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Exponential function

Exponential function

We know that

lim
n→∞

(
1 +

x

n

)n
=
∞∑
n=0

xn

n!
= ex for any x ∈ R.

Exponential function

The function E : R→ (0,∞) defined by E (x) = ex is called the
exponential function.

Properties of exponential function

(i) For all x , y ∈ R one has

ex+y = exey .

(ii) If limn→∞ an = a, then limn→∞ ean = ea.

(iii) E is one-to-one and onto. Thus the inverse for E exists.
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Exponential function

Natural logarithm

Natural logarithm

The inverse of E exists. It will be denoted by E−1 : (0,∞)→ R,

E−1(x) = ln(x) = log(x)

and it is called the natural logarithm.

Simple properties of natural logarithm

1 log(x) is increasing.

2 For x , y ∈ (0,∞) we have

log(xy) = log(x) + log(y).

3 We also have xα = eα log(x) for all α ∈ R.
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Exponential function

Proposition

Proposition

For x > 0 we have
x

x + 2
< log(x + 1) < x .

Proof. We prove that for 0 < x < m with m ∈ N, we have(
1 +

x

n

)n
< ex <

(
1 +

x

n

)n+m
.

thus
n log

(
1 +

x

n

)
< x < (n + m) log

(
1 +

x

n

)
.

Hence
x

n + m
< log

(
1 +

x

n

)
<

x

n
if m > x .

(MATH 311, Section 4, FALL 2022) Lesson 15 September 28, 2022 4 / 34



Exponential function

Proof:

Taking n = 1 we obtain

log(1 + x) < x for all x > 0.

Now set m = bxc+ 1 > x , then

log
(

1 +
x

n

)
>

x
n

2 + x
n

.

Thus for n = 1 we obtain

log(1 + x) >
x

2 + x
.

Remark

In fact, for every x > 0 the following inequality holds

x

x + 1
< log(x + 1) < x .
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Exponential function

Euler–Mascheroni constant

Divergence of harmonic series

∞∑
n=1

1

n
= +∞.

Theorem

The sequences

an =
n−1∑
k=1

1

k
− log(n) and bn =

n∑
k=1

1

k
− log(n)

are increasing and decreasing respectively and bounded, and

lim
n→∞

an = lim
n→∞

bn = γ.

where γ is known as the Euler (or Euler–Mascheroni) constant.
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Exponential function

Proof: 1/2

Remark

It is not even known whether γ is irrational.

γ is called Euler-Mascheroni constant, and γ ' 0, 5772 . . ..

Proof. We know (
1 +

1

n

)n

< e <

(
1 +

1

n

)n+1

thus

n log

(
1 +

1

n

)
< 1 < (n + 1) log

(
1 +

1

n

)
,

and consequently

log

(
n + 1

n

)
<

1

n
,

log

(
n + 1

n

)
>

1

n + 1
.
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Exponential function

Proof: 2/2

Thus

an+1 − an =
n∑

k=1

1

k
− log(n + 1)−

n−1∑
k=1

1

k
+ log(n) =

1

n
− log

(
n + 1

n

)
> 0.

Hence (an)n∈N is increasing. Similarly,

bn+1 − bn =
1

n + 1
− log

(
n + 1

n

)
< 0,

thus (bn)n∈N is decreasing. Also it is clear

a1 ≤ an ≤ bn ≤ b1.

Thus by the (MCT) the limits exist

lim
n→∞

an = lim
n→∞

bn = γ,

since bn = an + 1
n .
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Upper and lower limits

Upper and lower limits

Upper limit and lower limit

Let (sn)n∈N be a sequence of real numbers.

The upper limit is defined by

lim sup
n→∞

sn = inf
k≥1

sup
n≥k

sn.

The lower limit is defined by

lim inf
n→∞

sn = sup
k≥1

inf
n≥k

sn.
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Upper and lower limits

Proposition

Proposition

For a sequence (sn)n∈N ⊂ R, the upper and lower limits always exist.

Proof. Let αk = supn≥k sn. Then αk+1 ≤ αk and

lim sup
n→∞

sn = inf
k≥1

sup
n≥k

sn =︸︷︷︸
(MCT )

lim
n→∞

αk (possible infinite!).

If βk = infn≥k sn, then βk ≤ βk+1 and

lim inf
n→∞

sn = sup
k≥1

inf
n≥k

sn =︸︷︷︸
(MCT )

lim
n→∞

βk (possible infinite!).
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Upper and lower limits

Remark

Useful remarks

We always have
βk = inf

n≥k
sn ≤ sup

n≥k
sn = αk .

thus
lim inf
n→∞

an = lim
k→∞

βk ≤ lim
k→∞

αk = lim sup
n→∞

sn.

Proposition

If lim infn→∞ sn = lim supn→∞ sn = L then limn→∞ sn = L.

Proof. If lim infn→∞ sn = lim supn→∞ sn = L, then

αk = inf
n≥k

sn ≤ sk ≤ sup
n≥k

sn = βk

and limk→∞ αk = limk→∞ βk = L, thus limn→∞ sn = L.
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Upper and lower limits

Examples 1/3

Example 1

Consider an = (−1)n n+1
n . Let

βn = sup

{
(−1)n

n + 1

n
, (−1)n+1 n + 2

n + 1
, . . .

}
,

then

βn =

{
n+1
n if n is even,

n+2
n+1 if n is odd.

Thus limn→∞ βn = 1. Therefore

lim sup
n→∞

an = 1.

Similarly
lim inf
n→∞

an = −1.
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Upper and lower limits

Examples 2/3

Example 2

Let

an =

{
0 if n is odd,

1 if n is even.

Then

βn = sup {am : m ≥ n} = 1,

αn = inf{am : m ≥ n} = 0.

Therefore

lim sup
n→∞

an = 1,

lim inf
n→∞

an = 0.
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Upper and lower limits

Examples 3/3

Example 3

Let an = 1
n . Then

βn = sup

{
1

m
: m ≥ n

}
=

1

n
,

so limn→∞ βn = 0. Similarly

αn = inf

{
1

m
: m ≥ n

}
= 0,

so limn→∞ αn = 0. Thus

lim sup
n→∞

an = lim inf
n→∞

an = 0.
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Absolute and conditional convergence

Absolute convergence

Absolute convergence

The series
∑∞

n=1 an is said to converge absolutely if the series

∞∑
n=1

|an| <∞

converges.

Theorem

If
∑∞

n=1 |an| <∞, then |
∑∞

n=1 an| <∞.

Proof. The claim follows from the Cauchy Criterion, since∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

|ak |

and we are done.
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Absolute and conditional convergence

Conditional convergence

Conditional convergence

If the series
∑∞

n=1 an converges but

∞∑
n=1

|an| =∞

diverges then we say that
∑∞

n=1 an converges conditionally.

Example 1

For series with positive terms, absolute convergence is the same as
convergence.

Example 2∑∞
n=1(−1)n 1

n2
converges absolutely, since

∑∞
n=1

1
n2
<∞.
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Absolute and conditional convergence

Anharmonic series

Anharmonic series

The series
∞∑
n=1

(−1)n

n

converges conditionally.

It is easy to see that

∞∑
n=1

∣∣∣∣(−1)n

n

∣∣∣∣ =
∞∑
n=1

1

n
=∞.

To prove
∣∣∑∞

n=1
(−1)n

n

∣∣ <∞ we will show a more general result.
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Summation by parts (Abel summation formula)

Summation by parts (Abel summation formula)

Abel summation formula

Given two sequences (an)n∈N and (bn)n∈N set

An =
n∑

k=0

ak for n ≥ 0, and A−1 = 0.

Then if 0 ≤ p ≤ q one has

q∑
n=p

anbn =

q−1∑
n=p

An (bn − bn+1) + Aqbq − Ap−1bp.
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Summation by parts (Abel summation formula)

Proof of Abel summation formula

Proof: Note that

q∑
n=p

anbn =

q∑
n=p

(An − An−1)︸ ︷︷ ︸
an

bn =

q∑
n=p

Anbn −
q∑

n=p

An−1bn

=

q∑
n=p

Anbn −
q−1∑

n=p−1
Anbn+1

=

q−1∑
n=p

An (bn − bn+1) + Aqbq − Ap−1bp.

The proof follows.
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Summation by parts (Abel summation formula)

Theorem

Dirichlet’s test

Suppose that

(a) The partial sums An =
∑n

k=1 ak of (an)n∈N form a bounded sequence.

(b) b0 ≥ b1 ≥ b2 ≥ b3 ≥ . . .,
(c) limn→∞ bn = 0.

Then
∑∞

n=1 anbn converges.

Proof. Choose M ≥ 0 so that |An| ≤ M for all n ∈ N. Given ε > 0 there
is Nε ∈ N so that

bNε <
ε

2M
,

since limn→∞ bn = 0.

(MATH 311, Section 4, FALL 2022) Lesson 15 September 28, 2022 20 / 34



Summation by parts (Abel summation formula)

Proof

For Nε ≤ p ≤ q, by the summation by parts formula, one has∣∣∣∣∣
q∑

n=p

anbn

∣∣∣∣∣ =

∣∣∣∣∣
q−1∑
n=p

An (bn − bn+1) + Aqbq − Ap−1bp

∣∣∣∣∣
≤

∣∣∣∣∣
q−1∑
n=p

An (bn − bn+1)

∣∣∣∣∣+ |Aqbq|+ |Ap−1bp|

≤ M

q−1∑
n=p

|(bn − bn+1)|+ Mbq + Mbp ≤ 2Mbp ≤ 2MbNε < ε.

since

bp − bq =

q−1∑
n=p

|(bn − bn+1)| =

q−1∑
n=p

(bn − bn+1)

= (bp − bp+1) + (bp+1 − bp+2) + (bp+2 − bp+3) + . . .+ bq−1 − bq.
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Summation by parts (Abel summation formula)

Anharmonic series

We now show that
∑∞

n=1
(−1)n

n converges. Let

an = (−1)n, and bn =
1

n

in the previous theorem. We see that∣∣∣∣∣
∞∑
n=1

(−1)n

n

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

anbn

∣∣∣∣∣ <∞
since

|An| =

∣∣∣∣∣
n∑

k=1

(−1)k

∣∣∣∣∣ ≤ 1.
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Summation by parts (Abel summation formula)

Alternating Series Test

A more general result can be proved:

Alternating Series Test

Let (an)n∈N be such that

(i) a1 ≥ a2 ≥ . . . ≥ an ≥ . . .,
(ii) limn→∞ an = 0.

Then the alternating series
∑∞

n=1(−1)nan converges.

Proof. We apply the previous theorem.
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Summation by parts (Abel summation formula)

Example

Exercise

Determine if the series
∑∞

n=1
(−1)n√
n2+1

converges and converges absolutely.

Solution. Let an = 1√
n2+1

.

We have

an ≥
1√
4n2

=
1

2n
,

so the series does not converges absolutely, since
∑∞

n=1
1
n diverges.

On the other hand, we have

an ≥ an+1 and lim
n→∞

an = 0,

so the assumptions of the previous theorem are satisfied. Hence∑∞
n=1

(−1)n√
n2+1

converges conditionally.
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Root and ratio test

Root test

Root test

Given
∑∞

n=1 an set

α = lim sup
n→∞

n
√
|an|.

(a) If α < 1, then
∑∞

n=1 an converges.

(b) If α > 1, then
∑∞

n=1 an diverges.

(c) If α = 1, no information.

Proof. If α < 1 we can choose β so that α < β < 1 and the integer
N ∈ N so that

n
√
|an| < β for all n ≥ N,

since
α = inf

k≥1
sup
n≥k

n
√
|an| < β.
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Root and ratio test

Proof

For n ≥ N we have |an| < βn, but β < 1, thus
∑∞

n=1 β
n converges

and the comparision test implies that
∑∞

n=1 an converges as well.

If α > 1 then there is (nk)k∈N so that

|ank |
1/nk −−−→

k→∞ α.

Hence |an| > 1 holds for infinitely many values of n ∈ N, so that the
condition an −−−→n→∞ 0 necessary for convergence

∑∞
n=1 an does not hold.

To prove (c) note that

∞∑
n=1

1

n
=∞ and n

√
n −−−→n→∞ 1.

∞∑
n=1

1

n2
<∞ and

n
√
n2 −−−→n→∞ 1.

This completes the proof.
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Root and ratio test

Examples

Example 1

∞∑
n=1

(e
n

)n
<∞,

since
n

√
en

nn
=

e

n
−−−→n→∞ 0.

Example 2

∞∑
n=1

n2

2n
<∞,

since
n

√
n2

2n
−−−→n→∞

1

2
.
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Root and ratio test

Ratio test

Ratio test

The series
∑∞

n=1 an

(a) converges if lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1,

(b) diverges if
∣∣∣an+1

an

∣∣∣ > 1 for all n ≥ n0 for some fixed n0 ∈ N.

Proof. If (a) holds we can find β < 1 and n ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ < β for all n ≥ N.
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Root and ratio test

Proof

In particular, for p ∈ N, one has

|an+p| = |an+p−1|
|an+p|
|an+p−1|

< β|an+p−1|
< β2|an+p−2| < . . . <

< βp|an|.

Thus |aN+p| < βp|aN | and

|an| < |aN |β−Nβn for all n ≥ N.

The claim follows from the comparison test since
∑∞

n=1 β
n <∞

whenever β < 1.

If |an+1| ≥ |an| for n ≥ n0 then an −−−→n→∞ 0 does not hold.

(MATH 311, Section 4, FALL 2022) Lesson 15 September 28, 2022 29 / 34



Root and ratio test

Remark and example

Remark

As before limn→∞
an+1

an
= 1 is useless:

∞∑
n=1

1

n
=∞ and

an+1

an
=

n

n + 1
−−−→n→∞ 1,

∞∑
n=1

1

n2
<∞ and

an+1

an
=

(
n

n + 1

)2

−−−→n→∞ 1.

Example∑∞
n=1

n!
nn <∞, since

an+1

an
=

(n + 1)!

(n + 1)n+1

nn

n!
=

(n + 1)nn

(n + 1)n+1
=

(
n

n + 1

)n

−−−→n→∞
1

e
< 1.
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Rearrangements

Rearrangements

Rearrangement

Let (kn)n∈N be a sequence in which every positive integer appears once
and only once. Setting

a′n = akn

we say that
∑∞

n=1 a
′
n is rearrangement of

∑∞
n=1 an.

Example

Consider the convergent series

S =
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
−1

4
+

1

5︸ ︷︷ ︸
<0

−1

6
+

1

7︸ ︷︷ ︸
<0

− . . .
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Rearrangements

Example

Consider also a rearrangement S ′ of S given by:

S ′ = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . .+

=
∞∑
k=1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
Observe that S < 1− 1

2 + 1
3 = 5

6 and

1

4k − 3
+

1

4k − 1
− 1

2k
> 0 for all k ∈ N.

If S ′n is the partial sum of S ′ then

S ′3 < S ′6 < S ′9 < . . .

hence lim supn→∞ S ′n > S ′3 = 5
6 .

Thus S ′ does not converge to S < 5
6 .
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Rearrangements

Theorem

Theorem

Let
∑∞

n=1 an be a series that converges unconditionally. Suppose that

−∞ ≤ α ≤ β ≤ +∞.

Then there exists a reaarangement
∑∞

n=0 a
′
n with partial sums s ′n so that

lim inf
n→∞

s ′n = α, and lim sup
n→∞

s ′n = β.
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Rearrangements

Theorem

If
∑∞

n=1 |an| <∞, then every rearrangement of
∑∞

n=1 an converge to the
same limit.

Proof. Let
∑∞

n=1 a
′
n be a rearrangement of

∑∞
n=1 an with partial sums s ′n.

Given ε > 0 there is Nε ∈ N such that m ≥ n ≥ Nε implies∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε.

Now choose p ∈ N such that

{1, 2, . . . ,Nε} ⊆ {k1, k2, . . . , kp}.

If n > p then the numbers a1, . . . , aN will cancel in the difference sn − s ′n
so that

|sn − s ′n| < ε.

Hence s ′n converges to the same limit as (sn)n∈N.
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