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Continuity compactness and connectivity

Continuity and compactness

Bounded function

A mapping f : E → R is said to be bounded if there is a number M > 0
such that

|f (x)| ≤ M for all x ∈ E .

Theorem

Suppose that f : X → R is a continuous function and X ⊆ R is compact.
Then f [X ] is compact in R.
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Continuity compactness and connectivity

Proof

Let (Vα)α∈A be an open cover of f [X ], i.e.

f [X ] ⊆
⋃
α∈A

Vα.

Since f is continuous then each set f −1[Vα] is open in X . Since X is
compact and

X ⊆
⋃
α∈A

f −1[Vα]

thus there are α1, α2, . . . , αn ∈ A so that

X ⊆
n⋃

j=1

f −1[Vαj ].

Since f [f −1[E ]] ⊆ E we have

f [X ] ⊆ f
[ n⋃
j=1

f −1[Vαj ]
]
⊆

n⋃
j=1

Vαj .
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Continuity compactness and connectivity

Corollary

Corollary

If f : X → R is continuous on a compact set X ⊆ R then f [X ] is closed
and bounded in R. Specifically, f is bounded.

Theorem

Suppose f : X → R is continuous on a compact set X ⊆ R and

M = sup
p∈X

f (p) and m = inf
p∈X

f (p).

Then there are p, q ∈ X such that

f (p) = M and f (q) = m.

Proof. f [X ] ⊆ R is closed and bounded. Thus M and m are members of
f [X ] and we are done.
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Continuity compactness and connectivity

Theorem

Theorem

Suppose f is continuous injective mapping of a compact set X ⊆ R onto a
set Y ⊆ R. Then the inverse mapping f −1 defined on Y by

f −1(f (x)) = x , x ∈ X

is a continuous mapping of Y onto X .

Proof. The inverse f −1 : Y → X is well defined since f : X → Y is
one-to-one and onto. It suffices to prove that f [V ] is open in Y for every
open set V in X . Fix V ⊆ X open, V c is closed in X thus compact, hence
f [V c ] is compact subset of Y and consequently f [V c ] is closed. Since
f : X → Y is one-to-one and onto, hence

f [V ] = (f [V c ])c

and, consequently, f [V ] is open as desired.
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Continuity compactness and connectivity

Continuity and connectivity

Theorem

If f : R→ R is a continuous function and if E is a connected subset of R
then f [E ] is connected in R.

Proof. Assume for a contradiction that f [E ] = A ∪ B, where A and B are
nonempty separated sets in R. Put

G = E ∩ f −1[A] and H = E ∩ f −1[B].

Then E = G ∪ H and neither G nor H is empty.

Since A ⊆ cl (A) we have G ⊆ f −1[cl (A)] and the latter set is closed
since f is continuous hence cl (G ) ⊆ f −1[cl (A)].

Hence
f [cl (G )] ⊆ f [f −1[cl (A)]] ⊆ cl (A).
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Continuity compactness and connectivity

Proof

Since f [H] ⊆ B and cl (A) ∩ B = ∅ we conclude that

f [H ∩ cl (G )] ⊆ f [cl (G )] ∩ f [H] ⊆ cl (A) ∩ B = ∅,

so H ∩ cl (G ) = ∅.
The same argument shows that cl (G ) ∩ H = ∅.
Thus G and H are separated sets, which is a contradiction since E
is connected.
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Continuity compactness and connectivity

Darboux property

Darboux property (intermediate value theorem)

Let f be a continuous function on the interval [a, b]. If f (a) < f (b) and if
c is a number such that f (a) < c < f (b), then there is a point x ∈ (a, b)
such that

f (x) = c .

A similar result holds if f (a) > f (b).

Proof. [a, b] is connected so f
[
[a, b]

]
is connected in R as well by the

previous theorem. Thus if f (a) < c < f (b), then c ∈ f
[
[a, b]

]
, so there is

x ∈ [a, b] so that f (x) = c.

Remark

The theorem stated above is sometimes called Darboux property or the
intermediate value theorem.
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Continuity compactness and connectivity

Example

Exercise

Prove that the equation

x3 − x2 + 2x + 3 = 0

has a solution x0 such that −1 ≤ x0 ≤ 0.

Solution. Consider a continuous function

f (x) = x3 − x2 + 2x .

We calculate
f (−1) = −1, and f (0) = 3.

It follows by the Darboux property that there is c ∈ [−1, 0] such that
f (c) = 0. Thus c is a solution of our equation as desired.
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Continuity compactness and connectivity

f (x) = x3 − x2 + 2x + 3, x0 ≈ −0.8437
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Continuity compactness and connectivity

Example

Exercise

Prove that the equation
x3 = 20 +

√
x

has solution x0.

Solution. Consider a continuous function

f (x) = x3 −
√
x − 20.

We calculate

f (1) = −20 < 0, and f (4) = 42 > 0.

It follows by the Darboux property that there is c ∈ [1, 4] such that
f (c) = 0. Thus c is a solution of our equation as desired.
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Continuity compactness and connectivity

f (x) = x3 −
√
x − 20, x0 ≈ 2, 7879
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Uniform continuity

Uniformly continuous mappings

Uniformly continuous mappings

We say that f : X → R is uniformly continuous on X ⊆ R if for every
ε > 0 there exists δ > 0 such that

|f (x)− f (y)| < ε

for all x , y ∈ X for which
|x − y | < δ.

Remark

Uniform continuity is a property of a function on a set, whereas
continuity can be defined at a single point.
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Uniform continuity

Remarks

Remark 1

If f is continuous on X then for each ε > 0 and p ∈ X there is δ > 0
such that |x − p| < δ implies |f (x)− f (p)| < ε.

Thus δ > 0 depends on p ∈ X and ε > 0.

Remark 2

If f is uniformly continuous on X then for each ε > 0 there is δ > 0
such that for all x , y ∈ X if |x − y | < δ then |f (x)− f (p)| < ε.

Thus δ > 0 depends only on ε > 0, but is uniform for all x , y ∈ X .

Remark 3

Uniform continuity implies continuity.
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Uniform continuity

Continuity on compact spaces becomes uniform

Theorem

Let f : X → R be a continuous function defined on a compact set X ⊆ R.
Then f is uniformly continuous on X .

Proof. Let ε > 0 be given.

Since f is continuous we can associate to each point p ∈ X a positive
number δp > 0 such that if |p − q| < δp, then |f (p)− f (q)| < ε

2 .

Observe that

X ⊆
⋃
p∈X

(
p − δp

2
, p +

δp
2

)
.

Since X is compact there are p1, p2, . . . , pn ∈ X so that

X ⊆
n⋃

k=1

(
pk −

δpk
2
, pk +

δpk
2

)
.
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Uniform continuity

Proof

Set

δ =
1

2
min (δp1 , . . . , δpn) > 0.

Let p, q ∈ X be such that |p − q| < δ, then there is 1 ≤ m ≤ n such

that p ∈
(
pm − δpm

2 , pm +
δpm
2

)
. Hence

|pm − q| ≤ |q − p|+ |pm − p| ≤ δ +
δpm
2

< δpm .

Thus we conclude

|f (p)− f (q)| ≤ |f (p)− f (pm)|+ |f (pm)− f (q)| < ε

2
+
ε

2
= ε.

This completes the proof.
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Uniform continuity

Example

Exercise

Let f (x) = 1√
x

. Determine if it is uniformly continuous on [1, 2].

Solution. The interval [1, 2] is compact and the function f is continuous
at every point of [1, 2]. Hence, by the previous theorem, it is uniformly
continuous.

Exercise

Let

f (x) =

{
1
x if x 6= 0,

0 if x = 0.

Determine if it is uniformly continuous on [1, 2].

Solution. The interval [1, 2] is compact and the function f is continuous
at every point of [1, 2]. Hence, by the previous theorem, it is uniformly
continuous.
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Uniform continuity

Example

Exercise

Let

f (x) =

{
1
x if x 6= 0,

0 if x = 0.

Determine if it is uniformly continuous on [0, 1].

Solution. Let us consider an = 1
n . Then limn→∞ an = 0, but

lim
n→∞

f (an) = lim
n→∞

n 6= f (0) = 0,

so f is not continuous at the point 0, so it is not uniformly
continuous.
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Uniform continuity

Example

Exercise

Show that the function

f (x) =

{
1
x if x 6= 0,

0 if x = 0,
is not uniformly continuous on (0, 1).

Solution. It can be checked that f is continuous on (0, 1).

Suppose that f is uniformly continuous, then for every ε > 0 there is
δ > 0 such that for every x , y ∈ (0, 1) if |x − y | < δ then

|f (x)− f (y)| < ε.

We will use this condition with ε = 1 and x = 1
n and y = 1

n+1 .

This leads to a contradiction, since if 1
n < δ, then we see that

|x−y | =
1

n(n + 1)
< δ implies 1 = |n−n + 1| = |f (x)− f (y)| < 1.
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Discontinuities

Discontinuities

Discontinuities

If x is a point in the domain of a function f at which f is not continuous
we say that

f is discontinuous on X ,

or f has a discontinuity at x ∈ X .

Definition

Let f : (a, b)→ R. Consider any x such that a < x < b.

We write f (x+) = q if f (tn) −−−→n→∞ q for all sequences (tn)n∈N in
(x , b) such that tn −−−→n→∞ x .

Similarly, f (x−) = q if f (tn) −−−→n→∞ q for all sequences (tn)n∈N in
(a, x) such that tn −−−→n→∞ x .

It is clear that for any x ∈ (a, b) limt→x f (t) exists iff
f (x+) = f (x−) = limt→x f (t).
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Discontinuities

f (x+) and f (x−) - picture
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Discontinuities

Discontinuity of first and second kind

Let f : (a, b)→ R be given.

Discontinuity of the first kind

If f is discontinuous at a point x and if f (x+) and f (x−) exist, then f is
said to have discontinuity of the first kind or simple discontinuity at x .

Discontinuity of the second kind

Otherwise the discontinuity is said to be of the second type.

Remark

There are two ways in which a function can have a simple discontinuity:

either f (x+) 6= f (x−),

or f (x+) = f (x−) 6= f (x).
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Discontinuities

f (x+) 6= f (x−)
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Discontinuities

f (x+) = f (x−) 6= f (x)
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Discontinuities

Continuous from the left and from the right

Continuous from the left

If f (x−) = f (x) for all x ∈ (a, b) then we say that f is continuous from
the left.

Continuous from the right

If f (x+) = f (x) for all x ∈ (a, b) then we say that f is continuous from
the right.

(MATH 311, Section 4, FALL 2022) Lesson 20 November 15, 2022 25 / 34



Discontinuities

Integer part

Integer part
bxc = max{n ∈ Z : n ≤ x}

is continuous from the right.
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Discontinuities

Fractional part

Fractional part
{x} = x − bxc

is also continuous from the right.
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Discontinuities

Examples involving characteristic function of Q

Characteristic function of Q
The function

f (x) =

{
1 if x ∈ Q,
0 if x ∈ R \Q.

has a discontinuity of the second kind at every point x since neither f (x+)
nor f (x−) exists.

Characteristic function of Q times linear functio

Define

f (x) =

{
x if x ∈ Q,
0 if x ∈ R \Q.

Then f is continuous at x = 0, and f has a discontinuity of the second
kind at every other point x since neither f (x+) nor f (x−) exists.
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Discontinuities

Example

An example of a function with a simple discontinuity at x = 0 that is
continuous at every other point is given by the following formula

f (x) =


x + 2 if x < −2,

−x − 2 if x ∈ [−2, 0),

x + 2 if x > 0.
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Discontinuities

Monotonically increasing and decreasing functions

Monotonically increasing (and decreasing) function

Let f : (a, b)→ R, then f is said to be monotonically increasing on
(a, b) if a < x < y < b implies f (x) ≤ f (y). If f (x) ≥ f (y) we obtain the
definition of a monotonically decreasing function.

Theorem

Let f be a monotonically increasing on (a, b). Then f (x+) and f (x−)
exist at every point at x ∈ (a, b). More precisely,

sup
a<t<x

f (t) = f (x−) ≤ f (x) ≤ f (x+) ≤ inf
x<t<b

f (t).

Furthermore, if a < x < y < b then f (x+) ≤ f (y−). Analogous result
remains true for monotonically decreasing functions.
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Discontinuities

Proof: 1/2

The set
E = {f (t) : a < t < x}

is bounded by f (x) hence A = supE ∈ R and A ≤ f (x).

We have to show f (−x) = A.

Let ε > 0 be given. Since A = supE there is δ > 0 such that
a < x − δ < x and A− ε < f (x − δ) ≤ A. Since f is monotonic

f (x − δ) ≤ f (t) ≤ A for t ∈ (x − δ, x).

Thus A− ε < f (t) ≤ A, so

|f (x)− A| < ε for t ∈ (x − δ, x).

Thus A = f (x−). In a similar way we prove f (x+) = infx<t<b f (t).
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Discontinuities

Proof: 2/2

Next if a < x < y < b, then

f (x+) = inf
x<t<b

f (t) = inf
x<t<y

f (t).

Similarly
f (y−) = sup

a<t<y
f (t) = sup

x<t<y
f (t).

Thus

f (x+) = inf
x<t<y

f (t) ≤ sup
x<t<y

f (t) = f (y−).

Corollary

Monotonic functions have no discontinuities of the second kind.
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Discontinuities

Theorem

Theorem

Let f : (a, b)→ R be monotonic. Then the set of points of (a, b) of which
f is discontinuous is at most countable.

Proof. Wlog we may assume that f is increasing.

Let E be the set of points at which f is discontinuous.

With every point x ∈ E we associate a rational number r(x) ∈ Q
such that

f (x−) < r(x) < f (x+),

so r : E → Q.

Since x1 < x2 implies f (x1+) ≤ f (x2−) we see that r(x1) 6= r(x2) if
x1 6= x2.

We have established that the function r : E → Q is injective, thus

card (E ) ≤ card (Q) = card (N).
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Discontinuities

Proof - illustration
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