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Limits

Limits
Suppose E CR and f: E — R and p is a limit point of E. We write
) a o Jim f(x)=a

if there is a point g € R satisfying the following ¢-J condition:

@ For every € > 0 there exists § > 0 such that

[f(x) —al <¢

for all points x € E for which 0 < |x — p| < 4.
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Theorem

Theorem (Characterizations of Continuity)

Let ECR, f: E— R, and p € R be as in the previous definition. Then

Q limep f(x) = qiff

@ limp_o0 f(pn) = g for every sequence (pn)nen in E such that p, # p
and lim,_« pn = p.

Proof (A)=—>(B). Suppose that (A) holds. Choose (pn)nen like in
condition (B). Let € > 0 be given, then there exists § > 0 such that

|f(x)—ql<e if x€eE and 0<|x—p|<d.
Also there exists N € N such that n > N implies 0 < |p, — p| < 4. Thus

we also have |f(p,) — q| < & for n > N showing that (B) holds. O
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Proof (B)=—=(A)
Proof (B)=—>(A). Conversely suppose (A) is false. Then there exists

some € > 0 such that for every 6 > 0 there exists a point x € E
(depending on §) for which

|f(x)—q|>¢ but 0<|x—p|<i.
Taking 0, = % for each n € N we thus find a sequence (pp)nen in E
satisfying lim,_, o, pp = p but
f(pn) — ql > €.
thus (B) is false as desired. O

Remark

It was possible to choose the sequence (pp)nen in E in one step thanks to
the Axiom of Choice. Without assuming the Axiom of Choice the previous
theorem is not provable.
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Theorem

Theorem

Suppose that E C R, and p is a limit point of E. Let f,g: E — R be
functions such that

lim f(x)=A and lim g(x) =B.

X—p X—p

Then
@ limep(f+g)(x)=A+B,

@ limep(f-g)(x)=A-B,

@ limesp (g) (x) =2 if B#0and g(x) # 0 for x € E.
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Continuous function

Continuous at the point p

Suppose that E C X, p € E and f : E — R. The function f is said to be
continuous at point p if for every € > 0 there exists § > 0 such that

[f(x)—f(p)l <e
for all points x € E for which

|x — p| <.

Continuous function

If the function f : E — R is continuous at every point of E then f is said
to be continuous on E.
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Example

Example
Let us define f : R — R by

Flx) = 1if x € Q,
= Voifx ¢

Determine if f is continuous or not at the point 0.

v

Solution. Let us consider the sequence (a,)nen, where a, = v/2/n. Then
limp, o0 an=0and a, € Q, so f(a,) =0. Then

[lim f(an) = 0#1=£(0),

so f is not continuous at point 0. []
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Remark

Remark

If pis an isolated point of E then our definition implies that every function

f which has E as its domain is continuous at p. For, no matter which

g > 0 we choose, we can pick d > 0 so that the only point e € E for which
|x —p| < 9§

is x = p, then
If(x) —f(p)|=0<e.

Fact

In the situation of the definition of continuity assume also that p is a limit
point of E. Then f is continuous at p iff limy_,, f(x) = f(p).

v

Proof. It is obvious if we compare two previous definitions. Ol
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Theorem

Theorem

Suppose that ECR and f : E — R and g : f[E] — R be given and define
h:E— R by

h(x) = g(f(x)), x¢€E.

If f is continuous at a point p € E and g is continuous at the point f(p),
then h is continuous at p. In other words

lim h(x) = fim g(F(x)) = g(F(p)) = (p).
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N
Proof

Let € > 0 be given.
@ Since g is continuous at f(p) there is 7 > 0 such that

lg(y) —g(f(p))l <e if |y—f(p)l<n and y € flE]
@ Since f is continuous at p, there is 6 > 0 such that
lf(x)—f(p)l<n if |x—p/<d and x€E.
o If follows that
Ih(x) — h(p)| = lg(F(x)) — g((p))| < ¢

if [x —p| <0 and x € E. Thus h is continuous at p € E. O]
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Example

Example

Assume that f : R — (0, 00) is continuous for all x € R. Prove that

h(x) = \/f(x) is continuous.
Solution. Let us note that the function g : (0,00) — (0, 00) defined by

g(x) = Vx

is continuous. We have
h=gof,

so h is continuous by the previous theorem. O
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Theorem

Theorem

A function f : R — R is continuous on R iff f~}[V] is open in R for every
open set V in R.

Proof. Suppose that f is continuous on R and V C R is open.

@ We have to show that f~1[V] is open in R. Let p € f~1[V]. Since V
is open (f(p) —e,f(p) +¢&) C V for some € > 0.

@ Since f is continuous at p € X there is § > 0 such that
If(x)—f(p)|<e if |x—p|<o.
Thus
(p—6,p+08)CFfV]={xeR : f(x) e V}.
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N
Proof

Conversely, suppose f~[V] is open in X for any open V C R.
@ Fix p € X and £ > 0 and consider

V = (f(p) —e.f(p) +¢)

which is open thus f~1[V] is open, hence there is § > 0 so that
(p—6,p+6)C V]
e Thus if [x — p| < 6, then x € f~1[V], hence

f(x) e V=_(f(p)—e f(p)+e) <= I[f(x)—f(p)l<e. O

Corollary

A function f : R — R is continuous iff f~1[C] is closed in R for any closed
set C in R.

Proof. A set is closed iff its complement is open. We are done by invoking

the previous theorem, since f 1[E€] = (f"1[E]) for every open set

E CR. O
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Example

Example

Let f : R — R be continuous and a € R. Prove that the set
A={xeR : f(x) > a}

is open.

Solution: We have
{x€R : f(x)>a} = f*[(a,00)]

and (a,00) is open in R, so by the previous theorem, A is open. O
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Theorem

Theorem

Let f,g : R — R be two continuous functions. Then f 4+ g, f - g, and g
are continuous. In the last case we assume g(x) # 0 for all x € R.

Example 1

Every polynomial
p(x) = apx"+ ap_1x" 14+ ...+ aix + ag

is a continuous function on R.

Example 2

The exponential function f(x) = e* is continuous as we have shown that
for any (ap)nen so that lim,_o @, = a one has lim,_,, €% = €°.

v
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Examples

Example 3
f(x) = |x]| is continuous on R since |f(x) — f(y)| < |x — y|.

Example 4
f(x)=|x] =max{neZ : n<x}is NOT continuous at any x € Z.

Example b
f(x) = x for any @ € R is continuous on (0, c0).

Example 6

If f,g: X — R are continuous then max{f, g} and min{f, g} are
continuous as well. Indeed,

f+ng—gh mmgg}_f+g;v—m. J
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Continuity and compactness

Bounded function
A mapping f : E — R is said to be bounded if there is a number M > 0

such that
If(x)| <M forall xe€E.

Theorem (4.4.1)
Suppose that f : X — R is a continuous function and X C R is compact.
Then f[X] is compact in R.
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Proof

Let (Vi )aca be an open cover of f[X], i.e.

FIX1C | Vo

acA

Since f is continuous then each set f~1[V,,] is open in X. Since X is

compact and

xc | Fval
acA
thus there are a3, an,...,a, € A so that

X C Vel
j=1

Since f[f~1[E]] C E we have

fIX] C f[o F Vi) € Vi

j=1 j=1
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Corollary

Corollary

If f: X — R is continuous on a compact set X C R then f[X] is closed
and bounded in R. Specifically, f is bounded.

Theorem

Suppose f : X — R is continuous on a compact set X C R and

M =supf(p) and m= inf f(p).
peX peX

Then there are p, g € X such that

f(p)=M and f(q)=m.

Proof. f[X] C R is closed and bounded. Thus M and m are members of
f[X] and we are done. [
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Theorem

Theorem

Suppose f is continuous injective mapping of a compact set X C R onto a
set Y C R. Then the inverse mapping f~! defined on Y by

Ff(x)=x, xeX

is a continuous mapping of Y onto X.

Proof. The inverse f~1: Y — X is well defined since f : X — Y is
one-to-one and onto. It suffices to prove that f[V] is open in Y for every
open set V in X. Fix V C X open, V€ is closed in X thus compact, hence
f[V€] is compact subset of Y and consequently f[V¢] is closed. Since

f : X = Y is one-to-one and onto, hence

FIV] = (FIVE])°

and, consequently, f[V] is open as desired. Ol
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