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Differentiation

Derivative

Derivative

Let f : [a, b]→ R. For any x ∈ [a, b] form the quotient function

φ(t) =
f (t)− f (x)

t − x
, a < t < b, t 6= x ; and define

f ′(x) = lim
t→x

φ(t)

provided the limit exists. We thus associate with the function f a function
f ′ whose domain is the set of points x for which the limit limt→x φ(t)
exists. The function f ′ is called the derivative of f .

Differentable function

If f ′ is defined at point x , we say that f is differentiable at x .

If f ′ is defined at every point of a set E ⊆ [a, b] we say that f is
differentiable on E .
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Differentiation

Remarks – endpoints

Right-hand and left-hand limits

It is possible to consider right-hand and left-hand limits of φ(t).

This leads to the definition of right-hand and left-hand derivatives.

In particular, at the endpoints a, b the derivative exists if exists a
right-hand and left-hand derivative respectively.

Endpoints

If f is defined on a segment (a, b) and if a < x < b, then f ′(x) is
defined by

lim
t→x

f (t)− f (x)

t − x
,

but f ′(a) and f ′(b) are not defined in this case.
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Differentiation

Example

Exercise 1

Using the definition, calculate the derivative of f (x) = x2 at a point x .

Solution. We have

lim
t→x

t2 − x2

t − x
= lim

t→x
x + t = 2x .

Exercise 2

Using the definition, calculate the derivative of f (x) = x3 at a point x .

Solution. Using the formula x3 − y3 = (x − y)(x2 + xy + y2) we have

lim
t→x

t3 − x3

t − x
= lim

t→x
x2 + xt + t2 = 3x2.
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Differentiation

Example

Exercise 3

Using the definition, calculate the derivative of f (x) =
√
x at a point x .

Solution. Using the formula

x − y = (
√
x −√y)(

√
x +
√
y),

we obtain

lim
t→x

√
t −
√
x

t − x
= lim

t→x

1√
t +
√
x

=
1

2
√
x
.
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Differentiation

Theorem

Theorem

If f : [a, b]→ R is differentiable at x ∈ [a, b], then f is continuous at x .

Proof. Note that

f (t)− f (x) =
f (t)− f (x)

t − x
(t − x) −−→t→x f ′(x) · 0 = 0.

Remark 1

The converse of this theorem is not true.

Let f (x) = |x | but it is not differentiable at x = 0.

Remark 2

It is also possible to construct a continuous function on R which is not
differentiable at any point of R.
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Differentiation

Arithmetic theorem for derivatives

Theorem

Let f , g : [a, b]→ R be differentiable at x ∈ [a, b]. Then f + g , f · g , and
f
g are differentiable at x and we have

(a) (f + g)′(x) = f ′(x) + g ′(x),

(b) (fg)′(x) = f ′(x)g(x) + f (x)g ′(x),

(c)

(
f
g

)′
(x) = f ′(x)g(x)−f (x)g ′(x)

(g(x))2
, whenever g(x) 6= 0.

Proof of (a). It is clear, since

(f + g)′(x) = lim
t→x

f (t) + g(t)− f (x)− g(x)

t − x
= lim

t→x

f (t)− f (x)

t − x

+ lim
t→x

g(t)− g(x)

t − x
= f ′(x) + g ′(x).
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Differentiation

Proof of (b) and (c)

Proof of (b). Let h = f · g , then

h(t)− h(x) = f (t)(g(t)− f (x)) + f (x)(f (t)− g(x)).

Thus

(f · g)′(x) = h′(x) = lim
t→∞

h(t)− h(x)

t − x

= lim
t→x

f (t)
g(t)− g(x)

t − x
+ lim

t→x
g(x)

f (t)− f (x)

t − x

= f (x)g ′(x) + g(x)f ′(x).

Proof of (c). Let h = f
g and observe

h(t)− h(x)

t − x
=

1

g(x)g(t)

(
g(x)

f (t)− f (x)

t − x
− f (x)

g(t)− g(x)

t − x

)
.

Letting t → x we obtain the desired claim.
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Differentiation

Examples

Example 1

f (x) = c ∈ R for all x ∈ R, then f ′(x) = 0 for all x ∈ R.

Example 2

f (x) = xn, then f ′(x) = nxn−1, n ∈ N. Indeed,

xn − yn = (x − y)
(
xn−1 + xn−2y + . . .+ xyn−2 + yn−1

)
,

thus

f (t)− f (x)

t − x
= tn−1 + tn−2x + . . .+ xn−2t + xn−1 →t→x nxn−1.

Example 3

f (x) = 1
xn , x 6= 0, then f ′(x) = −nxn−1

x2n
= − n

xn+1 .

(MATH 311, Section 4, FALL 2022) Lesson 21 November 23, 2022 9 / 43



Differentiation

Examples

Example 4

Every polynomial P(x) =
∑n

k=0 akx
k is differentiable.

Example 5

Every R(x) = P(x)
Q(x) , where P, Q are polynomials, is differentiable for all

x ∈ R such that Q(x) 6= 0.

Exercise

Calculate f ′(x), where f (x) =
√
x + 3x4 + 5.

Solution. Using the previous theorem and the fact that

(
√
x)′ =

1

2
√
x
, (x4)′ = 4x3, (5)′ = 0,

we obtain f ′(x) = 1
2
√
x

+ 12x3.
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Differentiation

Leibniz theorem

Theorem (Chain rule)

Suppose that f : [a, b]→ R is continuous and f ′(x) exists at some point
x ∈ [a, b], g is defined on an interval I which contains the range of f and
g is differentiable at the point f (x). If

h(t) = g(f (t)), a ≤ t ≤ b,

then h is differentiable at x and

h′(x) = g ′(f (x))f ′(x).

The latter identity is called the chain rule.
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Differentiation

Proof: 1/2

Let y = f (x). By the definition of the derivative we have

f (t)− f (x) = (t − x)(f ′(x) + u(t)),

g(s)− g(y) = (s − y)(g ′(y) + v(s)),

where t ∈ [a, b], s ∈ I , and

lim
t→x

u(t) = 0 and lim
s→y

v(s) = 0.

Let s = f (t) and note that

h(t)− h(x) = g(f (t))− g(f (x)) = (f (t)− f (x))(g ′(y) + v(s))

= (t − x)(f ′(x) + u(t))(g ′(y) + v(s)).
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Differentiation

Proof: 2/2

If t 6= x , then

h(t)− h(x)

t − x
= (g ′(y) + v(s))(f ′(x) + u(t)).

Letting t → x we see

s = f (t) −−→t→x f (x) = y

by the continuity of f . Thus

lim
t→x

h(t)− h(x)

t − x
= g ′(y)f ′(x) = g ′(f (x))f ′(x).
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Differentiation

Example

Exercise

Calculate h′(x), where

h(x) = (x5 + x3)100.

Solution. By the chain rule

h = f ◦ g , f (x) = x100, g(x) = x5 + x3,

so
f ′(x) = 100x99, and g ′(x) = 5x4 + 3x2,

h′(x) = 100(5x4 + 3x2)(x5 + x3)99.

Remark

Newton’s binomial formula could be also used to calculate h′(x), but the
solution seems to be longer.
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Mean-value theorems

Local minimum and maximum

Local maximum and minimum

Let X ⊆ R and f : X → R. We say that f has a local maximum at the
point p ∈ X if there exists δ > 0 such that

f (q) ≤ f (p) for all q ∈ (p − δ, p + δ),

Local minimum is defined likewise.
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Mean-value theorems

Theorem

Theorem

If f : [a, b]→ R has a local maximum at x ∈ (a, b) and if f ′(x) exists then
f ′(x) = 0. An analogous statement is also true for local minima.

Proof. If x ∈ (a, b) is a local maximum then there exists δ > 0 such that
if |q − x | < δ, then f (q) ≤ f (x).
We can assume that a < x − δ < x < x + δ < b if x − δ < t < x , then

f (t)− f (x)

t − x
≥ 0.

Letting t → x we see that f ′(x) ≥ 0. If x < t < x + δ, then

f (t)− f (x)

t − x
≤ 0.

Letting t → x then we obtain f ′(x) ≤ 0, thus we conclude f ′(x) = 0.
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Mean-value theorems

The mean-value theorem

The mean-value theorem

If f , g : [a, b]→ R are continuous on [a, b] and differentiable in (a, b) then
there is a point x ∈ (a, b) at which

(f (b)− f (a))g ′(x) = (g(b)− g(a))f ′(x).

Note that differentiability is not required at the endpoints.

If g(x) = x , we recover the Lagrange theorem.

Lagrange theorem

f (b)− f (a)

b − a
= f ′(x) for some x ∈ (a, b).
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Mean-value theorems

Proof of the mean-value theorem: 1/2

For a ≤ t ≤ b consider

h(t) = (f (b)− f (a))g(t)− (g(b)− g(a))f (t).

Then h is continuous on [a, b] and h is differentiable in (a, b) and

h(a) = f (b)g(a)− f (a)g(b) = h(b).

To prove the theorem we have to show that

h′(x) = 0 for some x ∈ (a, b).

If h is constant, this holds for every x ∈ (a, b).
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Mean-value theorems

Proof of the mean-value theorem: 2/2

Recall

A continuous function always attains its maximum and minimum on a
compact set.

If h(t) > h(a) for some t ∈ (a, b), let x be a point in [a, b] for which
h attains its maximum.

Since h(a) = h(b) then x ∈ (a, b).

By the previous theorem h′(x) = 0, since h(x) = supy∈[a,b] h(y).

Similarly, if h(t) < h(a) for some t ∈ (a, b) the same argument
applies, and we choose x ∈ (a, b) where h attains its minimum.

This completes the proof of the theorem.
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Mean-value theorems

Example

Exercise

Assume that f is differentiable, moreover

f (0) = 1, f (3) = 2.

Prove that there is c ∈ [0, 3] such that f ′(c) = 1
3 .

Solution. By the mean-value theorem

f (3)− f (0) = (3− 0)f ′(c)

for some c ∈ (0, 3). Moreover, by our assumption,

1 =2− 1 = f (3)− f (0) = 3f ′(c),

so f ′(c) = 1
3 .
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Mean-value theorems

Theorem

Theorem

Suppose f is differentiable in (a, b).

If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing.

If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotonically decreasing.

Proof. By the mean-value theorem for each a < x1 < x2 < b we have

f (x2)− f (x1) = f ′(x)(x2 − x1) for some x ∈ (x1, x2).

If f ′(x) ≥ 0, then f (x2) ≥ f (x1).

If f ′(x) = 0, then f (x2) = f (x1).

If f ′(x) ≤ 0, then f (x2) ≤ f (x1).
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Mean-value theorems

Remark

Derivatives which exist at every point of an interval have an important
property in common with functions which are continuous on the intervals:

their intermediate values are attained.

Theorem

Suppose that f : [a, b]→ R is differentiable and suppose that

f ′(a) < λ < f ′(b).

Then there is a point x ∈ (a, b) such that f ′(x) = λ.

A similar result holds of course if f ′(a) > f ′(b).
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Mean-value theorems

Proof

Set g(t) = f (t)− λt.

Then g ′(a) < 0 and g(t1) < g(a) for some t1 ∈ (a, b) since

0 > g ′(a) = lim
a<t→a

g(t)− g(a)

t − a︸ ︷︷ ︸
>0

.

Similarly, since g ′(b) > 0 we obtain g(t2) < g(b) for some t2 ∈ (a, b).

Hence g attains its minimum on [a, b] at some point x ∈ (a, b).

Hence we have g ′(x) = 0, so f ′(x) = λ and we are done.

Remark

If f : [a, b]→ R is differentiable then f ′ cannot have any simple
discontinuity on [a, b]. But f ′ may have discontinuities of the second kind.
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L’Hôpital’s rule

L’Hôpital’s rule

L’Hôpital’s rule

Suppose that f , g : (a, b)→ R are differentiable in (a, b) and g ′(x) 6= 0 for
all x ∈ (a, b), where −∞ ≤ a < b ≤ +∞. Suppose that

f ′(x)

g ′(x)
−−→x→a A. (∗)

(a) If f (x) −−→x→a 0 and g(x) −−→x→a 0, or

(b) if g(x) −−→x→a +∞, then

f (x)

g(x)
−−→x→a A.

Remark

An analogous statement is true if x → b or if g(x)→ −∞.

(MATH 311, Section 4, FALL 2022) Lesson 21 November 23, 2022 24 / 43



L’Hôpital’s rule

Proof: 1/4

Proof. We first consider the case −∞ ≤ A < +∞.

Choose a real number q such that A < q and the choose r such that
A < r < q.

By (*) there is c ∈ (a, b) such that a < x < c implies

f ′(x)

g ′(x)
< r .

If a < x < y < c then the mean-value theorem shows that there is a
point t ∈ (x , y) such that

(**)

f (x)− f (y)

g(x)− g(y)
=

f ′(t)

g ′(t)
< r .
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L’Hôpital’s rule

Proof: 2/4

If f (x) −−→x→a 0 and g(x) −−→x→a 0 then we see

f (y)

g(y)
≤ r < q, whenever a < y < c .

If g(x) −−→x→a +∞. Keeping y fixed in (**) we can choose a point
c1 ∈ (a, y) such that g(x) > g(y) and g(x) > 0 if a < x < c1. Then

g(x)− g(y)

g(x)
> 0.

Thus

f (x)− f (y)

g(x)
=

f (x)− f (y)

g(x)− g(y)

g(x)− g(y)

g(x)

< r
g(x)− g(y)

g(x)
= r − g(y)

g(x)
r .
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L’Hôpital’s rule

Proof: 3/4

Hence

f (x)

g(x)
< r − r

g(y)

g(x)
+

f (y)

g(x)
, whenever a < x < c1.

If we let x → a (since g(x) −−→x→a +∞) we find c2 ∈ (a, c1) such that

f (x)

g(x)
< q, whenever a < x < c2.

We conclude that for any q > A there is c2 such that

a < x < c2 implies
f (x)

g(x)
< q.
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L’Hôpital’s rule

Proof: 4/4

In the same manner if −∞ < A ≤ +∞ and p is chosen so that p < A
we can find a point c3 such that

a < x < c3 implies p <
f (x)

g(x)
.

If −∞ < A < +∞ we take ε > 0 and set p = A− ε, q = A + ε.

Then there is c3 so that for a < x < c3 we have

A− ε < f (x)

g(x)
< A + ε.

This completes the proof of the L’Hôpital rule.
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Derivatives of higher order

Derivatives of higher order

Second derivative

If f has a derivative f ′ on an interval and if f ′ is itself differentiable, we
denote the derivative of f ′ by f ′′ and call f ′′ the second derivative of f .

Continuing this way, we obtain:

f , f ′, f ′′, f (3), . . . , f (n), . . .

each of which is derivative of the proceeding one.

f (n) is called the n-th derivative, or derivative of order n of f .

Remark

In order for f (n)(x) to exists at point x , f (n−1)(t) must exists in a
neighbourhood of x (or in a one-sided neighborhood, if x is an
endpoint of the interval on which f is defined) and f (n−1) must be
differentiable at x .
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Derivatives of higher order

Examples

Example

Consider f (x) = xn for n ∈ N. Then

f ′(x) = nxn−1,

f ′′(x) = n(n − 1)xn−2,

f ′′′(x) = n(n − 1)(n − 2)xn−3,

...

f (n)(x) = n!.
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Convexity

Convex functions

Convex function

A function f : (a, b)→ R is convex if for every x , y ∈ (a, b) one has

f (αx + βy) ≤ αf (x) + βf (y)

whenever α, β ∈ [0, 1] and α + β = 1.

Observation 1

If f : (a, b)→ R is convex and if a < s < t < u < b, then

f (t)− f (s)

t − x
≤ f (u)− f (s)

u − s
≤ f (u)− f (t)

u − t
.

Proof. Since s < t < u then we may write t = αu + βs for some
α, β ∈ [0, 1] and α + β = 1.
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Convexity

Proof

More precisely,

t = αu + βs =
t − s

u − s︸ ︷︷ ︸
=α

u +
u − t

u − s︸ ︷︷ ︸
=β

s.

Then by the convexity

f (t) = f

(
t − s

u − s
u +

u − t

u − s
s

)
≤ t − s

u − s
f (u) +

u − t

u − s
f (s).

Hence

f (t)− f (s) ≤ t − s

u − s
f (u) +

u − t

u − s
f (s)− u − s

u − s
f (s),

so

f (t)− f (s) ≤ t − s

u − s
f (u)− t − s

u − s
f (s).

Hence
f (t)− f (s)

t − s
≤ f (u)− f (s)

u − s
.
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Convexity

Observation 2

Observation 2

If f : (a, b)→ R is convex then for any λ1, . . . , λn ∈ [0, 1] satisfying

λ1 + λ2 + . . .+ λn = 1,

we have
f (λ1x1 + . . .+ λnxn) ≤ λ1f (x1) + . . .+ λnf (xn).

Proof. For n = 2 if follows from definition of convexity. Suppose that the
statement is true for n ≥ 2 and we show it also holds for n + 1. Let
λ1, . . . , λn+1 ∈ [0, 1] so that λ1 + . . .+ λn+1 = 1. Note that

(*)

n∑
k=1

λk
1− λn+1

=
1

1− λn+1

n∑
k=1

λk =
1− λn+1

1− λn+1
= 1.
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Convexity

Proof

Then

f (λ1x + . . .+ λn+1xn+1)

= f

(
λn+1xn+1 + (1− λn+1)

(
n∑

k=1

λk
(1− λn+1)

xk

))

≤︸︷︷︸
convexity

λn+1f (xn+1) + (1− λn+1)f

(
n∑

k=1

λk
(1− λn+1)

xk

)

≤︸︷︷︸
induction+(*)

λn+1f (xn+1) + (1− λn+1)
n∑

k=1

λk
(1− λn+1)

f (xk)

=
n+1∑
k=1

λk f (xk).
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Convexity

Convexity and continuity

Theorem

If f : (a, b)→ R is convex then f is continuous on (a, b).

Proof. Let a < s < u < v < t < b. By Observation 1 one has

f (u) ≤ f (s) +
f (v)− f (s)

v − s
(u − s)

and also

f (v) ≤ f (u) +
f (t)− f (u)

t − u
(v − u).

Thus

f (s) +
f (u)− f (s)

u − s
(v − s) ≤ f (v) ≤ f (u) +

f (t)− f (u)

t − u
(v − u).

Take v = vn for n ∈ N. If vn −−−→n→∞ u converges to u we see that
limn→∞ f (vn) = f (u) thus limx→u f (x) = f (u).
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Convexity

Sign of the second derivative

The sign of the first derivative has been interpreted in terms of a
geometric property of the function whether it is decreasing or
increasing. We shall interpret the sign of the second derivative.
Let f : [a, b]→ R, then the equation of the line passing through
(a, f (a)) and (b, f (b)) is

y = f (a) +
f (b)− f (a)

b − a
(x − a).

(MATH 311, Section 4, FALL 2022) Lesson 21 November 23, 2022 36 / 43



Convexity

Sign of the second derivative

The condition that every point on the curve y = f (x) lies below the
line segment between x = a and x = b is that

f (x) ≤ f (a) +
f (b)− f (a)

b − a
(x − a) for a ≤ x ≤ b. (∗)

Any point x between a and b can be written in the form
x = a + t(b − a) with t ∈ [0, 1]. In fact, one sees that the map

t → a + t(b − a)

is a strictly increasing bijection between [0, 1] and [a, b].

If we substitute the value of x in terms of t in (*) we find an
equivalent inequality

f ((1− t)a + tb) ≤ (1− t)f (a) + tf (b),

which is convexity of the function f on (a, b).

(MATH 311, Section 4, FALL 2022) Lesson 21 November 23, 2022 37 / 43



Convexity

Second derivative test

Theorem

Let f : [a, b]→ R be continuous. Assume that f ′′ exists on (a, b) and
f ′′(x) > 0 on (a, b). Then f is strictly convex on the interval [a, b].

Proof. For a < x < b we define

g(x) = f (a) +
f (b)− f (a)

b − a
(x − a)− f (x).

By the mean-value theorem we obtain

g ′(x) =
f (b)− f (a)

b − a
− f ′(x) = f ′(c)− f ′(x) for some a < c < b.

Using the mean-value theorem again for f ′ we find g ′(x) = f ′′(d)(c − x)
for some d between c and x .
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Convexity

Proof

If a < x < c , and using f ′′(d) > 0 we conclude that g is strictly
increasing on [a, c].
If c < x < b we conclude that g is strictly decreasing on [c, b].
Since g(a) = 0 and g(b) = 0 it follows g(x) > 0 when a < x < b,
thus

f (x) < f (a) +
f (b)− f (a)

b − a
(x − a).

Concave function

A function f : (a, b)→ R is concave if for every x , y ∈ (a, b) one has

f (αx + βy) ≥ αf (x) + βf (y)

whenever α, β ∈ [0, 1] and α + β = 1.

Analogues of all above-proved theorems hold for concave
functions in place of convex functions.
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Convexity

Convex and concave functions
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Inverse functions

Theorem

Theorem

Let f : [a, b]→ R be continuous and strictly increasing function. Then the
inverse function of f is continuous and also strictly increasing.

Proof. Since f is continuous from the intermediate value theorem we
know that the image of f is an interval, say [α, β] = f

[
[a, b]

]
.

Let g : [α, β]→ [a, b] be the inverse function. It is clear that g is also
strictly increasing. We have to prove that g is continuous.

Let γ ∈ [α, β]. Given ε > 0 and γ = f (x) consider the closed interval
[x1, x2], where

x1 =

{
c − ε if a ≤ c − ε
a otherwise

, x2 =

{
c + ε if c + ε ≤ b

b otherwise
.

Then f (x1) ≤ f (x2).
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Inverse functions

Proof

We assume a < b. We select

δ = min(f (x2)− f (c), f (c)− f (x1)).

Suppose that δ > 0. If |y − γ| < δ, then there is unique x such that
y = f (x) and x1 < x < x2 and hence |g(x)− c | < ε.

If δ = 0, then either a = c or b = c , that is c is an endpoint.

Say c = a. In this case we disregard x1 and let δ = f (x2)− f (c).

The same argument works if c = b (we let δ = f (c)− f (x1)).
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Inverse functions

Theorem

Theorem

Let f : [a, b]→ R be continuous and a < b. Assume that f is
differentiable on (a, b) and f ′(x) > 0 for x ∈ (a, b). Then the inverse
function g of f defined on [α, β] = f

[
[a, b]

]
is differentiable on (α, β) and

g ′(y) =
1

f ′(x)
=

1

f ′(g(y))
for y ∈ (α, β).

Proof. Let α < y0 < β and y0 = f (x0) and y = f (x). Then

g(y)− g(y0)

y − y0
=

x − x0
f (x)− f (x0)

=
1

f (x)−f (x0)
x−x0

−−−→y→y0

1

f ′(x0)
=

1

f ′(g(y0))
.

If y → y0 then x → x0 since g is continuous.
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