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Completeness

Cauchy sequences

Cauchy sequences

A sequence (an)n∈N is called a Cauchy sequence if for every ε > 0 there
exists Nε ∈ N such that whenever m, n ≥ Nε it follows

|an − am| < ε.

Convergent sequences

Recall that a sequence (an)n∈N converges to a ∈ R if for any ε > 0 there is
Nε ∈ N such that whenever n ≥ Nε if follows

|an − a| < ε.
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Completeness

Convergent sequences are Cauchy

Theorem

Every convergent sequence is a Cauchy sequence.

Proof. Let ε > 0 be given. If

lim
n→∞

xn = x ,

then there is Nε ∈ N so that n ≥ Nε implies

|xn − x | < ε

2
.

Thus for n,m ≥ Nε we obtain

|xm − xn| ≤ |xn − x |+ |xm − x | < ε

2
+
ε

2
= ε.

The proof is completed.
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Completeness

Bolzano–Weierstrass theorem

Lemma

Cauchy sequences are bounded.

Proof. Let (xn)n∈N be Cauchy. Given ε = 1 there is N ∈ N so that if
n,m ≥ N then |xn − xm| < 1. Thus

|xn| ≤ |xN |+ 1.

Taking
M = max{|x1|, |x2|, . . . , |xN |, |xN |+ 1}

we conclude |xn| ≤ M for all n ∈ N.

Bolzano–Weierstrass theorem

Every bounded sequence contains convergent subsequence.

(MATH 311, Section 4, FALL 2022) Lesson 14 October 25, 2022 4 / 25



Completeness

Cauchy Criterion

Cauchy Criterion

A sequence (xn)n∈N converges iff it is a Cauchy sequence.

Proof: The implication (=⇒) has already been proved. For the reverse
implication (⇐=) assume that (xn)n∈N is Cauchy. By the previous lemma
the sequence is bounded. Hence by the Bolzano–Weierstrass theorem
there is (nk)k∈N so that

lim
k→∞

xnk = x for some x ∈ R (∗).

Let ε > 0 be given. Then there is Nε ∈ N so that n,m ≥ Nε implies
|xn − xm| < ε

2 . By (*) we can choose nk ∈ N so that nk ≥ Nε and

|xnk − x | < ε

2
.

Then for n ≥ Nε and the triangle inequality

|xn − x | ≤ |xn − xnk |+ |xnk − x | < ε

2
+
ε

2
= ε.
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Series

Series

Definition

We say that the series
∑∞

n=1 an converges to A ∈ R and write∑∞
n=1 an = A if the associated sequence of its partial sums

sn =
n∑

k=1

ak −−−→n→∞ A.

If (sn)n∈N diverges the series
∑∞

n=1 an is said to diverge.

Remark

Saying that the series
∑∞

n=1 an converges we understand that
|
∑∞

k=1 ak | <∞.

Saying that the series
∑∞

n=1 an diverges we understand that
|
∑∞

k=1 ak | =∞.
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Series

Algebraic limit theorem for series

Algebraic limit theorem for series

If
∑∞

k=1 ak = A and
∑∞

k=1 bk = B then

∞∑
k=1

(αak + βbk) = αA + βB.

Proof. Let An =
∑n

k=1 ak and Bn =
∑n

k=1 bk . We know that

lim
n→∞

An = A, and lim
n→∞

Bn = B,

so

lim
n→∞

n∑
k=1

(αak + βbk) = lim
n→∞

α
n∑

k=1

ak + β
n∑

k=1

bk

= α lim
n→∞

An + β lim
n→∞

Bn = αA + βB.
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Series

Geometric series

Geometric series

If 0 ≤ x < 1, then
∑∞

n=0 x
n = 1

1−x . If x ≥ 1, the series diverges.

Solution. If x < 1, then

sn =
n∑

k=0

xk =
1− xn+1

1− x

and the result follows if we let n→∞.

For x ≥ 1 note that
1 + 1 + . . .+ 1︸ ︷︷ ︸

n

≤ sn.

We have limn→∞ n = +∞, thus limn→∞ sn = +∞.
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Series

Cauchy Criterion for Series

Theorem

The series
∑∞

k=1 ak converges iff for every ε > 0 there is Nε ∈ N such that
whenever n > m ≥ Nε it follows∣∣∣∣∣

n∑
k=m+1

ak

∣∣∣∣∣ < ε.

Proof. Let sn =
∑n

k=1 ak and we show that (sn)n∈N is a Cauchy
sequence. Observe that whenever n > m ≥ Nε then

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε.

We now apply the Cauchy Criterion for sequences and we are done.
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Series

Theorem

Theorem

If the series
∑∞

k=1 ak converges then limn→∞ an = 0.

Proof. Let ε > 0 be given. Apply the previous theorem with m = n − 1,
then

|an| = |sn − sn−1| < ε

whenever n > Nε, and we are done.

Remark

But limn→∞ an = 0 does not imply |
∑∞

k=1 ak | <∞.

Consider an = 1
n
−−−→n→∞ 0, but

∑∞
n=1

1
n =∞.
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Series

Example

Exercise

Determine if the series

∞∑
n=1

(−1)n
(

1− 1

n3

)n2

diverges or converges.

Solution. Since (n3)n∈N is a subsequence of (n)n∈N we have

lim
n→∞

(
1− 1

n3

)n3

= e−1,

hence limn→∞
(
1− 1

n3

)n2
= 1, and the limit limn→∞(−1)n

(
1− 1

n3

)n2
does

not exist, so the series diverges.
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Series

Comparison test

Comparison test

Assume that sequences (ak)k∈N and (bk)k∈N satisfy

0 ≤ ak ≤ bk for all k ∈ N.

(i) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

(ii) If
∑∞

k=1 ak diverges, then
∑∞

k=1 bk diverges.

Proof. Both statements follows from the Cauchy Criterion for series:∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=m+1

bk

∣∣∣∣∣ .
This completes the proof.

(MATH 311, Section 4, FALL 2022) Lesson 14 October 25, 2022 12 / 25



Series

Example

Exercise

Determine if the series
∞∑
n=1

1

n2 +
√
n + 15

diverges or converges.

Solution. For all n ∈ N we have
1

n2 +
√
n + 15

≤ 1

n2
, thus

∞∑
n=1

1

n2
<∞,

hence
∞∑
n=1

1

n2 +
√
n + 15

<∞.
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Series

Example

Exercise

Determine if the series
∞∑
n=1

1
3
√
n +
√
n + 1

diverges or converges.

Solution. For all n ∈ N we have
1

3
√
n +
√
n + 1

≥ 1

3
√
n
, thus

∞∑
n=1

1√
n

=∞,

hence
∞∑
n=1

1
3
√
n +
√
n + 1

=∞.
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Series

Theorem

Theorem

A series of nonnegative terms ak ≥ 0 converges iff its partial sums form a
bounded sequence.

Proof. If
∑∞

k=1 ak <∞ one sees that

sN =
N∑

k=1

ak ≤ M =
∞∑
k=1

ak <∞.

Conversely, we also know that sN ≤ sN+1 ≤ M for all N ∈ N. Then the
limit

lim
N→∞

sN

exists by the (MCT).
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Series

Cauchy Condensation Test

We have seen that

∞∑
n=1

1

n
=∞, and

∞∑
n=1

1

n2
<∞.

Cauchy Condensation Test

Suppose that (bn)n∈N is decreasing and bn ≥ 0 for all n ∈ N. Then the
series

∞∑
n=1

bn <∞ converges

iff the series
∞∑
n=1

2nb2n <∞ converges.
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Series

Corollary

Corollary

The series
∞∑
n=1

1

np
<∞ iff p > 1

Proof. The sequence bn = 1
np is decreasing and bn ≥ 0 for all n ∈ N. By

the Cauchy condensation test we obtain

∞∑
n=1

1

np
<∞ ⇐⇒

∞∑
n=0

2n

2pn
<∞.

But the latter converges provided that

∞∑
n=0

2n

2pn
=
∞∑
n=0

2(1−p)n =
1

1− 1
2p−1

<∞ ⇐⇒ p > 1.
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Euler’s number

Euler’s number e

Theorem
∞∑
n=0

1

n!
= e.

Proof. Let sn =
∑n

k=0
1
k! . Then

1 sn < sn+1 for all n ∈ N,

2 sn =
∑n

k=0
1
k! = 1 + 1 +

∑n
k=2

1
k! < 2 +

∑
k=2

1
2k−1 < 3.

Thus the limit limn→∞ sn exists.

Let tn =
(
1 + 1

n

)n
, then limn→∞ tn = e. By the binomial theorem

tn =

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk
.
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Euler’s number

Proof: 1/2

Then

tn =

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk

=
n∑

k=0

n(n − 1) · · · (n − k + 1)

k!

1

nk

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . .

+
1

n!

(
1− 1

n

)(
1− 2

n

)
· . . . ·

(
1− n − 1

n

)
≤

n∑
k=0

1

k!
= sn.

Thus

e = lim
n→∞

tn ≤ lim
n→∞

sn.
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Euler’s number

Proof: 2/2

Next if n ≥ m

tn ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ . . .+

1

m!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− m − 1

n

)
.

Let n→∞ keeping m fixed, we get

e = lim
n→∞

tn ≥
m∑

k=0

1

k!
.

Letting m→∞ we see limm→∞ sm ≤ e.

lim
m→∞

sm = lim
m→∞

m∑
k=0

1

k!
= e.

This completes the proof of the theorem.
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Euler’s number

Remark

We have sn =
∑n

k=0
1
k! < e for all n ∈ N. Indeed

e − sn =
∞∑

k=n+1

1

k!
=

1

(n + 1)!
+

1

(n + 2)!
+ . . .

=
1

(n + 1)!

(
1 +

1

n + 2
+

1

(n + 2)(n + 3)
+ . . .

)
<

1

(n + 1)!

(
1 +

1

n + 1
+

1

(n + 1)2
+ . . .

)
≤ 1

(n + 1)!

1

1− 1
n+1

=
1

(n + 1)!

n + 1

n
=

1

n!n
.

Hence we conclude

The error estimate (*)

0 < e − sn <
1

n!n
.
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Euler’s number

Euler’s number e is irrational

Theorem

The Euler number e is irrational.

Proof. Suppose e is rational. Then e = p
q where p, q ∈ N. By (*) we have

0 < q!(e − sq) <
1

q
.

By our assumption
q!e ∈ N is an integer.

Since

q!sq = q!

(
1 + 1 +

1

2!
+ . . .+

1

q!

)
∈ N,

we see q!(e − sq) ∈ N, but if q > 1 and this is impossible since

0 < q!(e − sq) < 1/q < 1.

Hence e must be irrational.
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Exponential function

Euler’s number and the exponential function

We know that

lim
n→∞

(
1 +

x

n

)n
= ex .

for any x ∈ R.

Also

∞∑
n=0

1

n!
= e.

Theorem

Let x ∈ R, then
∞∑
n=0

xn

n!
= ex .
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Exponential function

Proof: 1/2

Proof. Let Sn =
∑n

k=0
xk

k! , then by the binomial theorem we may write

∣∣∣Sn − (1 +
x

n

)n∣∣∣ =

∣∣∣∣∣
n∑

k=2

(
1−

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

))
xk

k!

∣∣∣∣∣
≤

n∑
k=2

(
1−

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

))
|x |k

k!
.

Let us also note that(
1− 1

n

)
· . . . ·

(
1− k − 1

n

)
≥ 1−

k−1∑
j=1

j

n
= 1− k(k − 1)

2n

for 2 ≤ k ≤ n.
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Exponential function

Proof: 2/2

Thus ∣∣∣Sn − (1 +
x

n

)n∣∣∣ ≤ n∑
k=2

k(k − 1)

2n

|x |k

k!
=

1

2n

n∑
k=2

|x |k

(k − 2)!
.

Using the Stolz theorem

lim
n→∞

1

2n

n∑
k=2

|x |k

(k − 2)!
= lim

n→∞

∑n+1
k=2

|x |k
(k−2)! −

∑n
k=2

|x |k
(k−2)!

(2n + 2)− 2n

= lim
n→∞

1

2

|x |n+1

(n − 1)!
= 0.

Thus
lim
n→∞

Sn = lim
n→∞

(
1 +

x

n

)n
= ex

as desired.
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