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Taylor’s theorem

Theorem

Theorem (Taylor's expansion formula)

Suppose that £ : [a, b] — R is n-times continuously differentiable on [a, b]
and f("*1) exists in the open interval (a, b). For any x, xg € [a, b] and
p > 0 there exists 6 € (0,1) such that

~ ) (xo)
F(x) =D~ (x = x0) + ra(x),
k=0
where r,y(x) is the Schlomlich—-Roche remainder function defined by

(n+1) _
rn(x) _ f (XO ,:pg(x XO))(l _ 9)n+17P(X . Xo)n+1,
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Taylor’s theorem

Corollary

Under the assumptions of the previous theorem.

Lagrange remainder
If p = n+ 1 we obtain the Taylor formula with the Lagrange remainder:

(1) (x X — X
g [0 =)

(n+1)! XO)n+1-

Cauchy remainder
If p =1 we obtain the Taylor formula with the Cauchy remainder:

F(r ) (x0 + 0(x — x0))
n!

ra(x) = (1-0)"(x— xo)"+1.
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Taylor’s theorem

Power series expansion for the logarithm

Theorem

For |x| < 1 we have

o0 k+1
log(1 + x) :Z
k=1
Proof. Note that (log(x + 1))’ = 47 and
AN 1
| ))' =(—) =———
(ogtx + 1)) = ( +1) T
2
| 1 [/ —
(st + 1" = (= ~57) =
2 ! 6 3!
log(x + 1 (4)—< >: = — .
(log(x +1)) 1+ x)3 L+x)*  (1+x)?
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Proof 1/2

Inductively, we have

(og(1 ) = (1) 12

@ We use the Taylor expansion formula at xg = 0 then

n (k) N0 1vk+l
log(1 + x) = Z fkl(o)xk + ra(x) = Z (1/3+xk + rn(x),
k=0 ' k=0

since

f©(0) = log(1) =0,
F(0) = (1) (k — 1)L,
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_ Tovlors theorem |
Proof 2/2

@ If 0 < x < 1 we use Lagrange's reminder. Then for some 0 < 6 < 1,

f )(QX) n+1
(n+ 1)

n! il o 1 0
= X —— == 0.
(n+1)1(1+6x)" “n+1"™

ra(x)| =

o If —1 < x < 0 we use Cauchy’s remainder. Then for some 0 < 6 < 1,
F(D(x0 4 0(x — x0))

nl

[ra(x)| = (1-6)"(x = x)"**

nl
© a1+ Ox)n Tt
@ Since —1 < Ox < 0, then —0 < 0x,so1— 0 <1+ 0x, hence

(1 . 9)” n+1

(1-0) x|+l < (1 - 0) x|+l ‘X|n+1
n < _— g 0
since |x|" 752 0 when |x| < 1. O
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Taylor’s theorem

Newton's binomial formula

Theorem
If « € R\ N and |x| <1 then

14 x)° _1+ ala—1) (a—n+1)Xn‘
(

This is called Newton’s binomial formula.

Recall

For n € N we have

n\ n! ~n(n—=1)-...-(n—k+1)
(k) ~ kl(n—k)! k! ‘

v
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Proof 1/4

Proof. Let let f(x) = (1 + x)“ and note that

FO(x)=a(a—1) ... (@ —n+1)x*".

@ Suppose first that 0 < x < 1.
Using the Lagrange remainder formula we have

_a(a_l)""'(a_n) n+1 a—n+1
rn(x) = (" 1) x"1(1 + x0) :
Claim
For |x| < 1 we have
im Oé(Oé—l)'...'(Od—n)Xn+1 _o.
n—00 (n+1)!
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Proof 2/4. Proof of the Claim.

@ To prove the claim it suffices to use the following fact:

Fact
lim dnt1 =g<1l1 = lim a, =0
n—oo | ap n—o00
with a, = —a(a—(ln);l")(ﬁ—”)xnﬂ_ Then
ant1|  Ja(a—1)-...-(a—n—1)x""? (n+1)!
an | (n+2)! ala—1)-...-(a—n+1)x"t1
a—n—1
= n+ 2 X n—od |X| < 1

@ Thus ry(x) 7=z 0 if we show that (1 + 0x)* "1 is bounded.
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Proof 3/4

@ Indeed, assuming that 0 < x < 1 we see
(I1+60x)""<1,
@ For o« > 0 we have
1< (1+60x)" <(1+x)* <29,
@ For o < 0 we have

2°<(14x)*<(1+x0)<1

Gathering all together we conclude that (1 + x)®*~"~! as desired.
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Proof 4/4

@ Now we assume that —1 < x < 0. Using the Cauchy remainder
formula we have

ala—1)-...- (o —
(n+1)!

As before we show that (1 — 6)(1 4 6x)*~"~! is bounded.

@ Since —1 < x < 0 then 1 +6x > 1 — 6 and consequently

(1—06)"

(L+6x)"

ra(x) = NP1 )(1 4+ )

(1-60)" < (1—6)"(1+06x)" = <1

@ For a <1 we have

1<(1+x0)° < (14X
@ For o > 1 we have

1+x)*t<@+6x)1<1

and we are done. OJ
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Taylor’s theorem

A function which does not have power series representation

Let

_x% .
F(x) = e if x# 0,
0 if x=0.

@ It is not difficult to see that f is infinitely many times differentiable
for any x € R.
@ Moreover,
f(M(©0)=0 forany n>0

and f(x) # 0.

@ Thus we see

0 F(k)
0# F(x)# > f kl(o)xk =0.
k=0 '
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Applications of Calculus

Bernoulli's inequality: general form

Bernoulli's inequality: general form
For x > —1 and x # 0 we have

@ (I1+x)*>1+axifa>1lora<0,
@ 1+x)*<l4+axif0<a<l

Proof. Applying Taylor's formula with the Lagrange remainder for
f(x) = (1 + x)* we obtain

ala—1)(1+ HX)O‘_ZXz'

(1+x)*=1+ax+ >
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Proof

@ Fora > 1 or o < 0 we have
ala —1)(1 + 0x)>2

5 > 0.

@ For 0 < a < 1 we have
afa —1)(1 + 6x)>—2
2
o Consequently, for & > 1 or < 0 we obtain
(@ —1)(1+6x)>2
2
@ Similarly, for 0 < a < 1, we obtain
(o —1)(1 4 6x)>2
2
This completes the proof. []
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l—l—ax—i—a x2 > 1+ xa.

1+ax+a x2 > 1+ xa.




Applications of Calculus

Proposition

Proposition

For x > 0 one has

X< 2x <log(x+1) <
—— og\ X X.
x+1 x+2 &

Proof. Let f(x) = x — log(1 + x), then

f’(O):l—X+1>0 — x>0

thus f is increasing for x > 0. Hence f(x) > f(0) for x > 0, so
log(1 + x) < x.
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Applications of Calculus

Proof
We now consider
2
h(x) = log(1 + x) — le for x>0
Note that h(0) = 0 and
X2
H(x)= ————5>0 for x>0

(x +1)(x+2)2

Thus h is increasing for x > 0 and
h(x) > h(0) = 0.

Consequently
X

>
x+2 x+41
for x > 0 as desired. ]
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Applications of Calculus

2 2x
Graph of the function log(x + 1) — =5
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Application

Application

. 1 1 1
lim [ —+ +...+ = log 2.

n—soco\n n+1 2n

Proof. Note that

1 1 1
<|og<1+)< for n>1
n

n+1 n
upon taking x = 1 in 1 < log(1l + x) < x. Consequently
Iog<2n+1> <1+1~|—...+1<Iog<2n>.
n n n+1 2n n—1
Thus ) ) )
n|LrT;O<n+n+1+...+2,7>:|og2. O
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Applications of Calculus

Inequalities between weighted means

Theorem

If x1,...,xx >0and ay,...,a, >0 and ijzlogzl, then

XX <oaxy 4.4 k.

Proof. Let f(x) = log(x) and note that

1 -1

f'(x) = and f’(x) = 7 < 0.

Thus f”(x) < 0 for all x > 0 which means that f is concave. In other
words, for all x1,...,xx > 0 and a1, ..., a, > 0 obeying condition
a1+ ...+ ag =1, we have

f(Oé1X1 + ...+ aka) > Ozlf(Xl) + ...+ akf(xk).
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Proof

Consequently, we have

k k
log(x;® - ... x*) = ZO(J' log(x;) < log Zong-
j=1 j=1
if and only if
k
x{“-...-x,fkgxaw. O
j=1
Za

(MATH 311, Section 4, FALL 2022) Lesson 23 December 2, 2022 20/26



Corollary

Corollary

pr,q>Osatisfy%—|—%zland x,y > 0, then

1 1
xy < =xP 4+ —y9.
p q

1

Proof. If suffices to apply the previous result with a3 = %, Q=g and
x1 = xP, xop = y9, then we obtain
1 1 1 1
Xylel/ple/qgfxl—l—fxzzfxp—l—fyq. O
p q p
Remark
The inequality above is the key in the proof of Holder's inequality. J
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S e i R e |
Fibonacci sequence

Fibonacci sequence

The Fibonacci sequence (f,),cn is defined by
fo=0, A=1,

fop=fo1+Ffo for n>2.

Example
h=0+1=1,
=1+1=2,
fp=1+2=3,
fs=2+3=05,

fo=8, f;=13, f3=21.
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Applications of the power series

Formula for (f,),en - discussion 1/4

o Consider

oo oo
Z fox" = x+ Z(fn—l + fn—Z)Xn
n=0 n=2

o0 o0
=X+ x g froix" 1 4 X2 g frox"2
n=2 n=2

n=0
= (x4 x?) Z fax" + x.
n=0

@ Denoting F(x) = > 7, fx" we have
F(x) = x + F(x)(x + x%),

SO
X

F(x) =

11— x—x2’
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Applications of the power series

Formula for (f,),en - discussion 2/4

@ Then
1—x—x%=—(x+¢)(x + ),
where \f f
1+ +v5 1—-+5
b= Y=
@ Then
X B A B

F(x)=—

which is equivalent to

o) (xt9) xto xto

—x = A(x + 1) + B(x + ¢).
@ Hence
_ ¢ _1+Vh o W 145
V5 2V5 ] V5 2V5
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Applications of the power series

Formula for (f,),en - discussion 3/4

e So

A= 75 (v -+ te)

@ Recall that for [x| < 1 we have

1 o
1—x an'
n=0

@ Therefore
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Applications of the power series

Formula for (f,),en - discussion 4/4

@ Finally, we have

i fox"= F(x)
n=0

_ X _ 1 Y ¢
1—x—x2\/§<x+w_x+¢>

(S o) S

n=0 n=0 n=0

(6]

@ Thus the formula for (f,),cn is given by

()
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