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Proposition

Proposition

Let (X, p) be a metric space, E C X is closed iff for every sequence
(xn)nen C E such that x, ;552 x € X we have x € E.

n

Proof. (=) Suppose that E is closed and consider (xp)neny C E such
that x, ;52 x € X. We have to show that x € E. Observe that

B(x,r)NE#( forany r>0.

But x, 7= x iff x, € B(x, r) for all but finitely many n € N, and
consequently we conclude that x € cl (E), hence x € E.

(<) Conversely, if x € cl (E) then there is a sequence (x,)neny C E so
that x, ;552 x € ¢l (E) C X thus by our assumption x € E. O
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Theorem

Theorem

The subsequential limits of a sequence (x,)nen in @ metric space (X, p)
form a closed subset of X.

Proof. Let E* be the set of subsequential limits of (x,)nen and let g be
an accumulation point of E*. We will show that g € E*.

@ Choose n; € N so that E* 3 x,, # g (if no such point exists then E*
has only one point and there is nothing to prove). Set

6= p(anv q) > 0.

@ Suppose that nq,...,n;_1 have been chosen. Since g is an
accumulation point of E* there is x € E* so that

p(x,q) <6271,
Since x € E* there is n; > n;_1 such that p(x, x, ) < 62771,
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N
Proof

@ Hence, by the triangle inequality
p(a,5m) < p(q.%) + plx,x0) < 9271 402771 = g2,
@ This means that (x,,)ien converges to g, i.e.

lim xp,, =q <= lim p(x,,0) =0

1—00 1—00

thus g € E*.

@ In fact, we have shown that
acc (E*) C E™,

which means that E* is closed. O
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Cauchy sequences and complete spaces

Cauchy sequences

Cauchy sequence

A sequence (x,)nen is @ metric space (X, p) is said to be a Cauchy
sequence if for every € > 0 there is N. € N such that

m,n> N; implies  p(xm,%n) < €.

Complete spaces

A subset of a metric space (X, p) is called complete if every Cauchy
sequence in E converges and its limit is in E.
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Cauchy sequences and complete spaces

Complete spaces - examples

Example 1
The set of real numbers R is complete.

Example 2

The open unit interval (0,1) is not complete space in R.

@ Indeed, let x, = % for n € N, then x, € (0,1) and (xp)nen is Cauchy
in (0,1), but 0, which is the limit of (xp)nen is not in (0, 1).

Example 3

[0, 1] is complete space in R.
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Cauchy sequences and complete spaces

Some facts

Fact 1
If (xn)nen is Cauchy in a metric space (X, p) then (xp)nqen is bounded.

Fact 2

If (xn)nen is @ Cauchy sequence in a metric space (X, p) and
liMk—00 P(Xn,, x) = 0 for some (xp, )ken, then

lim p(xn, x) = 0.

n—oo

Proposition
A closed subset of a complete metric space is complete and a complete
subset of an arbitrary metric space is closed.
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Proof of the Proposition

Proof. If (X, p) is complete, E C X is closed and (xp)nen is a Cauchy
sequence in E, then (x,)pen has a limit in X. But cl (E) = E, thus
x€cl(E), sox¢€E.

If E C X is complete and x € cl (E) then we know that there exists

(xn)nen C E converging to x. But (x,)nen is Cauchy so its limit lies in E,
thus cl (E) = E as desired. O

Remark

In the second part of the proof we have used the fact that if (x,)nen
converges (say to x in a metric space (X, p)) then (xp)nen is Cauchy.
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Cauchy sequences and complete spaces

Cantor intersection theorem

Cantor intersection theorem

A metric space is complete iff for every decreasing sequence
FRFDOFR2OFRD...

of nonempty closed sets in X with diam (Fj,) 7=z 0, one has

ﬂ Fn={x0} forsome xp€ X.
neN
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Proof (=):

Assume that (X, p) is complete.

Let (Fn)nen be such that F1 O F» D F3 D ... and diam (F,) 7== 0.
Choose x, € Fy, let € > 0 and pick N, € N such that diam (F,) < ¢
for all n > N.. Note that for n > m > N. we have

Xn € Fn C Fp,
o)
p(xn, xm) < diam (Fp) < €.
This ensures that (x,)nen is @ Cauchy sequence and, consequently,

converges to some xp € X. Since each F, is closed then xo € F, for
all n €N, thus xo € (,eny Fa-
Suppose there is y # xp so that y € [),cy Fn, then

0 < p(x0,y) < diam (Fp) ;5= 0,
contradiction. Thus (,cn Fn = {X0}-
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Proof («—):

To prove the converse implication assume that (x,)nen is a Cauchy
sequence.

o Let
Fn=cl ({xm : m>n}).

Fact

diam (E) = diam (cl (E)).

@ Weseethat F 2D F, D F3 D ... and

diam (F,) = diam ({xm : m > n}) == 0.
Thus (e Fn = {x0} for some xp € X.

e Finally, we conclude lim,_o p(xn, X0) = 0 as desired. O
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Compact sets

Coverings and compact sets

Coverings
Let (X, p) be a metric space.
o If EC X and (V,)aea is a family of sets such that E C (J,c4 Va.
then (V,)aea is called a cover of E and E is said to be covered by
the V,'s.
o If additionally each V,, is open (V4 )aea is called an open cover of E.

v

Heine—Borel property

A subset K of a metric space (X, p) is said to be compact if every open
cover of K contains a finite subcover. More explicitly, if (V,)aca is an
open cover of K then there are finitely many aq,ap,...,a, € A such that

K C U V-
j=1 |
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Compact sets

Compact sets - examples

Example 1
Every finite subset of R is compact.

Example 2
K ={% : ne N}u{0} is compact in R.

@ Indeed, let (V,)aca be an open cover of K, then there is ag € A such
that 0 € V, since Iim,,_,oo% = 0 and V,, is open thus it contains all
but finitely many %'s. In other words, there is ng € N such that
n > ng implies % € Vy,. Then, for each j € {1,2,...,np — 1} we can
pick aj € A so that jl S Vaj and we see

v
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Compact sets

Theorem

Theorem
Compact subsets of metric spaces are closed. J

Proof. Let K be compact subset of a metric space X.
@ We shall prove that K€ is open in X. Let x € X \ K. If y € K, let

Vy, = B(x,r,) and W, = B(y,r),
where r, < 3p(x,y), then V, N W, = 0.

Wy = B(y, ry) V, = B(x,r,)

e\

(MATH 311, Section 4, FALL 2022) Lesson 17 November 4, 2022 14 /23




Proof

@ Since K is compact K C UyeK W,, then we can find y1,...,y, € K
so that

n
KclJw, =w.
j=1
o If V=V, N...NV,, then V is an open set containing x and

VNnw=40.

@ Hence x € V C W€ C K€ thus x is an interior point of K¢. O
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Compact sets

Theorem

Theorem
Closed subsets of compact sets are compact. J

Proof. Suppose that F C K C X and F is closed in X and K is compact.
o Let (Va)aca be an open cover of F. Observe that
FCKC U Vo, U F€ .
acA open
~——
FC

@ The set K is compact thus there is a finite subcover of

(Va)aGA U {FC}

that covers K.

@ But F C K hence this is also a finite subcover of F upon removing
F¢ as desired. OJ
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Theorem

Theorem

If (Ka)aca is a collection of compact sets of a metric space (X, p) such
that the intersection of every finite subcollection of (K, )aca is non-empty

then
) Ko # 0.

acA

Proof. Fix a member K, of (Ky)aca and set G, = K¢.
@ Suppose that

(N Ka=Ku| [] Kol =0

a€cA acA\{a}
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Compact sets

Proof
@ Then
Ko € |J Go
acA\{ao}
@ Since K,, is compact there are aq,...,a, € A so that
n
Koo € | Go-
j=1
@ Hence

Koo NKay NN Ky, =0,
which is a contradiction. So we must have
) Ko #0.
acA

as desired.
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Perfect sets

Accumulation and isolated points

Accumulation point

Let (X, p) be a metric space, x € X is called an accumulation point of
E C X if for every open set U > x we have

(EN{x)NU#0.

An accumulation point x of E C X is sometimes also called a limit point
of E or a cluster point of E.

Isolated point

A point x € E is called an isolated point of E if it is not an
accumulation point of E.
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Perfect sets

Perfect sets

We say that a subset E of a metric space (X, p) is perfect if E is closed
and every point of E is its limit point or equivalently

E = acc E.

Theorem

Let ) # P C R¥ be a perfect set. Then P is uncountable.

In the proof we will use a very useful proposition:
Proposition

Every closed and bounded set of R¥ is compact. J

The proof of this proposition will be provided next time.
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Proof: 1/3

Proof. Since P has limit points, P must be infinite. In fact, for every
xePandr>0
B(x,r)N P s infinite.

@ Suppose not, i.e. there is xp € P and rg > 0 such that

B(x0,n0) NP ={x1,...,xn}.

e Consider
p(x0,x1), - - -, p(X0, Xn)
and let
r=min p(x0, xi) > 0.
@ Then
B(xo,r)N P =10,

thus xg is not a limit point, contradiction.

(MATH 311, Section 4, FALL 2022) Lesson 17 November 4, 2022 21/23



Proof: 2/3

Now we can assume card (P) > card (N). Suppose for a contradiction
that card (P) = card (N), i.e. P ={xy,x0,...}.

o Let Vj = B(xy, r), then of course V4 N P # (). Suppose that V,, has
been constructed so that V, N P # 0.

@ Since every point of P is a limit point of P there is an open set V11
such that

@ cl (Vn+1) g Vny
@ Xn+1 € Cl (Vn+1)v
@ Vn+1 ﬂ P # @

o Let K, =cl (V,)N P, this set is closed and bounded, thus compact.
Since x, € Kpt1, no point of P lies in ()°2; K,, but K, C P, so

() Ko =10.
n=1
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_ Perctses ]
Proof: 3/3

@ On the other hand, K, # (), compact, and K11 C K,, and the family
K, has a finite intesection property, i.e. any finite intersection of
members of (Kj)nen is nonempty,

Ko, N...N Ky, #0.

@ Thus
oo
() Kn # 0,
n=1
which is a contradiction. Hence P must be uncountable. O
Corollary
Every interval [a, b] with a < b, and also R are uncountable. J
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