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N
Totally bounded sets

Totally bounded set

Let (X, p) be a metric space, E C X is called totally bounded if for every
€ > 0, the set E can be covered by finitely many balls of radius ¢.

@ It means that there is N, € N so that

ECU (xj,e) forsome  xi,x,...,xn. € X.

Remark 1
If E is totally bounded so is cl (E). Indeed,

Ne
ECUBXJ, ) = cl( )QUB(XJ-,ZS).
j=1 j=1
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Remark

Remark 2
Every totally bounded set E is bounded. If
Ne

x,y € EC U B(xj,¢),
j=1

then say x € B(x1,¢), y € B(x,¢) and

p(X7y) < p(X,Xl) + p(X17X2) + p(X27y)
<e+max{p(xi,x;) : 1<i,j <N} +e.

@ The converse is false in general.
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Characterization of compactness

Theorem
If E is a subset of a metric space (X, p) the following are equivalent.

@ E is complete and totally bounded.

@ (The Bolzano—\Weierstrass property) Every sequence in E has a
subsequence that converges to a point of E.

@ (The Heine—Borel property) If (V,,)aca is an open cover of E then
there is finite F C A such that (V,).cF covers E.

Remark
This theorem can be thought of as a characterization of compactness in
metric spaces.
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-
Proof of (a) = (b): 1/2

Suppose that (a) holds and (xp)seny € E. We find (X, )ken such that
p(Xn; X0) == 0 for some xo € E.

@ E can be covered by finitely many balls of radius 1/2. At least one of
them must contain x, for infinitely many n € N:

e say x, € By for n € N; C N and card (N;) = card (N).

@ Now E N By can be covered by finitely many balls of radius 1/4. At
least one of them must contain x, for infinitely many n € N:

e say x, € B, for n € N, C Nj and card (N,) = card (N).

@ Continuing inductively we obtain a sequence of balls B; of radius 27J
and decreasing sequence of subsets N; of N such that

e x, € Bj for n € Nj, Nj;; CN; CN, card (N;) = card (N).
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-
Proof of (a) = (b): 2/2

@ Pick n; € N1, n» € Ny, ... such that
m<n<n<....
@ Then (xy;)jen is a Cauchy sequence for
p(x,,j,x,,k) <2 i k>,
since Xp;, Xp, € B; and
diam (B;) < 2.
@ Since E is complete the sequence (xp, )ken has a limit in E and the

implication (a) = (b) is proved. O
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|
Proof of (b) = (a)

We show that of either condition in (a) fails then so does (b).

e If E is not complete there is a Cauchy sequence (xp)neny C E, with no
limit in E. No subsequence of (x,)nen can converge in E, for
otherwise the whole sequence would converge to the same limit.

@ On the other hand if E is not totally bounded, let € > 0 be such that
E cannot be covered by finitely many balls of radius € > 0. Choose
xp € E inductively as follows. Let x; € E, and having chosen

X1,...,Xp pick
n

Xn1 € E'\ U B(Xj7€)7
j=1

then p(xn, xm) > € for all n # m, so (x,)nen has no convergent
subsequence. Thus (b) = (a). O
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Proof of theorem (a) and (b) = (¢)

It suffices to show that if (b) holds and (V,)aca is an open cover of E
then the following claim holds:

Claim
There exists € > 0 such that every ball of radius € > 0 that intersects E is
contained in some V,,.

Then E can be covered by finitely many such balls by (a) this allows us to
find a finite subcover of (Vy)aca.
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N
Proof of Claim

Suppose for a contradiction that the claim is not true.

@ For each n € N there is a ball B, of radius 27" such that B, N E # ()
and B, is contained in no V,.

@ Pick x, € B, N E. Using (b), (by passing to a subsequence if
necessary) we may assume limp_o p(xn, x) = 0 for some x € E.

@ We have x € V,, for some o € A and since V,, is open there is e > 0
so that B(x,e) C V,.

e If nis large enough so that p(x,,x) < § and 27" < £, then
B, C B(x,e) C V4, which is contradiction.

@ Indeed, pick y € B, then
p(y;x) < p(xn, y) + p(xn, x) < 21+

£
3
This completes the proof of the implication (a) and (b) = (c). O
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Proof of (c) = (b)

o If (xn)nen C E, with no convergent sequence, for each x € E there is
a ball By centered at x that contains x, for only finitely many n.

@ Otherwise, some sequence would converge to x. Then

(BX)XGE

is a cover of E by open sets with no finite subcover. Ol
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Compactness in R

Theorem
Every closed and bounded set of R is compact. J

Proof. We deduce compactness by showing completeness and total
boundedness.

@ Since every closed subset of R is complete it suffices to show that
bounded subsets of R are totally bounded.

@ Since every bounded set is contained in some interval [-R, R] it is
enough to show that [—R, R] is totally bounded.

@ Given ¢ > 0 pick an integer k > § and express [—R, R| as the union
of k intervals of equal length. O
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Compactness in R”

Theorem J

Every closed and bounded set of R” is complete.

Proof. We deduce compactness by showing completeness and total
boundedness.

@ Since every closed subset of R" is complete is suffices to show that
bounded subsets of R"” are totally bounded.

@ Since every bounded set is contained in some cube Q = [—R, R]" it is
enough to show that Q@ is totally bounded.

o Given € > 0 pick the integer k > ‘[ and express @ as the union of
n" congruent subcubes by dividing the interval [-R, R] into k equal
pieces.

@ The side length of these subcubes is 2,5 and hence the diameter is

Vn (2R) < 2¢, so they are contained in the balls of radius ¢ about
their centers. O
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Q = [-R, R]" is totally bounded
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Example

Example

Determine if the set

X={(x,y)eR? : (x—=1)+(y-1)2<1}

is compact or not in R? with Euclidean metric.

Solution. Note that (2,0) is an accumulation point of X, but (2,0) € X.
Therefore, X is not closed, so it is not compact.

O
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Example

Example

Determine if the set is compact or not in R? with Euclidean metric:

X ={(x,y) € R? : (x — 1)+ (y — 1)?<1}.

O

Solution. X contains all of its accumulation points so it is closed. It is
contained in the ball B(0,10), so it is bounded. Therefore, by the
previous theorem, it is compact. O
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Example

Example

Determine if the set

X={(x,y) eR? :1<y <2}

is compact or not in R? with Euclidean metric.

Solution. Note that (0,2) is an accumulation point of X, but (0,2) € X.
Therefore, X is not closed, so it is not compact.

O
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Example

Example

Determine if the set

X ={(xy) eR? :1<y<2}

is compact or not in R? with Euclidean metric.

Solution. In can be checked that X is closed, although it is not contained
in any ball, so it is not bounded, so it is not compact.

O
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Examples

Example

Determine if the set QQ is compact in R. J
Solution. Q is not contained in any interval, so it is not compact. O
Example

Determine if the set Q N[0, 1] is compact in R. J

Solution. Q is contained in (—1,2), but c1 QN [0,1] = [0,1] # QN [0, 1],
so it is not closed, so it is not compact. []
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Connected sets

Separated and connected sets

Separated sets

Two subsets A and B of a metric space (X, p) are said to be separated if
both
Ancl(B)=0 and cl(A)NB=10.

In other words, no points of A lies in the closure of B and vice versa.

Connected set

A set E C X is said to be connected if E is not a union of two nonempty
separated sets.

v

Example

e [0,1] and (1,2) are not separated since 1 is a limit point of (1,2).

e However, (0,1) and (1,2) are separated.

4
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Theorem

Theorem

E C R is connected iff for all x,y € E if x <z <y, then z € E. J

Proof (). If there exist x,y € E and z € (x,y) such that z ¢ E, then
E=A,UB,, where A,=EN(-00,z) and B,=EN(z,00).

Since x € A, and y € B, then A, # 0, B, # () and also A; C (—o0, 2),
B, C (z,00), so they are separated. Hence E is not connected.
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Proof

Proof («<=). Conversely, suppose that E is not connected.
@ Then there are non-empty separated sets A, B such that AU B = E.
@ Pick x € A and y € B and without loss of generality assume x < y.
Define
z=sup(AN[x,y]).
hence z € cl (A) and z & B. In particular, x <z < y.
e lfz¢Z Aitfollows x <z<yandz¢E.
o If z € Athen z & cl (B) hence there is z; such that z < z; < y and

z1¢ B. Then x <z <yandz € E. O]
Example
Prove that X =R \ {0} is not connected. J

Solution. We have —1,1 € X, but -1 <0< 1land 0 ¢ X, so X is not
connected. ]
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There exists a perfect set in R which contains no segment.

o Let Gy = [0,1]. Given C, that consist of 2" disjoint closed intervals
each of length 37" take each of these intervals and delete the open
middle third to produce two closed intervals each of length 3771,

Co = [0,1]

o Take C,y1 to be the union of 271 closed intervals so formed and
continue.
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Cantor set

Cantor set
The set

C= ﬁ Cn
n=0

is called the Cantor set or ternary Cantor set.

@ Each (3 © GG D (G D ... is closed and bounded thus compact, and

the family (C,)nen has finite intersection property thus the Cantor set
is compact and C # () .

Property (*)

By the construction for each k, m € N we see that no segment of the form

3k+1 3k+2 . .
,— has a point in common with C.
3m 3m
Lesson 18
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Properties of the Cantor set

@ Since every segment («, ) contains a segment of the form (*) if m is
sufficiently large, since the set

{;ﬂ : mENandOSES?ﬁ"—l}

is dense in [0,1]. Thus C contains no segment (v, 3). This also shows
int C = 0.

@ To prove that C is perfect it is enough to show that C contains no
isolated point. Let x € C and let [, be the unique interval from C,
which contains x € I,,. Let x, be the endpoint of /, such that x # x,,.
It follows from the construction of C that x, € C. Hence x is a limit
point of C thus C is perfect.
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More about Cantor set

@ Each component of C, can be described as the set

CF{Z? . ¢;€1{0,1,2} and sj#lforléjﬁn}-

n=1

o Consequently,

C{iz : gje{o,z}}.
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Fact

Fact

Any number Zj’il ;—f is uniquely determined by its sequence € = (gj)jen
with €j € {0,2}.

Proof. Take € = (&j)jen, d = (0j)jen with €;,9; € {0,2} such that € # 0.
Let N=min{j € N : ¢; # §;} and assume 0 = ey < dy = 2. Then

00 c N—-1 c 0o c N—-1 5 ) 00 1
i _ J J j
Zg—. 5#2 T Ty
j=1 j=1 Jj=N+1 Jj=1 Jj=0
N—1 N-1 N-1 [e's)
0; 2 1 ) 1 0; 2 0
< e 44— < 244 < J
- 3 T3 1 3 T3 y+3N*§:y
J=1 3 =1 j=1 J=1
3
2
This completes the proof. O
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Remarks

Remark

We have two different representations

1 oo
j=1
1 2 g
§:Z§J_B e1=0, ¢=2 for j>2.

There is a bijection ¢ : {0,1} — C defined by

w\r\)

o0
Z ?J for z= (ZJ')J'GNa Zj € {0,1},
j=0

and consequently card (C) = card ({0,1}Y) = card (R) = c.
Lesson 18 November 8, 2022
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More about Cantor set

Cantor tree

[ ]
[ ]
[ ]

g = (0,1,1,0,54,55,. . )
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