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The exponential function

The exponential function

The exponential function

We define

E (z) =
∞∑
n=0

zn

n!
, for z ∈ R.

Observe that |E (z)| ≤
∑∞

n=0
|z|n
n! <∞. Thus the ratio test shows that

the series converges absolutely for any z ∈ R.

Recall

If
∑∞

n=0 an converges absolutely,
∑∞

n=0 an = A, and
∑∞

n=0 bn = B, and

cn =
n∑

k=0

akbn−k , for n = 0, 1, 2, . . . .

Then
∑∞

k=0 ck = AB.
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The exponential function

Properties of the exponential function 1/4

Applying this result to absolutely convergent series E (z), E (w) we obtain

(*)

E (z)E (w) = E (z + w) for z ,w ∈ R.

Proof of (*). Indeed,

E (z)E (w) =

( ∞∑
n=0

zn

n!

)( ∞∑
m=0

wm

m!

)
=︸︷︷︸

Recall

∞∑
n=0

n∑
k=0

zkwn−k

k!(n − k)!

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k =

∞∑
n=0

(z + w)n

n!
= E (z + w).

In the last line we have used the Binomial theorem.
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The exponential function

Properties of the exponential function 2/4

As the consequence we obtain

(**)

E (z)E (−z) = E (z − z) = E (0) = 1.

This shows that E (z) 6= 0 for all z ∈ R.

We have E (x) > 0 if x > 0, giving E (x) > 0 for all x ∈ R by (**).

It is easy to see that

lim
x→∞

E (x) = +∞ since E (x) =
∞∑
n=0

xn

n!
.

Consequently by (**) we obtain

lim
x→∞

E (−x) = 0 since E (−x) =
1

E (x)
.
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The exponential function

Properties of the exponential function 3/4

If 0 < x < y then

E (x) =
∞∑
n=0

xn

n!
<

∞∑
n=0

yn

n!
= E (y).

Since E (x)E (−x) = 1 thus

E (−y) < E (−x),

hence E is strictly increasing on R.

If x ∈ R then

E ′(x) = lim
h→0

E (x + h)− E (x)

h
= E (x) lim

h→0

E (h)− 1

h︸ ︷︷ ︸
=1

= E (x).
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The exponential function

Properties of the exponential function 4/4

Indeed,
E (h)− 1

h
=

1

h

∞∑
n=1

hn

n!
=
∞∑
n=1

hn−1

n!
,

hence ∣∣∣∣1h (E (h)− 1)− 1

∣∣∣∣ ≤ ∞∑
n=2

|h|n−1

n!
= |h|

∞∑
n=2

|h|n−2

n!

≤ |h|E (|h|) ≤︸︷︷︸
|h|≤1

|h|e −−→
h→0

0.

We have proved that E ′(x) = E (x) for all x ∈ R.

In particular, E is continuous on R.

In the next theorem we summarize what we have proved.
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The exponential function

Theorem

Theorem

We know that

lim
n→∞

(
1 +

x

n

)n
= ex =

∞∑
n=0

xn

n!
= E (x).

The exponential function R 3 x 7→ ex satisfies the following properties:

(a) ex is continuous and differentiable for all x ∈ R,

(b) (ex)′ = ex ,

(c) ex is strictly increasing on R and ex > 0 for all x ∈ R,

(d) exey = ex+y for all x , y ∈ R,

(e) limx→+∞ ex = +∞ and limx→−∞ ex = 0,

(f) limx→+∞ x−nex = 0 for all n ∈ N.

Proof. We have proved (a)-(e). We only prove (f).
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The exponential function

Graph of f (x) = ex
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The exponential function

Proof of (f)

Note that

ex =
∞∑
k=0

xk

k!
>

xn+1

(n + 1)!
,

so that

xne−x <
(n + 1)!

x
−−−→x→∞ 0,

which gives the desired claim.

Remark

Item (f) says that ex tends to +∞ faster that any polynomial.

If P(x) =
∑n

k=0 ckx
k , where c1, . . . , cn ∈ R, then

0 ≤
∣∣∣∣P(X )

ex

∣∣∣∣ ≤ ∑n
k=0 |ck |xk

ex
−−−→x→∞ 0.
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The logarithm function

The logarithm function 1/4

Since the exponential function E (x) = ex is strictly increasing and
differentiable on R it has an inverse function L, which is also strictly
increasing and differentiable and whose domain is E [R] = (0,∞).

L is defined by
E (L(y)) = y for all y > 0

or, equivalently, L(E (x)) = x for all x ∈ R.

Differentiating the latter equation

1 = (x)′ = (L(E (x)))′ = L′(E (x))E ′(x) = L′(E (x))E (x).

Thus L′(E (x)) = 1
E(x) , hence

L′(y) =
1

y
for all y > 0.
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The logarithm function

The logarithm function 2/4

Writing u = E (x) and v = E (y) note that

L(uv) = L(E (x)E (y)) = L(E (x + y))

= x + y = L(u) + L(v) for u, v > 0.

From now on we will write log(x) = L(x).

Since limx→+∞ ex = +∞ and limx→−∞ ex = 0, we conclude

lim
x→∞

log(x) = +∞, and lim
x→0

log(x) =∞.
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The logarithm function

The logarithm function 3/4. Definition of xα

Since x = E (L(x)), it is easily seen that

xn = E (nL(x)) and x1/m = E

(
1

m
L(x)

)
for n,m ∈ N.

Thus
xα = E (αL(x)) if α ∈ Q.

It also makes sense to define

xα = E (αL(x)) for α ∈ R and x > 0.

The continuity and monotonicity of E and L show that everything
makes sense and this definition coincides with

xα = sup{xp : p < α, p ∈ Q} if α ∈ R and x > 1.
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The logarithm function

The logarithm function 4/4

If we differentiate
xα = E (αaL(x)),

then
(xα)′ = E ′(αL(x))

α

x
= αxα−1.

Finally note that

lim
x→∞

x−α log(x) = 0 for every α > 0.

That is, log(x) tends to +∞ slower that any power of x .

Indeed, since xα −−−→x→∞ +∞, by L’Hôpital’s rule

lim
x→∞

log(x)

xα
=︸︷︷︸

L′Hopital

lim
x→∞

1
x

αxα−1
= lim

x→∞

1

αxα
= 0.
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Power series

Power series

Power series

Given a sequence (cn)n∈N0 , where cn ∈ R, the series

∞∑
n=0

cnx
n, x ∈ R

is called a power series.

The numbers cn are called the coefficients of the series.

Example 1∑∞
n=0 x

n.

Example 2

ex =
∑∞

n=0
xn

n! .
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Power series

Radius of convergence

Radius of convergence

Given the power series
∞∑
n=0

cnx
n

set

α = lim sup
n→∞

n
√
|cn|, and R =

1

α
.

If α = 0, then R = +∞.

The number R is called the radius of convergence of
∑∞

n=0 cnx
n.
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Power series

Theorem

Theorem

The series
∑∞

n=0 cnx
n

converges if |x | < R, and

diverges if |x | > R.

Proof. Consider an = cnx
n and apply the root test

lim sup
n→∞

n
√
|an| = |x | lim sup

n→∞
n
√
|cn| =

|x |
R
.

Example 1∑∞
n=0 n

nxn has R = 0

Example 2∑∞
n=0

xn

n! has R = +∞.
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Power series

Examples

Example 2

Hence if
∑∞

n=0
xn

n! , then R = +∞ since

α = lim sup
n→∞

n

√
1

n!
= 0.

Example 3∑∞
n=0 x

n has R = 1. If |x | = 1 the series
∑∞

n=0 x
n diverges. We also know

∞∑
n=0

xn =
1

1− x
if |x | < 1.

(MATH 311, Section 4, FALL 2022) Lesson 22 November 29, 2022 17 / 27



Power series

Examples

Example 4∑∞
n=1

xn

n has R = 1. If x = 1 the series diverges since

∞∑
n=1

1

n
= +∞.

If x = −1 then the series converges since∣∣∣∣∣
∞∑
n=1

(−1)n

n

∣∣∣∣∣ <∞.
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Taylor’s theorem

Taylor’s theorem

Taylor’s theorem

Suppose f : [a, b]→ R, n ∈ N, f (n−1) is continuous on [a, b], and f (n)(t)
exists for every t ∈ (a, b). Let α, β ∈ [a, b] be distinct and define

P(t) =
n−1∑
k=0

f (k)(α)

k!
(t − α)k .

then there exists a point x ∈ (α, β) such that

f (β) = P(β) +
f (n)(x)

n!
(β − α)n (∗)

(MATH 311, Section 4, FALL 2022) Lesson 22 November 29, 2022 19 / 27



Taylor’s theorem

Proof 1/3

Remark

For n = 1 this is just the mean–value theorem. In general, the theorem
says that f can be approximated by a polynomial of degree n − 1 and that
(*) allows us to estimate the error term if we know bounds on |f (n)(x)|.

Proof. Let M be a number such that

f (β) = P(β) + M(β − α)n.

For a ≤ t ≤ b set

g(t) = f (t)− P(t)−M(t − α)n.

We have to show n!M = f (n)(x) for some x ∈ (α, β).
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Taylor’s theorem

Proof 2/3

Since

P(t) =
n−1∑
k=0

f (k)(α)

k!
(t − α)k

we have that P(n)(t) = 0. Thus

g (n)(t) = f (n)(t)− n!M for t ∈ (α, β)

(since (xn)(n) = n!).

The proof will be completed if we show that g (n)(x) = 0 for some
x ∈ (α, β). Since P(k)(α) = f (k)(α) for k = 0, 1, 2, . . . , n − 1, hence
we have

g(α) = g ′(α) = . . . = g (n−1)(α) = 0.

Our choice of M shows that g(β) = 0.
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Taylor’s theorem

Proof 3/3

Hence by the mean-value theorem

g ′(x1) = 0 for some x1 ∈ (α, β)

since 0 = g(α)− g(β) = (β − α)g ′(x1).

Using that g ′(α) = 0 we continue and obtain

0 = g ′(x1)− g ′(α) = (x1 − α)g ′′(x2) for some α < x2 < x1.

Thus g ′′(x2) = 0.

Repeating the previous arguments, after n steps we obtain

g (n)(xn) = 0 for some α < xn < xn−1 < . . . < x1 < β.

This completes the proof.
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Taylor’s theorem

Theorem

Theorem (Taylor’s expansion formula)

Suppose that f : [a, b]→ R is n-times continuously differentiable on [a, b]
and f (n+1) exists in the open interval (a, b). For any x , x0 ∈ [a, b] and
p > 0 there exists θ ∈ (0, 1) such that

f (x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)k + rn(x),

where rn(x) is the Schlömlich–Roche remainder function defined by

rn(x) =
f (n+1)(x0 + θ(x − x0))

n!p
(1− θ)n+1−p(x − x0)n+1.
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Taylor’s theorem

Proof 1/3

For x , x0 ∈ [a, b] set

rn(x) = f (x)−
n∑

k=0

f (k)(x0)

k!
(x − x0)k .

Wlog we may assume that x > x0. For z ∈ [x0, x ] define

φ(z) = f (x)−
n∑

k=0

f (k)(z)

k!
(x − z)k .

We have φ(x0) = rn(x) and φ(x) = 0, and φ′ exists in (x0, x) and

φ′(z) = − f (n+1)(z)

n!
(x − z)n.
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Taylor’s theorem

Proof 2/3

Indeed, by the telescoping we obtain

φ′(z) = −

(
n∑

k=0

f (k)(z)

k!
(x − z)k

)′

= −
n∑

k=0

(
f (k+1)(z)

k!
(x − z)k − f (k)(z)

k!
k(x − z)k−1

)

=
n∑

k=1

f (k)(z)

(k − 1)!
(x − z)k−1 −

n∑
k=0

f (k+1)(z)

k!
(x − z)k

= − f (n+1)(z)

n!
(x − z)n.

Let ψ(z) = (x − z)p, then ψ is continuous on [x0, x ] with
non-vanishing derivative on (x0, x).
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Taylor’s theorem

Proof 3/3

By the mean-value theorem

φ(x)− φ(x0)

ψ(x)− ψ(x0)
=
φ′(c)

ψ′(c)
for some c ∈ (x0, x).

Thus, setting c = x0 + θ(x − x0),

rn(x) = φ(x0)︸ ︷︷ ︸
=rn(x)

−φ(x)︸︷︷︸
=0

= −(ψ(x)− ψ(x0))
φ′(c)

ψ′(c)

=
f (n+1)(c)

n!
(x − c)n

−(x − x0)p

−p(x − c)p−1
=

=
f (n+1)(x0 + θ(x − x0))

pn!
(1− θ)n+1−p(x − x0)n+1.
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Taylor’s theorem

Corollary

Under the assumptions of the previous theorem.

Lagrange remainder

If p = n + 1 we obtain the Taylor formula with the Lagrange remainder:

rn(x) =
f (n+1)(x0 + θ(x − x0))

(n + 1)!
(x − x0)n+1.

Cauchy remainder

If p = 1 we obtain the Taylor formula with the Cauchy remainder:

rn(x) =
f (n+1)(x0 + θ(x − x0))

n!
(1− θ)n(x − x0)n+1.
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