

Lesson 2

Proofs and induction

Irrationality of $\sqrt{2}$

MATH 311, Section 4, FALL 2022

September 9th, 2022

Three principles

Well ordering principle (A)

If A is a non-empty subset of non-negative integers \mathbb{N}_0 , then A contains the smallest number.

The principle of induction (B)

If A is a subset of non-negative integers \mathbb{N}_0 such that

- Ⓐ (Base step): $0 \in A$.
- Ⓑ (Induction step): Whenever A contains a number n , it also contains the number $n + 1$.

Then $A = \mathbb{N}_0$.

The maximum principle (C)

A non-empty subset of \mathbb{N}_0 , which is bounded from above contains the greatest number.

Our goal

Our goal is to prove that the statements (A), (B), and (C) are equivalent.
In order to prove that, we will show:

- ① (A) \Rightarrow (B)
- ② (B) \Rightarrow (A)
- ③ (A) \Rightarrow (C)
- ④ (C) \Rightarrow (A)

(A) \Rightarrow (B)

If A is a set of non-negative integers such that

- ① $0 \in A$.
- ② Whenever A contains a number n , it also contains $n + 1$.

We want to establish $A = \mathbb{N}_0$. Suppose for contradiction that $A \neq \mathbb{N}_0$.

Then $\mathbb{N}_0 \setminus A \neq \emptyset$. By well ordering principle (B) there is the smallest element m of $\mathbb{N}_0 \setminus A$.

- ① Since $0 \in A$, we have $m \neq 0$,
- ② Observe that $m - 1 \in A$, because otherwise $m - 1 \in \mathbb{N}_0 \setminus A$, which contradicts the fact that m is the smallest element of $\mathbb{N}_0 \setminus A$. **But if** $m - 1 \in A$, **then by (2) we have** $m \in A$, which is impossible.

The implication (A) \Rightarrow (B) follows.

(B) \Rightarrow (A)

Let $A \subseteq \mathbb{N}_0 = \{0, 1, 2, \dots\}$ such that $A \neq \emptyset$. Suppose for contradiction that A does not have a least element.

- It is easy to see that $0 \notin A$, because otherwise it would be a minimal element of A (as 0 is the minimal element of \mathbb{N}_0).
- We also see $1 \notin A$, otherwise it is a minimal element of A .
- We continue and assume that $1, 2, \dots, n \notin A$. Then $n + 1 \notin A$, otherwise $n + 1$ is the smallest element of A .

Now use the principle of induction and conclude that $A = \emptyset$.

(A) \Rightarrow (C)

Suppose that $A \neq \emptyset$ and bounded.

$\underbrace{\exists}_{\text{there exists}} M \in \mathbb{N}_0 \quad \underbrace{\forall}_{\text{for all}} a \in A \quad a \leq M$

This means that $M - a \geq 0$ for all $a \in A$. Let us consider the set

$$B = \{M - a : a \in A\} \neq \emptyset.$$

By the well ordering principle (A) there is $b \in A$ such that $M - b$ is the smallest element of B .

Thus

$$M - b \leq M - a$$

for all $a \in A$, equivalently $a \leq b$ for all $a \in A$.

(C) \Rightarrow (A)

Let $A \subseteq \mathbb{N}_0$, $A \neq \emptyset$. We show that A has a minimal element. Let

$$B = \{n \in \mathbb{N}_0 : n \leq a \text{ for every } a \in A\} = \{n \in \mathbb{N}_0 : \forall a \in A \ n \leq a\}$$

The set B is bounded and $0 \in B$ since $0 \leq n$ for any $n \in \mathbb{N}_0$. Thus, by the maximum principle (C) we are able to find $b_0 \in B$ such that b_0 is maximal in B . We see

$$\forall a \in A \ \forall b \in B \ b \leq b_0 \leq a.$$

The proof will be complete if we show $b_0 \in A$. Assume for contradiction $b_0 \neq a$ and $b_0 \leq a$ for all $a \in A$. Thus $b_0 < a$ for all $a \in A$. Hence

$$b_0 + 1 \leq a$$

for any $a \in A$. Then $b_0 + 1 \in B$, but b_0 is the maximal element of B , which gives contradiction.

Induction - example 1/2

Example

Prove that 6 divides the number $7^n - 1$ for all $n \in \mathbb{N}_0$.

Solution. Let A be the set of n for which 6 divides $7^n - 1$.

$$A = \{n \in \mathbb{N}_0 : 6 \text{ divides } 7^n - 1\}$$

Our goal is to show $A = \mathbb{N}_0$. We will use **the induction principle**. We have to check the base step and the induction step.

Base step. Let us check if $0 \in A$. We have $7^0 - 1 = 0$ hence 6 divides 0.

Induction - example 2/2

Induction step. Let us check that whenever $n \in A$, then $n + 1 \in A$. We have

$$\begin{aligned}7^{n+1} - 1 &= 7^{n+1} - 7^n + 7^n - 1 \\&= (7 - 1)7^n + 7^n - 1 \\&= \underbrace{6 \cdot 7^n}_{\text{divisible by 6}} + \underbrace{7^n - 1}_{\text{divisible by 6 since } n \in A}\end{aligned}$$

Well ordering principle - example

Example 1/2

A sequence $(a_n)_{n \in \mathbb{N}_0}$ is given by $a_0 = -1$, $a_1 = 0$, and $a_{n+1} = 5a_n - 6a_{n-1}$ for $n \geq 1$. Prove that

$$a_n = 2 \cdot 3^n - 3 \cdot 2^n.$$

Solution. In the proof, we will use **well ordering principle**. Let A be the set of integers $n \in \mathbb{N}_0$ such that $a_n \neq 2 \cdot 3^n - 3 \cdot 2^n$. We will show that $A = \emptyset$. Suppose for a contradiction that $A \neq \emptyset$ and let n_0 be the smallest element of this set. Since

$$a_0 = 2 \cdot 1 - 3 \cdot 1 = -1,$$

$$a_1 = 2 \cdot 3^1 - 3 \cdot 2^1 = 0$$

we have $n_0 \neq 0, 1$. By the minimality of n_0 we have

$$a_n = 2 \cdot 3^n - 3 \cdot 2^n$$

for all $0 \leq n < n_0$.

Well ordering principle - example 2/2

Using the recurrence definition

$$a_{n_0} = 5a_{n_0-1} - 6a_{n_0-2}$$

we obtain

$$\begin{aligned} 2 \cdot 3^{n_0} - 3 \cdot 2^{n_0} &\neq a_{n_0} = 5a_{n_0-1} - 6a_{n_0-2} \\ &= 5 \cdot (2 \cdot 3^{n_0-1} - 3 \cdot 2^{n_0-1}) - 6 \cdot (2 \cdot 3^{n_0-2} - 3 \cdot 2^{n_0-2}) \\ &= 2 \cdot 3^{n_0} - 3 \cdot 2^{n_0}, \end{aligned}$$

which contradicts the minimality of n_0 . This shows that $A = \emptyset$. □

$p^2 = 2$ - exercise

Exercise

Prove that the equation $p^2 = 2$ has no solution in rational numbers.

The rational numbers are

$$\mathbb{Q} = \left\{ \frac{n}{m} : n \in \mathbb{Z}, m \in \mathbb{Z} \setminus \{0\} \right\}.$$

Relatively prime numbers

Relatively prime numbers

We say that $m, n \in \mathbb{N}$ are **relatively prime** if there is no a number $a \in \mathbb{N}$, $a \neq 1$ such that a divides m and n .

Example 1

The numbers 6 and 42 are not relatively prime because 3 divides both 6 and 42.

Example 2

The numbers 21 and 10 are relatively prime, because the set of divisors of 21 is $\{1, 3, 7, 21\}$ and the set of divisors of 10 is $\{1, 2, 5, 10\}$ and

$$\{1, 3, 7, 21\} \cap \{1, 2, 5, 10\} = \{1\}.$$

Even and odd numbers

Recall that $n \in \mathbb{N}_0$ is **even** if it is divisible by 2. The even numbers are

$$0, 2, 4, 6, 8, 10, \dots$$

The number $n \in \mathbb{N}$ is **odd** if it is not divisible by 2. The odd numbers are

$$1, 3, 5, 7, 9, \dots$$

Solution

Exercise

Prove that the equation $p^2 = 2$ has no solution in rational numbers.

Assume for a contradiction that there is $\frac{m}{n} \in \mathbb{Q}$ such that m, n are relatively prime and

$$p^2 = \left(\frac{m}{n}\right)^2 = 2.$$

Equivalently

$$m^2 = 2n^2.$$

This implies that m is even.

Since m is even, then $2n^2$ must be divisible by 4.

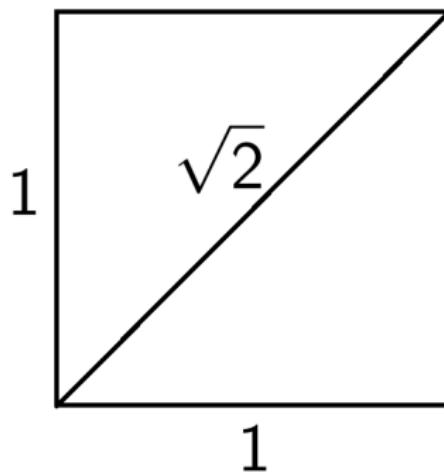
Consequently, n is also even.

Thus, m, n are both even, so they are divisible by 2.

This means that m, n are not relatively prime. Contradiction.

The solution of $p^2 = 2$

The solution of $p^2 = 2$ exists as a geometric length of the diagonal of the square of side-length 1.



Sets without minimal and maximal elements

Let

$$A = \{p \in \mathbb{Q} : p > 0, p^2 < 2\},$$

$$B = \{p \in \mathbb{Q} : p > 0, p^2 > 2\},$$

We will show that A contains no largest number and B contains no smallest number.

Set A

A contains no largest number means that for every $p \in A$ we can find $q \in A$ such that $p < q$.

For $p \in A$ we define

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}. \quad (1)$$

Then we have

$$q^2 - 2 = \frac{2(p^2 - 2)}{(p + 2)^2}. \quad (2)$$

Since $p^2 - 2 < 0$, it follows by (1) that $p < q$.

Then, (2) shows that $q^2 < 2$, so $q \in A$.

Set B

B contains no smallest number means that for every $p \in B$ we can find $q \in B$ such that $q < p$.

Again, for $p \in A$ we define

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}. \quad (3)$$

Then we have

$$q^2 - 2 = \frac{2(p^2 - 2)}{(p + 2)^2} \quad (4)$$

This time $p^2 - 2 > 0$, it follows by (3) that $q < p$.

Then, (4) shows that $q^2 > 2$, so $q \in B$.