n—oo n—oo

Thus, it suffices to consider the case when lim,_., a, = 0.

Then, for any m> 1 and n > m:

(*)

n m—1 n
1bn = 0] = | " cnkan| < D lenllanl + D lenllaxl-
k=1 k=1 k=m
Since lim,_0 a, = 0 thus for any € > 0 there is NE1 € N so that
n> N implies |an| < == c
- ¢ 2C
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Proof: 2/2

Of course |ap| < M for all n € N and some M > 0. If follows from (i) that
there is N2 € N so that n > N2 implies

Ni-1
3 Jenkl < 5
’ 2M
k=1
Applying (*) with m = N2 we obtain

N1-1 n
N 13}
|bn| < M okl + 5= |Cn,k
2C
k=1 k=N1

£

2

<y €
-2

for all n > max(N2, N?). Thus we conclude

lim b, =0.

n—o0

U
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Toeplitz theorem and applications

Proposition

Proposition

Let (an)nen and (bn)nen be two sequences such that
Q@ b,>0, neNand lim,_s by = +0,
Q lim, %Z =&
then
lim a+...+an g
n—oo by 4+ ...+ by

Proof. We apply Toeplitz theorem to the sequence (a,/bn)nen With

by

Cok = .
kb ...+ b,
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Proof

Then for (i) we note

by 1
L

For (ii) we have

n n

bk b1++bn
§ Cn,k:§ = = 1.
] k:1b1+...+

bn bi+...+ b,

Since by > 0 (iii) follows from (ii). Thus by Toeplitz theorem we conclude

n

_ aiby . a1+ ...+ap
~ i ~ lim = lim =1,
g = Iim chk nl—>ooz(b]_+ +bn)bk nl—>nc10 b1—|—+bn

O
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Proposition

Proposition

Let (an)nen and (bn)nen be two sequences such that
Q@ b,>0,neNand limpo > f_; bk = +00.
Q limcan = a.
Then
. alb1+...+a,,b,,
lim
n—oo by + ...+ b,

Proof. We apply Toeplitz theorem with the sequence (a,)nen and

by
Cpk =T
b1 +...+ b,
Then
n
. akbk . alb1+...+a,,b,,
a= lim E c,,kak—llm g = lim . O
n—oo - ) bl n—oo b]_ —|— e —|— bn

Lesson 13 October 21, 2022 8/23



Toeplitz theorem and applications

Stolz theorem

Stolz theorem
Let (xn)nen, (Vn)nen be two sequences so that

@ (¥n)nen strictly increases to 400, i.e. yn < ynt1 for all n € N and
limp 00 Yn = +00.

@ Also we have
. Xn — Xn—1
lim ——— =g.

n—oo yn — yn_]_

then
. Xn
lim — =g.
n—oo yn

Proof. Apply the previous proposition with
Xn — Xn—1

) and bn = yn—yn-1.
Yn — Yn—1

dpn =
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Exponential function

Euler's number

We know that

n
lim (1 i f) — .
n

n—o0
for any x € R.
Also
=1
>
n!
n=0 )
Theorem
Let x € R, then
o0 Xn
do=et
= n J
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Proof: 1/2

k . . .
Proof. Let S, = }"}_, %, then by the binomial theorem we may write

(-E9)5

Let us also note that

k—1 .
(1—1>-...-<1—k_1>21— j_q_ kk=1)
n n L~ n n

for 2 < k < n.
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Proof: 2/2

Thus

n

X\ " k(k—1)[x]* 1

n 2n k!

Using the Stolz theorem

1 n k 1 n
lim 72 x| 1 x|
n—o00 2n = (k—2)' n%002(n—2)|
Thus
X n
lim S, = lim (1+f) —
n—oo n—o00 n
as desired.
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Exponential function

Exponential function

Exponential function
The function E : R — (0, 00) defined by E(x) = €~ is called the
exponential function.

Properties of exponential function
@ For all x,y € R one has

et = eXeY.

@ Iflimpo an = a, then lim,_o 7" = €.

@ E is one-to-one and onto. Thus the inverse for E exists.
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Natural logarithm

Natural logarithm
The inverse of E exists. It will be denoted by £71: (0,00) — R,

E71(x) = In(x) = log(x)

and it is called the natural logarithm.

Simple properties of natural logarithm

@ log(x) is increasing.
@ For x,y € (0,00) we have

log(xy) = log(x) + log(y).

© We also have x® = e®'°8(x) for all o € R.
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Proposition

Proposition

For x > 0 we have

o <log(x +1) < x.

Proof. We prove that for 0 < x < m with m € N, we have
n n+m
(1+5> <eX<(1+§> .
n n

thus X N
nlog<1+—> <X<(n+m)|og<1+f>.
n n

Hence

<Iog(1+§)<f if m>x.
n

n+m n
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Exponential function

Proof:

Taking n = 1 we obtain
log(1+x) < x forall x>0.

Now set m = | x| + 1 > x, then
X

og (1+2) >
og +n o

S

SRR

Thus for n = 1 we obtain

log(1+ x) > .
og(1 +x) 2+ x
O

Remark
In fact, for every x > 0 the following inequality holds

X
— <log(x+1) < x.
x+1 glx+1)
October 21, 2022
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Euler—Mascheroni constant

Divergence of harmonic series

1
2=

Theorem
The sequences

7
AR
3>

x| =

an =

1
—log(n) and b, = P log(n)
1 k=1

>
[l

are increasing and decreasing respectively and bounded, and

lim a, = I|m bp =1.
n—oo

where 7y is known as the Euler (or Euler—Mascheroni) constant.
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Proof: 1/2

Remark
@ It is not even known whether « is irrational.

@ 7 is called Euler-Mascheroni constant, and v ~ 0,5772.. ..

1 n 1 n+1
(1—1—) <e<<1~|—>

n n

1 1
nlog{1l+—-] <1< (n+1)log|l+—-]),
n n
and consequently
<n—|—1>
log <
n

1

Ev
Iog<n+1) - 1 ‘
n n+1
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Exponential function

Proof: 2/2
Thus
n n—1
1 1 1 n+1
any1—a E—Iog(n%—l) ZZ Iog(n):n—log< p ) > 0.
k=1 k=1

Hence (an)nen is increasing. Similarly,

1 n+1
bps1— by = ——— —1
n+1 n n+1 Og< n ><07

thus (bp)nen is decreasing. Also it is clear

a1 < ap < b, < by.
Thus by the (MCT) the limits exist

lim a, = lim b, =1,
n—oo n—o00

; 1
since by, = a, + . O
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Bolzano-Weierstrass theorem

Bolzano—Weierstrass theorem

Bolzano—Weierstrass theorem

Every bounded sequence contains convergent subsequence. J

Proof. Let (a,)nen be bounded. Then there is M > 0 such that

lan| <M forall neN.

Thus a, € [-M, M] for all n € N.

e Step 1. Divide [-M, M] into two closed intervals [—M, 0], [0, M].
We can assume (wlog) that /; = [0, M] contains infinitely many
elements of (a,)nen. Moreover, the length of /; is M.

@ Step 2. Divide /; into two closed intervals of the same length and
select the one which contains infinitely many elements of (a,)nen-
Call it b C h and note that has length 2.
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Proof: 1/2

@ Step 3. Proceeding inductively as above we obtain a sequence of
decreasing closed intervals

hohbhD>KB2ohLD...

where each lx contains infinitely many elements of (a,)nen and has
length Qk—"ﬁ’l

b

Ia

Is
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Proof: 2/2

o Step 4. By the Nested Intervals Property (72 Ik # 0. In fact,
o
m Ik = {x} forsome xeR.
k=1

Now for each k € N select an element a,, € /x so that
m<n<...<n<...
where ap, is any element of /.

@ Step 5. Let € > 0 and choose N. € N so that

M

F<E for kZNE

Then for every k > N we have

’ank _X‘ <

S okt <&

thus lim,_ an, = x.
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Bolzano-Weierstrass theorem

Bolzano—Weierstrass theorem - example

Example

Let us consider a sequence

ap = (-1)".

It in NOT convergent, but the subsequence (—1)2" = 1 converges to 1.

v
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