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Exponential Function and Natural Logarithm Function,
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The exponential function

The exponential function
We define
E(z):Z— for zeR.

n!’
n=0

o Observe that |E(z)| < > 02, n, " < 00. Thus the ratio test shows that
the series converges absolutely for any z € R.

Recall

If Y°0° 5 an converges absolutely, >~ ° ja, = A, and > 7 b, = B, and

n
c,,:Zakbn_k, for n=0,1,2,....

Then Y72 ek = AB.

v
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The exponential function

Properties of the exponential function 1/4

Applying this result to absolutely convergent series E(z), E(w) we obtain
(*)
E(z)E(w)=E(z+w) for 2z, weR.

Proof of (*). Indeed,

E2)E(w) - (i.) (OO V;,T) ZZk

Recall n=0 k=0
o0 n
1 (z + w)
= ( ) Z E(z+ w).
In the last line we have used the Binomial theorem. O
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The exponential function

Properties of the exponential function 2/4
As the consequence we obtain
(**)

E(z)E(—z) =E(z—2z)=E(0) =1.

@ This shows that E(z) # 0 for all z € R.
e We have E(x) > 0 if x > 0, giving E(x) > 0 for all x € R by (**).
@ It is easy to see that

o0

: _ X
XI|_>n;o E(x) =400 since E(x)= ZO e
e Consequently by (**) we obtain
1

XILrgo E(—x)=0 since E(—x)= )’
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The exponential function

Properties of the exponential function 3/4

o If 0 < x < y then

E(x) = Z <YL= E).

n=0

@ Since E(x)E(—x) =1 thus

E(-y) < E(—x),

hence E is strictly increasing on R.
o If x € R then

E(x+ h) — E(x

(x) . E(h)—1
)

E'(x) = li

= E(x).
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The exponential function

Properties of the exponential function 4/4

@ Indeed,
E(h)—-1 1A XAt
TR T A
n=1 n=1
hence
1 e hn—l OO hn—2
RN i Y
n=2 ’ n=2 ’

< |WE(IA) < [hle —; 0.
|h|<1

@ We have proved that E'(x) = E(x) for all x € R.
@ In particular, E is continuous on R.

In the next theorem we summarize what we have proved.
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Theorem

Theorem
We know that

o0
. X X
Jm (147) ==Y T -k

n=0

The exponential function R 5 x — e* satisfies the following properties:
e* is continuous and differentiable for all x € R,
(ex)/ — eXy

eX

is strictly increasing on R and ¢* > 0 for all x € R,
eXey = &1 for all x,y € R,

liMy— 400 € = 400 and limy_,_o, € =0,

© 6e e 660

liMy— 00 x "€ =0 for all n € N.

Proof. We have proved (a)-(e). We only prove (f).
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Graph of f(x) = e*
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The exponential function

Proof of (f)
Note that
i X n+1
GRS
so that N
Xne_x < M S 07

X
which gives the desired claim.

Remark

Item (f) says that e* tends to +oo faster that any polynomial.

o If P(x) = > _7_ ckxk, where c1,...,c, €R, then
P(X) > ko |kl x*
0< < — x—0d 0.
e | ex
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The logarithm function 1/4

@ Since the exponential function E(x) = €~ is strictly increasing and
differentiable on R it has an inverse function L, which is also strictly
increasing and differentiable and whose domain is E[R] = (0, 00).

@ L is defined by
E(L(y))=y forall y>0

or, equivalently, L(E(x)) = x for all x € R.
o Differentiating the latter equation

1= (x) = (L(E(x))) = L'(E(x))E'(x) = L'(E(x))E(x).

Thus L'(E(x)) = ﬁ hence

1
L'(y)== forall y>0.

(MATH 311, Section 4, FALL 2022) Lesson 22 November 29, 2022 10/27



The logarithm function 2/4

e Writing u = E(x) and v = E(y) note that

L(uv) = L(E(x)E(y)) = L(E(x +))
=x+y=Lw)+L(v) for wu,v>0.

e From now on we will write log(x) = L(x).

@ Since limy_ 100 € = 400 and limy_,_o, € = 0, we conclude

lim log(x) =400, and lim log(x) = occ.

X—00 x—0
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The logarithm function 3/4. Definition of x*

@ Since x = E(L(x)), it is easily seen that

x"=E(nL(x)) and xY"=E (;L(x)) for n,meN.

Thus
x¢=E(alL(x)) if aecQ.

@ It also makes sense to define
x*=E(al(x)) for a€R and x>0.

@ The continuity and monotonicity of E and L show that everything
makes sense and this definition coincides with

x*=sup{x” : p<a, peQ} if a€R and x>1.
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The logarithm function 4/4

o If we differentiate
x* = E(aal(x)),
then N
(x*) = E’(aL(x)); = ax* L,

o Finally note that

lim x “log(x) =0 forevery «a >0.
X—00

That is, log(x) tends to +oo slower that any power of x.

@ Indeed, since x* ;== + oo, by L'Hopital’s rule

L' Hopital
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Power series

Power series

Power series

Given a sequence (¢p)nen,, Where ¢, € R, the series

o0
g cnx", x€R
n=0

is called a power series.

@ The numbers ¢, are called the coefficients of the series.

Example 1

> X"

Example 2

X __ oo x"
€ _ano nt*
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Power series

Radius of convergence

Radius of convergence
Given the power series
o0
Z cpx"
n=0
set 1
a = limsup \"/m, and R:E'

n—o0

If « =0, then R = +o00.

@ The number R is called the radius of convergence of > ° , c,x".
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Power series

Theorem

Theorem
The series Y72 5 cpx”
e converges if |x| < R, and

o diverges if [x| > R.

Proof. Consider a, = ¢,x" and apply the root test

lim sup m = |x|limsup \"/m = M
n—oo n—o0 R

Example 1
> on"™x" has R=0

Example 2
S, %1 has R = +o0.

n=0 n!
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Examples

Example 2

Hence if >.°° ) X1, then R = o0 since
. a1
a = limsup {/— =0.
n—00 n!

Yo gx" has R=1. If x| =1 the series > ) x" diverges. We also know

o0

1
Zx" = if x| <1.
n=0

Example 3

1—x
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Power series

Examples

Example 4

X% has R =1. If x =1 the series diverges since
n=1 n

=1
IEEE
n
n=1
If x = —1 then the series converges since

i (_3)n < 0.
n=1
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Taylor’s theorem

Taylor's theorem

Taylor's theorem

Suppose f : [a,b] = R, n € N, f("=1) is continuous on [a, b], and f("(t)
exists for every t € (a, b). Let «, B € [a, b] be distinct and define

then there exists a point x € («, 3) such that

F(m)(x)
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Proof 1/3

Remark

For n =1 this is just the mean—value theorem. In general, the theorem
says that f can be approximated by a polynomial of degree n — 1 and that
(*) allows us to estimate the error term if we know bounds on |f(")(x)|.

Proof. Let M be a number such that

f(B) = P(B) + M(B — a)".

For a <t < b set

g(t) = f(t) — P(t) — M(t — a)".

o We have to show n!M = f(")(x) for some x € (a, ).
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Taylor’s theorem

Proof 2/3
@ Since L
— K (a
(=3 ay
k=0 ’

we have that P(")(t) = 0. Thus
gM(t) = FM(t)—nIM  for te(a,p)

(since (x")(") = n!).
@ The proof will be completed if we show that g{")(x) = 0 for some
x € (a, B). Since P (a) = f(K)(a) for k =0,1,2,...,n—1, hence
we have
gla)=g'(a)=...=gl" () =0.

Our choice of M shows that g(/7) = 0.
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Proof 3/3

@ Hence by the mean-value theorem
g'(x1)=0 forsome x; € (,)

since 0 = g(@) — g(B) = (B — )g’(1).
o Using that g’(«) = 0 we continue and obtain

0=g'(x1)—g'(a) = (x1 —a)g’(x2) forsome a<x<x.

Thus g”(x2) = 0.

@ Repeating the previous arguments, after n steps we obtain
g(”)(x,,) =0 forsome a<x,<xp1<...<x3<§p.
This completes the proof. O

(MATH 311, Section 4, FALL 2022) Lesson 22 November 29, 2022 22/27



Taylor’s theorem

Theorem

Theorem (Taylor's expansion formula)

Suppose that £ : [a, b] — R is n-times continuously differentiable on [a, b]
and f("*1) exists in the open interval (a, b). For any x, xg € [a, b] and
p > 0 there exists 6 € (0,1) such that

~ ) (xo)
F(x) =D~ (x = x0) + ra(x),
k=0
where r,y(x) is the Schlomlich—-Roche remainder function defined by

(n+1) _
rn(x) _ f (XO ,:pg(x XO))(l _ 9)n+17P(X . Xo)n+1,
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Proof 1/3

e For x,xp € [a, b] set

D (k) (x
) = 1) = 3 0 ()

e Wlog we may assume that x > xp. For z € [xp, x] define

n AR,
o(2) = ) -3 B )

k=0

k

@ We have ¢(xo) = ra(x) and ¢(x) =0, and ¢’ exists in (xo, x) and

(n+1) Py
#(z)= @y

n!
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Proof 2/3

@ Indeed, by the telescoping we obtain

N (k)(, '
#(2) = - (Z AL z)k>

k=0
Y A ) f(z)
——k:O ( o (X—Z)k— o k(x—z)k 1)
" FK() & Al
- (k—nﬁxfﬂkl Gl
k=1 k=0
(n+1)(»
:_f n!()(X_Z)n

e Let 1(z) = (x — z)P, then 9 is continuous on [xp, x| with
non-vanishing derivative on (xp, x).
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s theoem
Proof 3/3

e By the mean-value theorem

o(x) — d(x0) _ #'(c) or some ¢ € (xp, X
D)= 0a) v s

@ Thus, setting ¢ = xp + 0(x — xp),

o) = 950) — 90x) = ~(6() ~ v0)) 2\
— =~

Y'(c)
—m(x) =0
), (x—x0)?
= o (x—c¢) o — )T
(n+1) _
_ f (XO ;’nf)(X XO)) (1 - ())n+1—p(x o Xo)n+1. ]
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Taylor’s theorem

Corollary

Under the assumptions of the previous theorem.

Lagrange remainder
If p = n+ 1 we obtain the Taylor formula with the Lagrange remainder:

(1) (x X — X
g [0 =)

(n+1)! XO)n+1-

Cauchy remainder
If p =1 we obtain the Taylor formula with the Cauchy remainder:

F(r ) (x0 + 0(x — x0))
n!

ra(x) = (1-0)"(x— xo)"+1.
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