

Lesson 15

Exponential function and logarithm

Upper and Lower limits

Properties of infinite series and Abel Summation formula

MATH 311, Section 4, FALL 2022

September 28, 2022

Exponential function

We know that

$$\lim_{n \rightarrow \infty} \left(1 + \frac{x}{n}\right)^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \quad \text{for any } x \in \mathbb{R}.$$

Exponential function

The function $E : \mathbb{R} \rightarrow (0, \infty)$ defined by $E(x) = e^x$ is called **the exponential function**.

Properties of exponential function

- For all $x, y \in \mathbb{R}$ one has

$$e^{x+y} = e^x e^y.$$

- If $\lim_{n \rightarrow \infty} a_n = a$, then $\lim_{n \rightarrow \infty} e^{a_n} = e^a$.
- E is one-to-one and onto. Thus the inverse for E exists.

Natural logarithm

Natural logarithm

The inverse of E exists. It will be denoted by $E^{-1} : (0, \infty) \rightarrow \mathbb{R}$,

$$E^{-1}(x) = \ln(x) = \log(x)$$

and it is called **the natural logarithm**.

Simple properties of natural logarithm

- ① $\log(x)$ is increasing.
- ② For $x, y \in (0, \infty)$ we have

$$\log(xy) = \log(x) + \log(y).$$

- ③ We also have $x^\alpha = e^{\alpha \log(x)}$ for all $\alpha \in \mathbb{R}$.

Proposition

Proposition

For $x > 0$ we have

$$\frac{x}{x+2} < \log(x+1) < x.$$

Proof. We prove that for $0 < x < m$ with $m \in \mathbb{N}$, we have

$$\left(1 + \frac{x}{n}\right)^n < e^x < \left(1 + \frac{x}{n}\right)^{n+m}.$$

thus

$$n \log\left(1 + \frac{x}{n}\right) < x < (n+m) \log\left(1 + \frac{x}{n}\right).$$

Hence

$$\frac{x}{n+m} < \log\left(1 + \frac{x}{n}\right) < \frac{x}{n} \quad \text{if } m > x.$$

Proof:

Taking $n = 1$ we obtain

$$\log(1 + x) < x \quad \text{for all } x > 0.$$

Now set $m = \lfloor x \rfloor + 1 > x$, then

$$\log\left(1 + \frac{x}{n}\right) > \frac{\frac{x}{n}}{2 + \frac{x}{n}}.$$

Thus for $n = 1$ we obtain

$$\log(1 + x) > \frac{x}{2 + x}.$$

Remark

In fact, for every $x > 0$ the following inequality holds

$$\frac{x}{x + 1} < \log(x + 1) < x.$$

Euler–Mascheroni constant

Divergence of harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$$

Theorem

The sequences

$$a_n = \sum_{k=1}^{n-1} \frac{1}{k} - \log(n) \quad \text{and} \quad b_n = \sum_{k=1}^n \frac{1}{k} - \log(n)$$

are increasing and decreasing respectively and bounded, and

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n = \gamma.$$

where γ is known as **the Euler (or Euler–Mascheroni) constant**.

Proof: 1/2

Remark

- It is not even known whether γ is irrational.
- γ is called Euler-Mascheroni constant, and $\gamma \simeq 0,5772\dots$

Proof. We know

$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$$

thus

$$n \log \left(1 + \frac{1}{n}\right) < 1 < (n+1) \log \left(1 + \frac{1}{n}\right),$$

and consequently

$$\log \left(\frac{n+1}{n}\right) < \frac{1}{n},$$

$$\log \left(\frac{n+1}{n}\right) > \frac{1}{n+1}.$$

Proof: 2/2

Thus

$$a_{n+1} - a_n = \sum_{k=1}^n \frac{1}{k} - \log(n+1) - \sum_{k=1}^{n-1} \frac{1}{k} + \log(n) = \frac{1}{n} - \log\left(\frac{n+1}{n}\right) > 0.$$

Hence $(a_n)_{n \in \mathbb{N}}$ is increasing. Similarly,

$$b_{n+1} - b_n = \frac{1}{n+1} - \log\left(\frac{n+1}{n}\right) < 0,$$

thus $(b_n)_{n \in \mathbb{N}}$ is decreasing. Also it is clear

$$a_1 \leq a_n \leq b_n \leq b_1.$$

Thus by the (MCT) the limits exist

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} b_n = \gamma,$$

since $b_n = a_n + \frac{1}{n}$.

□

Upper and lower limits

Upper limit and lower limit

Let $(s_n)_{n \in \mathbb{N}}$ be a sequence of real numbers.

- **The upper limit** is defined by

$$\limsup_{n \rightarrow \infty} s_n = \inf_{k \geq 1} \sup_{n \geq k} s_n.$$

- **The lower limit** is defined by

$$\liminf_{n \rightarrow \infty} s_n = \sup_{k \geq 1} \inf_{n \geq k} s_n.$$

Proposition

Proposition

For a sequence $(s_n)_{n \in \mathbb{N}} \subset \mathbb{R}$, the upper and lower limits always exist.

Proof. Let $\alpha_k = \sup_{n \geq k} s_n$. Then $\alpha_{k+1} \leq \alpha_k$ and

$$\limsup_{n \rightarrow \infty} s_n = \inf_{k \geq 1} \sup_{n \geq k} s_n \underset{(MCT)}{=} \lim_{n \rightarrow \infty} \alpha_k \text{ (possible infinite!).}$$

If $\beta_k = \inf_{n \geq k} s_n$, then $\beta_k \leq \beta_{k+1}$ and

$$\liminf_{n \rightarrow \infty} s_n = \sup_{k \geq 1} \inf_{n \geq k} s_n \underset{(MCT)}{=} \lim_{n \rightarrow \infty} \beta_k \text{ (possible infinite!).}$$

Remark

Useful remarks

We always have

$$\beta_k = \inf_{n \geq k} s_n \leq \sup_{n \geq k} s_n = \alpha_k.$$

thus

$$\liminf_{n \rightarrow \infty} a_n = \lim_{k \rightarrow \infty} \beta_k \leq \lim_{k \rightarrow \infty} \alpha_k = \limsup_{n \rightarrow \infty} s_n.$$

Proposition

If $\liminf_{n \rightarrow \infty} s_n = \limsup_{n \rightarrow \infty} s_n = L$ then $\lim_{n \rightarrow \infty} s_n = L$.

Proof. If $\liminf_{n \rightarrow \infty} s_n = \limsup_{n \rightarrow \infty} s_n = L$, then

$$\alpha_k = \inf_{n \geq k} s_n \leq s_k \leq \sup_{n \geq k} s_n = \beta_k$$

and $\lim_{k \rightarrow \infty} \alpha_k = \lim_{k \rightarrow \infty} \beta_k = L$, thus $\lim_{n \rightarrow \infty} s_n = L$. □

Examples 1/3

Example 1

Consider $a_n = (-1)^n \frac{n+1}{n}$. Let

$$\beta_n = \sup \left\{ (-1)^n \frac{n+1}{n}, (-1)^{n+1} \frac{n+2}{n+1}, \dots \right\},$$

then

$$\beta_n = \begin{cases} \frac{n+1}{n} & \text{if } n \text{ is even,} \\ \frac{n+2}{n+1} & \text{if } n \text{ is odd.} \end{cases}$$

Thus $\lim_{n \rightarrow \infty} \beta_n = 1$. Therefore

$$\limsup_{n \rightarrow \infty} a_n = 1.$$

Similarly

$$\liminf_{n \rightarrow \infty} a_n = -1.$$

Examples 2/3

Example 2

Let

$$a_n = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

Then

$$\beta_n = \sup \{a_m : m \geq n\} = 1,$$

$$\alpha_n = \inf \{a_m : m \geq n\} = 0.$$

Therefore

$$\limsup_{n \rightarrow \infty} a_n = 1,$$

$$\liminf_{n \rightarrow \infty} a_n = 0.$$

Examples 3/3

Example 3

Let $a_n = \frac{1}{n}$. Then

$$\beta_n = \sup \left\{ \frac{1}{m} : m \geq n \right\} = \frac{1}{n},$$

so $\lim_{n \rightarrow \infty} \beta_n = 0$. Similarly

$$\alpha_n = \inf \left\{ \frac{1}{m} : m \geq n \right\} = 0,$$

so $\lim_{n \rightarrow \infty} \alpha_n = 0$. Thus

$$\limsup_{n \rightarrow \infty} a_n = \liminf_{n \rightarrow \infty} a_n = 0.$$

Absolute convergence

Absolute convergence

The series $\sum_{n=1}^{\infty} a_n$ is said **to converge absolutely** if the series

$$\sum_{n=1}^{\infty} |a_n| < \infty$$

converges.

Theorem

If $\sum_{n=1}^{\infty} |a_n| < \infty$, then $|\sum_{n=1}^{\infty} a_n| < \infty$.

Proof. The claim follows from the Cauchy Criterion, since

$$\left| \sum_{k=m}^n a_k \right| \leq \sum_{k=m}^n |a_k|$$

and we are done. □

Conditional convergence

Conditional convergence

If the series $\sum_{n=1}^{\infty} a_n$ converges but

$$\sum_{n=1}^{\infty} |a_n| = \infty$$

diverges then we say that $\sum_{n=1}^{\infty} a_n$ **converges conditionally**.

Example 1

For series with positive terms, absolute convergence is the same as convergence.

Example 2

$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ converges absolutely, since $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$.

Anharmonic series

Anharmonic series

The series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converges conditionally.

It is easy to see that

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

To prove $\left| \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \right| < \infty$ we will show a more general result.

Summation by parts (Abel summation formula)

Abel summation formula

Given two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ set

$$A_n = \sum_{k=0}^n a_k \quad \text{for} \quad n \geq 0, \quad \text{and} \quad A_{-1} = 0.$$

Then if $0 \leq p \leq q$ one has

$$\sum_{n=p}^q a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

Proof of Abel summation formula

Proof: Note that

$$\begin{aligned}
 \sum_{n=p}^q a_n b_n &= \sum_{n=p}^q \underbrace{(A_n - A_{n-1})}_{a_n} b_n = \sum_{n=p}^q A_n b_n - \sum_{n=p}^q A_{n-1} b_n \\
 &= \sum_{n=p}^q A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1} \\
 &= \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.
 \end{aligned}$$

The proof follows. □

Theorem

Dirichlet's test

Suppose that

- (a) The partial sums $A_n = \sum_{k=1}^n a_k$ of $(a_n)_{n \in \mathbb{N}}$ form a bounded sequence.
- (b) $b_0 \geq b_1 \geq b_2 \geq b_3 \geq \dots$,
- (c) $\lim_{n \rightarrow \infty} b_n = 0$.

Then $\sum_{n=1}^{\infty} a_n b_n$ converges.

Proof. Choose $M \geq 0$ so that $|A_n| \leq M$ for all $n \in \mathbb{N}$. Given $\varepsilon > 0$ there is $N_{\varepsilon} \in \mathbb{N}$ so that

$$b_{N_{\varepsilon}} < \frac{\varepsilon}{2M},$$

since $\lim_{n \rightarrow \infty} b_n = 0$.

Proof

For $N_\varepsilon \leq p \leq q$, by the summation by parts formula, one has

$$\begin{aligned}
 \left| \sum_{n=p}^q a_n b_n \right| &= \left| \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p \right| \\
 &\leq \left| \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) \right| + |A_q b_q| + |A_{p-1} b_p| \\
 &\leq M \sum_{n=p}^{q-1} |(b_n - b_{n+1})| + M \textcolor{blue}{b}_q + M \textcolor{red}{b}_p \leq 2M b_p \leq 2M b_{N_\varepsilon} < \varepsilon.
 \end{aligned}$$

since

$$\begin{aligned}
 b_p - b_q &= \sum_{n=p}^{q-1} |(b_n - b_{n+1})| = \sum_{n=p}^{q-1} (b_n - b_{n+1}) \\
 &= (b_p - \textcolor{red}{b}_{p+1}) + (\textcolor{red}{b}_{p+1} - \textcolor{blue}{b}_{p+2}) + (\textcolor{blue}{b}_{p+2} - \textcolor{red}{b}_{p+3}) + \dots + b_{q-1} - b_q. \quad \square
 \end{aligned}$$

Anharmonic series

We now show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges. Let

$$a_n = (-1)^n, \quad \text{and} \quad b_n = \frac{1}{n}$$

in the previous theorem. We see that

$$\left| \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \right| = \left| \sum_{n=1}^{\infty} a_n b_n \right| < \infty$$

since

$$|A_n| = \left| \sum_{k=1}^n (-1)^k \right| \leq 1.$$

Alternating Series Test

A more general result can be proved:

Alternating Series Test

Let $(a_n)_{n \in \mathbb{N}}$ be such that

- ① $a_1 \geq a_2 \geq \dots \geq a_n \geq \dots$,
- ② $\lim_{n \rightarrow \infty} a_n = 0$.

Then the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

Proof. We apply the previous theorem.

Example

Exercise

Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$ converges and converges absolutely.

Solution. Let $a_n = \frac{1}{\sqrt{n^2+1}}$.

- We have

$$a_n \geq \frac{1}{\sqrt{4n^2}} = \frac{1}{2n},$$

so the series **does not converges absolutely**, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

- On the other hand, we have

$$a_n \geq a_{n+1} \quad \text{and} \quad \lim_{n \rightarrow \infty} a_n = 0,$$

so the assumptions of the previous theorem are satisfied. Hence $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$ **converges conditionally**. □

Root test

Root test

Given $\sum_{n=1}^{\infty} a_n$ set

$$\alpha = \limsup_{n \rightarrow \infty} \sqrt[n]{|a_n|}.$$

- (a) If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- (c) If $\alpha = 1$, **no information**.

Proof. If $\alpha < 1$ we can choose β so that $\alpha < \beta < 1$ and the integer $N \in \mathbb{N}$ so that

$$\sqrt[n]{|a_n|} < \beta \quad \text{for all } n \geq N,$$

since

$$\alpha = \inf_{k \geq 1} \sup_{n \geq k} \sqrt[n]{|a_n|} < \beta.$$

Proof

- For $n \geq N$ we have $|a_n| < \beta^n$, but $\beta < 1$, thus $\sum_{n=1}^{\infty} \beta^n$ converges and the comparison test implies that $\sum_{n=1}^{\infty} a_n$ converges as well.
- If $\alpha > 1$ then there is $(n_k)_{k \in \mathbb{N}}$ so that

$$|a_{n_k}|^{1/n_k} \xrightarrow[k \rightarrow \infty]{} \alpha.$$

Hence $|a_n| > 1$ holds for infinitely many values of $n \in \mathbb{N}$, so that the condition $a_n \xrightarrow{n \rightarrow \infty} 0$ necessary for convergence $\sum_{n=1}^{\infty} a_n$ does not hold.

- To prove (c) note that

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \quad \text{and} \quad \sqrt[n]{n} \xrightarrow{n \rightarrow \infty} 1.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty \quad \text{and} \quad \sqrt[n]{n^2} \xrightarrow{n \rightarrow \infty} 1.$$

This completes the proof. □

Examples

Example 1

$$\sum_{n=1}^{\infty} \left(\frac{e}{n}\right)^n < \infty,$$

since

$$\sqrt[n]{\frac{e^n}{n^n}} = \frac{e}{n} \xrightarrow{n \rightarrow \infty} 0.$$

Example 2

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} < \infty,$$

since

$$\sqrt[n]{\frac{n^2}{2^n}} \xrightarrow{n \rightarrow \infty} \frac{1}{2}.$$

Ratio test

Ratio test

The series $\sum_{n=1}^{\infty} a_n$

- (a) converges if $\limsup_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$,
- (b) diverges if $\left| \frac{a_{n+1}}{a_n} \right| > 1$ for all $n \geq n_0$ for some fixed $n_0 \in \mathbb{N}$.

Proof. If (a) holds we can find $\beta < 1$ and $n \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| < \beta \quad \text{for all } n \geq N.$$

Proof

- In particular, for $p \in \mathbb{N}$, one has

$$\begin{aligned}
 |a_{n+p}| &= |a_{n+p-1}| \frac{|a_{n+p}|}{|a_{n+p-1}|} \\
 &< \beta |a_{n+p-1}| \\
 &< \beta^2 |a_{n+p-2}| < \dots < \\
 &< \beta^p |a_n|.
 \end{aligned}$$

- Thus $|a_{N+p}| < \beta^p |a_N|$ and

$$|a_n| < |a_N| \beta^{-N} \beta^n \quad \text{for all } n \geq N.$$

- The claim follows from the comparison test since $\sum_{n=1}^{\infty} \beta^n < \infty$ whenever $\beta < 1$.
- If $|a_{n+1}| \geq |a_n|$ for $n \geq n_0$ then $a_n \xrightarrow{n \rightarrow \infty} 0$ does not hold. □

Remark and example

Remark

As before $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = 1$ is useless:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \quad \text{and} \quad \frac{a_{n+1}}{a_n} = \frac{n}{n+1} \xrightarrow{n \rightarrow \infty} 1,$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty \quad \text{and} \quad \frac{a_{n+1}}{a_n} = \left(\frac{n}{n+1} \right)^2 \xrightarrow{n \rightarrow \infty} 1.$$

Example

$\sum_{n=1}^{\infty} \frac{n!}{n^n} < \infty$, since

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} = \frac{(n+1)n^n}{(n+1)^{n+1}} = \left(\frac{n}{n+1} \right)^n \xrightarrow{n \rightarrow \infty} \frac{1}{e} < 1.$$

Rearrangements

Rearrangement

Let $(k_n)_{n \in \mathbb{N}}$ be a sequence in which every positive integer appears once and only once. Setting

$$a'_n = a_{k_n}$$

we say that $\sum_{n=1}^{\infty} a'_n$ is **rearrangement** of $\sum_{n=1}^{\infty} a_n$.

Example

- Consider the convergent series

$$S = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots$$

$\underbrace{-\frac{1}{4}}_{<0} + \underbrace{-\frac{1}{6}}_{<0} + \dots$

Example

- Consider also a rearrangement S' of S given by:

$$\begin{aligned} S' &= 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots + \\ &= \sum_{k=1}^{\infty} \left(\frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} \right) \end{aligned}$$

- Observe that $S < 1 - \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$ and

$$\frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} > 0 \quad \text{for all } k \in \mathbb{N}.$$

- If S'_n is the partial sum of S' then

$$S'_3 < S'_6 < S'_9 < \dots$$

hence $\limsup_{n \rightarrow \infty} S'_n > S'_3 = \frac{5}{6}$.

- Thus S' **does not converge** to $S < \frac{5}{6}$.

Theorem

Theorem

Let $\sum_{n=1}^{\infty} a_n$ be a series that converges unconditionally. Suppose that

$$-\infty \leq \alpha \leq \beta \leq +\infty.$$

Then there exists a reaarangement $\sum_{n=0}^{\infty} a'_n$ with partial sums s'_n so that

$$\liminf_{n \rightarrow \infty} s'_n = \alpha, \quad \text{and} \quad \limsup_{n \rightarrow \infty} s'_n = \beta.$$

Theorem

If $\sum_{n=1}^{\infty} |a_n| < \infty$, then every rearrangement of $\sum_{n=1}^{\infty} a_n$ converge to the same limit.

Proof. Let $\sum_{n=1}^{\infty} a'_n$ be a rearrangement of $\sum_{n=1}^{\infty} a_n$ with partial sums s'_n . Given $\varepsilon > 0$ there is $N_{\varepsilon} \in \mathbb{N}$ such that $m \geq n \geq N_{\varepsilon}$ implies

$$\left| \sum_{k=n}^m a_k \right| < \varepsilon.$$

Now choose $p \in \mathbb{N}$ such that

$$\{1, 2, \dots, N_{\varepsilon}\} \subseteq \{k_1, k_2, \dots, k_p\}.$$

If $n > p$ then the numbers a_1, \dots, a_N will cancel in the difference $s_n - s'_n$ so that

$$|s_n - s'_n| < \varepsilon.$$

Hence s'_n converges to the same limit as $(s_n)_{n \in \mathbb{N}}$. □