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Exponential function and logarithm
Upper and Lower limits
Properties of infinite series and Abel Summation formula
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Exponential function

Exponential function

We know that

X\ = X"
lim (1 + —) = =¢& forany xeR.
n—00 n n

n=0
Exponential function

The function E : R — (0, 00) defined by E(x) = €~ is called the
exponential function.

Properties of exponential function

@ For all x,y € R one has

&Y = eXeY.

@ Iflimp_o an = a, then lim,_, o %" = €.

@ E is one-to-one and onto. Thus the inverse for E exists.
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Natural logarithm

Natural logarithm
The inverse of E exists. It will be denoted by £71: (0,00) — R,

E71(x) = In(x) = log(x)

and it is called the natural logarithm.

Simple properties of natural logarithm

@ log(x) is increasing.
@ For x,y € (0,00) we have

log(xy) = log(x) + log(y).

© We also have x® = e®'°8(x) for all o € R.
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Proposition

Proposition

For x > 0 we have

o <log(x +1) < x.

Proof. We prove that for 0 < x < m with m € N, we have
n n+m
(1+5> <eX<(1+§> .
n n

thus X N
nlog<1+—> <X<(n+m)|og<1+f>.
n n

Hence

<Iog(1+§)<f if m>x.
n

n+m n
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Exponential function

Proof:

Taking n = 1 we obtain
log(1+x) < x forall x>0.

Now set m = | x| + 1 > x, then
X

og (1+2) >
og +n o

S

SRR

Thus for n = 1 we obtain

log(1+ x) > .
og(1 +x) 2+ x
O

Remark
In fact, for every x > 0 the following inequality holds

<log(x+1) < x.
September 28, 2022
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Euler—Mascheroni constant

Divergence of harmonic series

1
2=

Theorem
The sequences

7
AR
3>

x| =

an =

1
—log(n) and b, = P log(n)
1 k=1

>
[l

are increasing and decreasing respectively and bounded, and

lim a, = I|m bp =1.
n—oo

where 7y is known as the Euler (or Euler—Mascheroni) constant.
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Proof: 1/2

Remark
@ It is not even known whether « is irrational.

@ 7 is called Euler-Mascheroni constant, and v ~ 0,5772.. ..

1 n 1 n+1
(1—1—) <e<<1~|—>

n n

1 1
nlog{1l+—-] <1< (n+1)log|l+—-]),
n n
and consequently
<n—|—1>
log <
n

1

Ev
Iog<n+1) - 1 ‘
n n+1
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Exponential function

Proof: 2/2
Thus
n n—1
1 1 1 n+1
a1 — p —log(n+1) — Z p + log(n) = o log < p ) > 0.
k=1 k=1

Hence (an)nen is increasing. Similarly,

1 1
boi1 — by = —Iog(”j ><0,

n+1
thus (bp)nen is decreasing. Also it is clear
a1 < ap < b, < by.
Thus by the (MCT) the limits exist

lim a, = I|m bn =7,
n—oo —00

; 1
since by, = a, + . O
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Upper and lower limits

Upper and lower limits

Upper limit and lower limit
Let (sn)nen be a sequence of real numbers.

@ The upper limit is defined by

limsups, = inf sups,.
n—00 k>1 n>k

@ The lower limit is defined by

liminf s, = sup inf s,.
n—00 k>1n2k
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Upper and lower limits

Proposition

Proposition

For a sequence (sp)nen C R, the upper and lower limits always exist.

Proof. Let ax = sup,> sp. Then ayi 1 < o and

limsups, = inf sups, =
n—o00 k>1 n>k ~~n
- (MCT)

lim a (possible infinite!).
— 00

If Bk = inf,>k sp, then Bk < Byy1 and

liminfs, =supinfs, = lim Bk (possible infinite!).
—00

n—o0 k>1n>k ~~n
- (MCT)
L]
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Remark
Useful remarks

We always have
Bk = |nf Sp < SUp Sy = Q.

n>k
thus
liminfa, = I|m Br < lim ay = limsups,.
n—oo —00 k—00 n—o00
V.
Proposition
If liminf,_ o0 Sp = limsup,_,o, Sp = L then lim,_oo s, = L.
v
Proof. If liminf,_o s, = limsup,_, ., S» = L, then
o = |nf Sp < s < sups, = Bk
n>k
and limy_o ap = limyg_ o0 Bk = L, thus lim, o s, = L. []
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Examples 1/3

Example 1

Consider a, = (—1)"ZHL. |et

ﬂ,,:sup{(—l)”n+1,(—1)”+1n+2 }’

n n+1" "

then

%1 if nis even,
ﬁn - n+2 .

] if nis odd.

Thus lim,_ s Bn = 1. Therefore

limsupa, = 1.
n—o0o

Similarly

liminfa, = —1.
n—oo
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Upper and lower limits

Examples 2/3

Example 2
Let
0 if nis odd,
ap =
1if nis even.
Then
Bn=sup{am : m>n}=1,
ap =inf{a, : m>n}=0.
Therefore

limsupa, =1,

n—oo
liminfa, =0.
n—oo
o
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Examples 3/3

Example 3

Let a, = % Then

S|

1
Bn:sup{m : mzn}:

so limp_ o Bn = 0. Similarly

1
oz,,:inf{ : mzn}zo,
m

so lim,_ oy, = 0. Thus

limsup a, = liminfa, = 0.
n—00 n—=oo
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Absolute and conditional convergence

Absolute convergence

Absolute convergence

The series Y2 ; a, is said to converge absolutely if the series

o0
Z lan| < 00
n=1

converges.

Theorem
If >0 1 ]an] < oo, then |37 an| < oc.

Proof. The claim follows from the Cauchy Criterion, since

n n
SIE
k=m k=m

and we are done. O
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Absolute and conditional convergence

Conditional convergence

Conditional convergence

If the series Y7 ; an converges but

[e.9]

D lan] = o0

n=1

diverges then we say that )~ ; a, converges conditionally.

Example 1

For series with positive terms, absolute convergence is the same as
convergence.

Example 2
S 02 1(—1)"% converges absolutely, since Y5 ; 5 < oo.
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Absolute and conditional convergence

Anharmonic series

Anharmonic series
The series

converges conditionally.

It is easy to see that

o _1I‘l 001

—1)" .
To prove | 300, %’ < oo we will show a more general result.
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Summation by parts (Abel summation formula)

Summation by parts (Abel summation formula)

Abel summation formula

Given two sequences (ap)nen and (bp)nen set

A,,:Zak for n>0, and A_1=0.

Then if 0 < p < g one has

q q—1
> anbn = An(bn— bns1) + Aghg — Ap_1bp.
n=p n=p
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Summation by parts (Abel summation formula)

Proof of Abel summation formula

Proof: Note that

q q
a,,b n—1)Dbn = A b — An 1b
Lo Yo poin= S
q q-1
= ZAnbn - Z Anbn+1
n=p n=p—1
q—1
=N Ay (by — bni1) + Agbg — Ap_1by.
n=p
The proof follows. O
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Summation by parts (Abel summation formula)

Theorem

Dirichlet’s test

Suppose that

@ The partial sums A, =Y ,_; ak of (an)nen form a bounded sequence.
Q@ bp>by=>2b>b3>...,

@ limpseo by =0.

Then "7 | anb, converges.

Proof. Choose M > 0 so that |A,| < M for all n € N. Given ¢ > 0 there

is N. € N so that
€

b N
Ne < 2M7

since lim,_,o b, = 0.
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Summation by parts (Abel summation formula)

Proof
For N. < p < g, by the summation by parts formula, one has
q q—1
> anbn| = > An(bn— bns1) + Aghg — Ap_1b,
n=p n=p

q—1
< ZAn (bn — bnt1)| + [Agbg| + [Ap—1bp|
n=p
q—1
< M> " [(by — bpi1)| + Mbg + Mb, < 2Mb, < 2Mby, < &.
n=p
since
qg—1 qg—1
bp — bg = Z [(bn — bpy1)| = Z (bn — bnt1)
n=p n=p

= (bp = bpy1) + (bpt1 = bpt2) + (bpy2 = bpy3) + ... + bg-1 — by [
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Summation by parts (Abel summation formula)

Anharmonic series

We now show that >~°, :) converges. Let

n

ap=(-1)", and b,=

in the previous theorem. We see that

1[1
3 D Zan,,<oo

n=1
since
n
Al =D (-1)F| <1
k=1
Lesson 15
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Alternating Series Test

A more general result can be proved:

Alternating Series Test

Let (an)nen be such that

@ ag>a>...>a,>...
@ lim,so0an=0.

Then the alternating series > ;(—1)"a, converges.

Proof. We apply the previous theorem.
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Summation by parts (Abel summation formula)

Example

Exercise

Determine if the series Y 7 ; \(/% converges and converges absolutely.

; _ 1
Solution. Let a, = 1

@ We have

1 1
an > = —

~ Van2 20’

so the series does not converges absolutely, since Y 7 ; % diverges.
@ On the other hand, we have

anp > apy1 and lim a, =0,
n—o0

so the assumptions of the previous theorem are satisfied. Hence
oo (=1)" eee
Yooy i converges conditionally. O
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Root test

Root test

Given > 72 a, set

a = limsup v/|ap|.

n—00

@ If o<1, then Y7, a, converges.
@ If a>1, then > 72, a, diverges.

@ If =1, noinformation.

Proof. If a < 1 we can choose 5 so that @ < 8 < 1 and the integer
N € N so that

lan| <p  forall n>N,
since

a = inf sup v/|an| < B.
k>1 n>k
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Proof

@ For n > N we have |ap| < 8", but 8 < 1, thus Y72, 8" converges
and the comparision test implies that >~~~ ; a, converges as well.
o If & > 1 then there is (nk)ken so that

1/n o
k—oo

|an, |
Hence |a,| > 1 holds for infinitely many values of n € N, so that the
condition a, == 0 necessary for convergence ) °° | a, does not hold.

e To prove (c) note that

1

E - =0 and \r/Em 1.
n

n=1

o

1 n
Z?<oo and  Vn? ;=5 L.
n=1

This completes the proof. []
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Root and ratio test

Examples
Example 1
[e.e] e\n
> () <o
n=1 n
since
. €en e
il kel
Example 2
> on <%
n=1
since

ol N2 1
on 18 o
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Ratio test

Ratio test
. 00
The series > ° an

an+1

@ converges if limsup,_, . |
n

<1,

@ diverges if a’;—:l > 1 for all n > ng for some fixed ng € N.

Proof. If (a) holds we can find 5 < 1 and n € N such that

dn+1
dn

<p forall n>N.
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Proof

@ In particular, for p € N, one has

|an+P’
|an+p—1]
< Blan+p-1l
< Bapspal <...<
< BP|an.

|an+p| = an+p—1]

e Thus |anyp| < BPlan| and

lan| < |an|B3~NB™  forall n>N.

o9
n=1

@ The claim follows from the comparison test since >~ ; 5" < 0o
whenever § < 1.

o If |ap+1]| > |an| for n > ng then a, 7=z 0 does not hold.
Lesson 15 September 28, 2022
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Root and ratio test

Remark and example

Remark

As before lim,_,oc 222 = 1 is useless:
n

1 anti n
g — =00 and e s L,
< n an n+1
n—=

=1 a n 2
n+1
,;1”2 < oo and 0 <n+1> s L

Example

| .
Yoo o5 < 00, since

an+1 (n+1)! n"  (n+1)n" n \" 1
_ _ _ - < L.

an  (n+1)" Il  (n+ 1) \n+1
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Rearrangements

Rearrangements

Rearrangement

Let (kn)nen be a sequence in which every positive integer appears once
and only once. Setting

/o
an_akn

we say that > 7, a), is rearrangement of > °, a,.

Example
o Consider the convergent series

= (—1)m 1 1 1 1 1 1
s=3 =gt

+ e
2 3.4 5 6 7
n=1 S———
<0 <0
ey 15
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Rearrangements

Example

@ Consider also a rearrangement S’ of S given by:
1 1 1 11 1 1

1
T S R S ST S N S
S=ltz-otgtsgtetm gt ot

a 4k —3  4k—1 2k
k=1

oObservethat5<1—%+%=%and

1 1 1
4k—3+4k—1_ﬂ>0 forall ke N.

e If S is the partial sum of S’ then

S5<S5<Sy< ...

hence limsup, o, S, > S} = 2.
@ Thus S’ does not converge to S < %.
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Rearrangements

Theorem

Theorem

Let >°7°, an be a series that converges unconditionally. Suppose that

—o00o < a << +o0.

Then there exists a reaarangement > ° ; al, with partial sums s}, so that

. . . /
liminfs, =ca, and limsups, = (.
n—0o0 n—00
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Rearrangements

Theorem

If °0° 1 |an| < oo, then every rearrangement of Y 7, a, converge to the
same limit.

Proof. Let >"7°, a}, be a rearrangement of >~ a, with partial sums s/,.
Given € > 0 there is N, € N such that m > n > N implies

m

Zak <e.

k=n
Now choose p € N such that
{1,2,...,N.} C{ki, ko, ..., kp}.

If n > p then the numbers ay, ..., ay will cancel in the difference s, — s/,
so that

|sn — sh| < e.

Hence s;, converges to the same limit as (s,)pen- O
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