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Proposition

Proposition

Let (X , ρ) be a metric space, E ⊆ X is closed iff for every sequence
(xn)n∈N ⊆ E such that xn −−−→n→∞ x ∈ X we have x ∈ E .

Proof. (=⇒) Suppose that E is closed and consider (xn)n∈N ⊆ E such
that xn −−−→n→∞ x ∈ X . We have to show that x ∈ E . Observe that

B(x , r) ∩ E 6= ∅ for any r > 0.

But xn −−−→n→∞ x iff xn ∈ B(x , r) for all but finitely many n ∈ N, and
consequently we conclude that x ∈ cl (E ), hence x ∈ E .

(⇐=) Conversely, if x ∈ cl (E ) then there is a sequence (xn)n∈N ⊆ E so
that xn −−−→n→∞ x ∈ cl (E ) ⊆ X thus by our assumption x ∈ E .

(MATH 311, Section 4, FALL 2022) Lesson 17 November 4, 2022 2 / 23



Theorem

Theorem

The subsequential limits of a sequence (xn)n∈N in a metric space (X , ρ)
form a closed subset of X .

Proof. Let E ∗ be the set of subsequential limits of (xn)n∈N and let q be
an accumulation point of E ∗. We will show that q ∈ E ∗.

Choose n1 ∈ N so that E ∗ 3 xn1 6= q (if no such point exists then E ∗

has only one point and there is nothing to prove). Set

δ = ρ(xn1 , q) > 0.

Suppose that n1, . . . , ni−1 have been chosen. Since q is an
accumulation point of E ∗ there is x ∈ E ∗ so that

ρ(x , q) < δ2−i−1.

Since x ∈ E ∗ there is ni > ni−1 such that ρ(x , xni ) < δ2−i−1.
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Proof

Hence, by the triangle inequality

ρ(q, xni ) ≤ ρ(q, x) + ρ(x , xni ) < δ2−i−1 + δ2−i−1 = δ2−i .

This means that (xni )i∈N converges to q, i.e.

lim
i→∞

xni = q ⇐⇒ lim
i→∞

ρ(xni , 0) = 0

thus q ∈ E ∗.

In fact, we have shown that

acc (E ∗) ⊆ E ∗,

which means that E ∗ is closed.
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Cauchy sequences and complete spaces

Cauchy sequences

Cauchy sequence

A sequence (xn)n∈N is a metric space (X , ρ) is said to be a Cauchy
sequence if for every ε > 0 there is Nε ∈ N such that

m, n ≥ Nε implies ρ(xm, xn) < ε.

Complete spaces

A subset of a metric space (X , ρ) is called complete if every Cauchy
sequence in E converges and its limit is in E .
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Cauchy sequences and complete spaces

Complete spaces - examples

Example 1

The set of real numbers R is complete.

Example 2

The open unit interval (0, 1) is not complete space in R.

Indeed, let xn = 1
n for n ∈ N, then xn ∈ (0, 1) and (xn)n∈N is Cauchy

in (0, 1), but 0, which is the limit of (xn)n∈N is not in (0, 1).

Example 3

[0, 1] is complete space in R.
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Cauchy sequences and complete spaces

Some facts

Fact 1

If (xn)n∈N is Cauchy in a metric space (X , ρ) then (xn)n∈N is bounded.

Fact 2

If (xn)n∈N is a Cauchy sequence in a metric space (X , ρ) and
limk→∞ ρ(xnk , x) = 0 for some (xnk )k∈N, then

lim
n→∞

ρ(xn, x) = 0.

Proposition

A closed subset of a complete metric space is complete and a complete
subset of an arbitrary metric space is closed.
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Cauchy sequences and complete spaces

Proof of the Proposition

Proof. If (X , ρ) is complete, E ⊆ X is closed and (xn)n∈N is a Cauchy
sequence in E , then (xn)n∈N has a limit in X . But cl (E ) = E , thus
x ∈ cl (E ), so x ∈ E .

If E ⊆ X is complete and x ∈ cl (E ) then we know that there exists
(xn)n∈N ⊆ E converging to x . But (xn)n∈N is Cauchy so its limit lies in E ,
thus cl (E ) = E as desired.

Remark

In the second part of the proof we have used the fact that if (xn)n∈N
converges (say to x in a metric space (X , ρ)) then (xn)n∈N is Cauchy.
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Cauchy sequences and complete spaces

Cantor intersection theorem

Cantor intersection theorem

A metric space is complete iff for every decreasing sequence

F1 ⊇ F2 ⊇ F3 ⊇ . . .

of nonempty closed sets in X with diam (Fn) −−−→n→∞ 0, one has⋂
n∈N

Fn = {x0} for some x0 ∈ X .
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Cauchy sequences and complete spaces

Proof (=⇒):

Assume that (X , ρ) is complete.

Let (Fn)n∈N be such that F1 ⊇ F2 ⊇ F3 ⊇ . . . and diam (Fn) −−−→n→∞ 0.
Choose xn ∈ Fn, let ε > 0 and pick Nε ∈ N such that diam (Fn) < ε
for all n ≥ Nε. Note that for n ≥ m ≥ Nε we have

xn ∈ Fn ⊆ Fm,

so
ρ(xn, xm) ≤ diam (Fm) < ε.

This ensures that (xn)n∈N is a Cauchy sequence and, consequently,
converges to some x0 ∈ X . Since each Fn is closed then x0 ∈ Fn for
all n ∈ N, thus x0 ∈

⋂
n∈N Fn.

Suppose there is y 6= x0 so that y ∈
⋂

n∈N Fn, then

0 < ρ(x0, y) ≤ diam (Fn) −−−→n→∞ 0,

contradiction. Thus
⋂

n∈N Fn = {x0}.
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Cauchy sequences and complete spaces

Proof (⇐=):

To prove the converse implication assume that (xn)n∈N is a Cauchy
sequence.

Let
Fn = cl ({xm : m ≥ n}) .

Fact

diam (E ) = diam (cl (E )).

We see that F1 ⊇ F2 ⊇ F3 ⊇ . . . and

diam (Fn) = diam ({xm : m ≥ n}) −−−→n→∞ 0.

Thus
⋂

n∈N Fn = {x0} for some x0 ∈ X .

Finally, we conclude limn→∞ ρ(xn, x0) = 0 as desired.

(MATH 311, Section 4, FALL 2022) Lesson 17 November 4, 2022 11 / 23



Compact sets

Coverings and compact sets

Coverings

Let (X , ρ) be a metric space.

If E ⊆ X and (Vα)α∈A is a family of sets such that E ⊆
⋃
α∈A Vα,

then (Vα)α∈A is called a cover of E and E is said to be covered by
the Vα’s.

If additionally each Vα is open (Vα)α∈A is called an open cover of E .

Heine–Borel property

A subset K of a metric space (X , ρ) is said to be compact if every open
cover of K contains a finite subcover. More explicitly, if (Vα)α∈A is an
open cover of K then there are finitely many α1, α2, . . . , αn ∈ A such that

K ⊆
n⋃

j=1

Vαj .
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Compact sets

Compact sets - examples

Example 1

Every finite subset of R is compact.

Example 2

K = { 1n : n ∈ N} ∪ {0} is compact in R.

Indeed, let (Vα)α∈A be an open cover of K , then there is α0 ∈ A such
that 0 ∈ Vα0 since limn→∞

1
n = 0 and Vα0 is open thus it contains all

but finitely many 1
n ’s. In other words, there is n0 ∈ N such that

n ≥ n0 implies 1
n ∈ Vα0 . Then, for each j ∈ {1, 2, . . . , n0 − 1} we can

pick αj ∈ A so that 1
j ∈ Vαj and we see

K ⊆
n0⋃
j=0

Vαj .
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Compact sets

Theorem

Theorem

Compact subsets of metric spaces are closed.

Proof. Let K be compact subset of a metric space X .

We shall prove that K c is open in X . Let x ∈ X \ K . If y ∈ K , let

Vy = B(x , ry ) and Wy = B(y , ry ),

where ry <
1
2ρ(x , y), then Vy ∩Wy = ∅.
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Compact sets

Proof

Since K is compact K ⊆
⋃

y∈K Wy , then we can find y1, . . . , yn ∈ K
so that

K ⊆
n⋃

j=1

Wyj = W .

If V = Vy1 ∩ . . . ∩ Vyn then V is an open set containing x and

V ∩W = ∅.

Hence x ∈ V ⊆W c ⊆ K c thus x is an interior point of K c .
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Compact sets

Theorem

Theorem

Closed subsets of compact sets are compact.

Proof. Suppose that F ⊆ K ⊆ X and F is closed in X and K is compact.

Let (Vα)α∈A be an open cover of F . Observe that

F ⊆ K ⊆
⋃
α∈A

Vα︸ ︷︷ ︸
F⊆

∪ F c︸︷︷︸
open

.

The set K is compact thus there is a finite subcover of

(Vα)α∈A ∪ {F c}

that covers K .

But F ⊆ K hence this is also a finite subcover of F upon removing
F c as desired.
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Compact sets

Theorem

Theorem

If (Kα)α∈A is a collection of compact sets of a metric space (X , ρ) such
that the intersection of every finite subcollection of (Kα)α∈A is non-empty
then ⋂

α∈A
Kα 6= ∅.

Proof. Fix a member Kα0 of (Kα)α∈A and set Gα = K c
α.

Suppose that

⋂
α∈A

Kα = Kα0 ∩

 ⋂
α∈A\{α0}

Kα

 = ∅.
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Compact sets

Proof

Then
Kα0 ⊆

⋃
α∈A\{α0}

Gα.

Since Kα0 is compact there are α1, . . . , αn ∈ A so that

Kα0 ⊆
n⋃

j=1

Gαj .

Hence
Kα0 ∩ Kα1 ∩ . . . ∩ Kαn = ∅,

which is a contradiction. So we must have⋂
α∈A

Kα 6= ∅.

as desired.
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Perfect sets

Accumulation and isolated points

Accumulation point

Let (X , ρ) be a metric space, x ∈ X is called an accumulation point of
E ⊆ X if for every open set U 3 x we have

(E \ {x}) ∩ U 6= ∅.

An accumulation point x of E ⊆ X is sometimes also called a limit point
of E or a cluster point of E .

Isolated point

A point x ∈ E is called an isolated point of E if it is not an
accumulation point of E .
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Perfect sets

Perfect sets

Perfect sets

We say that a subset E of a metric space (X , ρ) is perfect if E is closed
and every point of E is its limit point or equivalently

E = acc E .

Theorem

Let ∅ 6= P ⊆ Rk be a perfect set. Then P is uncountable.

In the proof we will use a very useful proposition:

Proposition

Every closed and bounded set of Rk is compact.

The proof of this proposition will be provided next time.

(MATH 311, Section 4, FALL 2022) Lesson 17 November 4, 2022 20 / 23



Perfect sets

Proof: 1/3

Proof. Since P has limit points, P must be infinite. In fact, for every
x ∈ P and r > 0

B(x , r) ∩ P is infinite.

Suppose not, i.e. there is x0 ∈ P and r0 > 0 such that

B(x0, r0) ∩ P = {x1, . . . , xn}.

Consider
ρ(x0, x1), . . . , ρ(x0, xn)

and let
r = min

1≤i≤n
ρ(x0, xi ) > 0.

Then
B(x0, r) ∩ P = ∅,

thus x0 is not a limit point, contradiction.
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Perfect sets

Proof: 2/3

Now we can assume card (P) ≥ card (N). Suppose for a contradiction
that card (P) = card (N), i.e. P = {x1, x2, . . .}.

Let V1 = B(x1, r), then of course V1 ∩ P 6= ∅. Suppose that Vn has
been constructed so that Vn ∩ P 6= ∅.
Since every point of P is a limit point of P there is an open set Vn+1

such that

(i) cl (Vn+1) ⊆ Vn,
(ii) xn+1 6∈ cl (Vn+1),
(iii) Vn+1 ∩ P 6= ∅.

Let Kn = cl (Vn) ∩ P, this set is closed and bounded, thus compact.
Since xn 6∈ Kn+1, no point of P lies in

⋂∞
n=1 Kn, but Kn ⊆ P, so

∞⋂
n=1

Kn = ∅.
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Perfect sets

Proof: 3/3

On the other hand, Kn 6= ∅, compact, and Kn+1 ⊆ Kn, and the family
Kn has a finite intesection property, i.e. any finite intersection of
members of (Kn)n∈N is nonempty,

Kn1 ∩ . . . ∩ Knk 6= ∅.

Thus
∞⋂
n=1

Kn 6= ∅,

which is a contradiction. Hence P must be uncountable.

Corollary

Every interval [a, b] with a < b, and also R are uncountable.
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