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Totally bounded sets

Totally bounded set

Let (X , ρ) be a metric space, E ⊆ X is called totally bounded if for every
ε > 0, the set E can be covered by finitely many balls of radius ε.

It means that there is Nε ∈ N so that

E ⊆
Nε⋃
j=1

B(xj , ε) for some x1, x2, . . . , xNε ∈ X .

Remark 1

If E is totally bounded so is cl (E ). Indeed,

E ⊆
Nε⋃
j=1

B(xj , ε) =⇒ cl (E ) ⊆
Nε⋃
j=1

B(xj , 2ε).
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Remark

Remark 2

Every totally bounded set E is bounded. If

x , y ∈ E ⊆
Nε⋃
j=1

B(xj , ε),

then say x ∈ B(x1, ε), y ∈ B(x2, ε) and

ρ(x , y) ≤ ρ(x , x1) + ρ(x1, x2) + ρ(x2, y)

≤ ε+ max{ρ(xi , xj) : 1 ≤ i , j ≤ Nε}+ ε.

The converse is false in general.
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Characterization of compactness

Theorem

If E is a subset of a metric space (X , ρ) the following are equivalent.

(a) E is complete and totally bounded.

(b) (The Bolzano–Weierstrass property) Every sequence in E has a
subsequence that converges to a point of E .

(c) (The Heine–Borel property) If (Vα)α∈A is an open cover of E then
there is finite F ⊆ A such that (Vα)α∈F covers E .

Remark

This theorem can be thought of as a characterization of compactness in
metric spaces.
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Proof of (a) ⇒ (b): 1/2

Suppose that (a) holds and (xn)n∈N ⊆ E . We find (xnk )k∈N such that
ρ(xnk , x0) −−−→

k→∞ 0 for some x0 ∈ E .

E can be covered by finitely many balls of radius 1/2. At least one of
them must contain xn for infinitely many n ∈ N:

say xn ∈ B1 for n ∈ N1 ⊆ N and card (N1) = card (N).

Now E ∩ B1 can be covered by finitely many balls of radius 1/4. At
least one of them must contain xn for infinitely many n ∈ N:

say xn ∈ B2 for n ∈ N2 ⊆ N1 and card (N2) = card (N).

Continuing inductively we obtain a sequence of balls Bj of radius 2−j

and decreasing sequence of subsets Nj of N such that

xn ∈ Bj for n ∈ Nj , Nj+1 ⊆ Nj ⊆ N, card (Nj) = card (N).
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Proof of (a) ⇒ (b): 2/2

Pick n1 ∈ N1, n2 ∈ N2, . . . such that

n1 < n2 < n3 < . . . .

Then (xnj )j∈N is a Cauchy sequence for

ρ(xnj , xnk ) < 21−j if k ≥ j ,

since xnj , xnk ∈ Bj and

diam (Bj) ≤ 21−j .

Since E is complete the sequence (xnk )k∈N has a limit in E and the
implication (a) ⇒ (b) is proved.
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Proof of (b) ⇒ (a)

We show that of either condition in (a) fails then so does (b).

If E is not complete there is a Cauchy sequence (xn)n∈N ⊆ E , with no
limit in E . No subsequence of (xn)n∈N can converge in E , for
otherwise the whole sequence would converge to the same limit.

On the other hand if E is not totally bounded, let ε > 0 be such that
E cannot be covered by finitely many balls of radius ε > 0. Choose
xn ∈ E inductively as follows. Let x1 ∈ E , and having chosen
x1, . . . , xn pick

xn+1 ∈ E \
n⋃

j=1

B(xj , ε),

then ρ(xn, xm) ≥ ε for all n 6= m, so (xn)n∈N has no convergent
subsequence. Thus (b) ⇒ (a).
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Proof of theorem (a) and (b) ⇒ (c)

It suffices to show that if (b) holds and (Vα)α∈A is an open cover of E
then the following claim holds:

Claim

There exists ε > 0 such that every ball of radius ε > 0 that intersects E is
contained in some Vα.

Then E can be covered by finitely many such balls by (a) this allows us to
find a finite subcover of (Vα)α∈A.
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Proof of Claim

Suppose for a contradiction that the claim is not true.

For each n ∈ N there is a ball Bn of radius 2−n such that Bn ∩ E 6= ∅
and Bn is contained in no Vα.

Pick xn ∈ Bn ∩ E . Using (b), (by passing to a subsequence if
necessary) we may assume limn→∞ ρ(xn, x) = 0 for some x ∈ E .

We have x ∈ Vα for some α ∈ A and since Vα is open there is ε > 0
so that B(x , ε) ⊆ Vα.

If n is large enough so that ρ(xn, x) < ε
3 and 2−n < ε

3 , then
Bn ⊆ B(x , ε) ⊆ Vα, which is contradiction.

Indeed, pick y ∈ Bn, then

ρ(y , x) ≤ ρ(xn, y) + ρ(xn, x) < 21−n +
ε

3
≤ ε.

This completes the proof of the implication (a) and (b) ⇒ (c).
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Proof of (c) ⇒ (b)

If (xn)n∈N ⊆ E , with no convergent sequence, for each x ∈ E there is
a ball Bx centered at x that contains xn for only finitely many n.

Otherwise, some sequence would converge to x . Then

(Bx)x∈E

is a cover of E by open sets with no finite subcover.
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Compactness in R

Theorem

Every closed and bounded set of R is compact.

Proof. We deduce compactness by showing completeness and total
boundedness.

Since every closed subset of R is complete it suffices to show that
bounded subsets of R are totally bounded.

Since every bounded set is contained in some interval [−R,R] it is
enough to show that [−R,R] is totally bounded.

Given ε > 0 pick an integer k > R
ε and express [−R,R] as the union

of k intervals of equal length.
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Compactness in Rn

Theorem

Every closed and bounded set of Rn is complete.

Proof. We deduce compactness by showing completeness and total
boundedness.

Since every closed subset of Rn is complete is suffices to show that
bounded subsets of Rn are totally bounded.

Since every bounded set is contained in some cube Q = [−R,R]n it is
enough to show that Q is totally bounded.

Given ε > 0 pick the integer k > R
√
n

ε and express Q as the union of
nn congruent subcubes by dividing the interval [−R,R] into k equal
pieces.

The side length of these subcubes is 2R
k and hence the diameter is√

n
(
2R
k

)
< 2ε, so they are contained in the balls of radius ε about

their centers.
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Q = [−R ,R]n is totally bounded
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Example

Example

Determine if the set

X = {(x , y) ∈ R2 : (x − 1)2 + (y − 1)2 < 1}

is compact or not in R2 with Euclidean metric.

Solution. Note that (2, 0) is an accumulation point of X , but (2, 0) 6∈ X .
Therefore, X is not closed, so it is not compact.
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Example

Example

Determine if the set is compact or not in R2 with Euclidean metric:

X = {(x , y) ∈ R2 : (x − 1)2 + (y − 1)2≤1}.

Solution. X contains all of its accumulation points so it is closed. It is
contained in the ball B(0, 10), so it is bounded. Therefore, by the
previous theorem, it is compact.
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Example

Example

Determine if the set

X = {(x , y) ∈ R2 : 1 < y < 2}

is compact or not in R2 with Euclidean metric.

Solution. Note that (0, 2) is an accumulation point of X , but (0, 2) 6∈ X .
Therefore, X is not closed, so it is not compact.
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Example

Example

Determine if the set

X = {(x , y) ∈ R2 : 1≤y≤2}

is compact or not in R2 with Euclidean metric.

Solution. In can be checked that X is closed, although it is not contained
in any ball, so it is not bounded, so it is not compact.
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Examples

Example

Determine if the set Q is compact in R.

Solution. Q is not contained in any interval, so it is not compact.

Example

Determine if the set Q ∩ [0, 1] is compact in R.

Solution. Q is contained in (−1, 2), but cl Q ∩ [0, 1] = [0, 1] 6= Q ∩ [0, 1],
so it is not closed, so it is not compact.
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Connected sets

Separated and connected sets

Separated sets

Two subsets A and B of a metric space (X , ρ) are said to be separated if
both

A ∩ cl (B) = ∅ and cl (A) ∩ B = ∅.

In other words, no points of A lies in the closure of B and vice versa.

Connected set

A set E ⊆ X is said to be connected if E is not a union of two nonempty
separated sets.

Example

[0, 1] and (1, 2) are not separated since 1 is a limit point of (1, 2).

However, (0, 1) and (1, 2) are separated.
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Connected sets

Theorem

Theorem

E ⊆ R is connected iff for all x , y ∈ E if x < z < y , then z ∈ E .

Proof (=⇒). If there exist x , y ∈ E and z ∈ (x , y) such that z 6∈ E , then

E = Az ∪ Bz , where Az = E ∩ (−∞, z) and Bz = E ∩ (z ,∞).

Since x ∈ Az and y ∈ Bz , then Az 6= ∅, Bz 6= ∅ and also Az ⊆ (−∞, z),
Bz ⊆ (z ,∞), so they are separated. Hence E is not connected.
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Connected sets

Proof

Proof (⇐=). Conversely, suppose that E is not connected.

Then there are non-empty separated sets A,B such that A ∪ B = E .

Pick x ∈ A and y ∈ B and without loss of generality assume x < y .
Define

z = sup (A ∩ [x , y ]) .

hence z ∈ cl (A) and z 6∈ B. In particular, x ≤ z < y .

If z 6∈ A it follows x < z < y and z 6∈ E .

If z ∈ A then z 6∈ cl (B) hence there is z1 such that z < z1 < y and
z1 6∈ B. Then x < z1 < y and z1 6∈ E .

Example

Prove that X = R \ {0} is not connected.

Solution. We have −1, 1 ∈ X , but −1 < 0 < 1 and 0 6∈ X , so X is not
connected.
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Cantor set

There exists a perfect set in R which contains no segment.

Let C0 = [0, 1]. Given Cn that consist of 2n disjoint closed intervals
each of length 3−n take each of these intervals and delete the open
middle third to produce two closed intervals each of length 3−n−1.

Take Cn+1 to be the union of 2n+1 closed intervals so formed and
continue.
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Cantor set

Cantor set

Cantor set

The set

C =
∞⋂
n=0

Cn

is called the Cantor set or ternary Cantor set.

Each C0 ⊇ C1 ⊇ C2 ⊇ . . . is closed and bounded thus compact, and
the family (Cn)n∈N has finite intersection property thus the Cantor set
is compact and C 6= ∅ .

Property (*)

By the construction for each k,m ∈ N we see that no segment of the form(
3k + 1

3m
,

3k + 2

3m

)
has a point in common with C.
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Cantor set

Properties of the Cantor set

Since every segment (α, β) contains a segment of the form (*) if m is
sufficiently large, since the set{

`

3m
: m ∈ N and 0 ≤ ` ≤ 3m − 1

}
is dense in [0, 1]. Thus C contains no segment (α, β). This also shows
int C = ∅.

To prove that C is perfect it is enough to show that C contains no
isolated point. Let x ∈ C and let In be the unique interval from Cn

which contains x ∈ In. Let xn be the endpoint of In such that x 6= xn.
It follows from the construction of C that xn ∈ C. Hence x is a limit
point of C thus C is perfect.
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More about Cantor set

More about Cantor set

Each component of Cn can be described as the set

Cn =

{ ∞∑
n=1

εj
3j

: εj ∈ {0, 1, 2} and εj 6= 1 for 1 ≤ j ≤ n

}
.

Consequently,

C =

{ ∞∑
n=1

εj
3j

: εj ∈ {0, 2}

}
.
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More about Cantor set

Fact

Fact

Any number
∑∞

j=1
εj
3j

is uniquely determined by its sequence ε = (εj)j∈N
with εj ∈ {0, 2}.

Proof. Take ε = (εj)j∈N, δ = (δj)j∈N with εj , δj ∈ {0, 2} such that ε 6= δ.
Let N = min{j ∈ N : εj 6= δj} and assume 0 = εN < δN = 2. Then

∞∑
j=1

εj
3j

=
N−1∑
j=1

εj
3j

+
∞∑

j=N+1

εj
3j
≤

N−1∑
j=1

δj
3j

+
2

3N+1

∞∑
j=0

1

3j

≤
N−1∑
j=1

δj
3j

+
2

3N+1

1

1− 1
3︸ ︷︷ ︸

3
2

=
N−1∑
j=1

δj
3j

+
1

3N
<

N−1∑
j=1

δj
3j

+
2

3N
≤
∞∑
j=1

δj
3j
.

This completes the proof.
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More about Cantor set

Remarks

Remark

We have two different representations

1

3
=
∞∑
j=1

εj
3j

= A, ε1 = 1, εj = 0 for j ≥ 2.

1

3
=
∞∑
j=1

εj
3j

= B, ε1 = 0, εj = 2 for j ≥ 2.

There is a bijection φ : {0, 1}N → C defined by

φ(z) =
2

3

∞∑
j=0

zj
3j

for z = (zj)j∈N, zj ∈ {0, 1},

and consequently card (C) = card ({0, 1}N) = card (R) = c.

(MATH 311, Section 4, FALL 2022) Lesson 18 November 8, 2022 27 / 28



More about Cantor set

Cantor tree

ε = (0, 1, 1, 0, ε4, ε5, . . .)
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