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Taylor’s theorem

Theorem

Theorem (Taylor’s expansion formula)

Suppose that f : [a, b]→ R is n-times continuously differentiable on [a, b]
and f (n+1) exists in the open interval (a, b). For any x , x0 ∈ [a, b] and
p > 0 there exists θ ∈ (0, 1) such that

f (x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)k + rn(x),

where rn(x) is the Schlömlich–Roche remainder function defined by

rn(x) =
f (n+1)(x0 + θ(x − x0))

n!p
(1− θ)n+1−p(x − x0)n+1.
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Taylor’s theorem

Corollary

Under the assumptions of the previous theorem.

Lagrange remainder

If p = n + 1 we obtain the Taylor formula with the Lagrange remainder:

rn(x) =
f (n+1)(x0 + θ(x − x0))

(n + 1)!
(x − x0)n+1.

Cauchy remainder

If p = 1 we obtain the Taylor formula with the Cauchy remainder:

rn(x) =
f (n+1)(x0 + θ(x − x0))

n!
(1− θ)n(x − x0)n+1.
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Taylor’s theorem

Power series expansion for the logarithm

Theorem

For |x | < 1 we have

log(1 + x) =
∞∑
k=1

(−1)k+1

k
xk .

Proof. Note that (log(x + 1))′ = 1
x+1 and

(log(x + 1))′′ =

(
1

x + 1

)′
= − 1

(1 + x)2
,

(log(x + 1))′′′ =

(
= − 1

(1 + x)2

)
=

2

(1 + x)3
,

(log(x + 1))(4) =

(
2

(1 + x)3

)′
= − 6

(1 + x)4
= − 3!

(1 + x)4
.
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Taylor’s theorem

Proof 1/2

Inductively, we have

(log(1 + x))(n) = (−1)n+1 (n − 1)!

(x + 1)n
.

We use the Taylor expansion formula at x0 = 0 then

log(1 + x) =
n∑

k=0

f (k)(0)

k!
xk + rn(x) =

n∑
k=0

(−1)k+1

k
xk + rn(x),

since

f (0)(0) = log(1) = 0,

f (k)(0) = (−1)k+1(k − 1)!.

(MATH 311, Section 4, FALL 2022) Lesson 23 December 2, 2022 5 / 26



Taylor’s theorem

Proof 2/2

If 0 ≤ x < 1 we use Lagrange’s reminder. Then for some 0 < θ < 1,

|rn(x)| =

∣∣∣∣∣ f (n)(θx)

(n + 1)!
xn+1

∣∣∣∣∣ =
n!

(n + 1)!(1 + θx)n
xn+1 ≤ 1

n + 1
−−−→n→∞ 0.

If −1 < x < 0 we use Cauchy’s remainder. Then for some 0 < θ < 1,

|rn(x)| =

∣∣∣∣∣ f (n+1)(x0 + θ(x − x0))

n!
(1− θ)n(x − x0)n+1

∣∣∣∣∣
=

∣∣∣∣ n!

n!(1 + θx)n+1
(1− θ)nxn+1

∣∣∣∣ .
Since −1 < θx < 0, then −θ < θx , so 1− θ < 1 + θx , hence

|rn(x)| ≤ (1− θ)n

(1 + θx)n+1
|x |n+1 ≤ (1− θ)n

(1− θ)n+1
|x |n+1 =

|x |n+1

1− θ
−−−→n→∞ 0

since |x |n −−−→n→∞ 0 when |x | < 1.
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Taylor’s theorem

Newton’s binomial formula

Theorem

If α ∈ R \ N and |x | < 1 then

(1 + x)α = 1 +
∞∑
n=1

α(α− 1) · . . . · (α− n + 1)

n!︸ ︷︷ ︸
(αn)

xn.

This is called Newton’s binomial formula.

Recall

For n ∈ N we have(
n

k

)
=

n!

k!(n − k)!
=

n(n − 1) · . . . · (n − k + 1)

k!
.
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Taylor’s theorem

Proof 1/4

Proof. Let let f (x) = (1 + x)α and note that

f (n)(x) = α(α− 1) · . . . · (α− n + 1)xα−n.

Suppose first that 0 < x < 1.
Using the Lagrange remainder formula we have

rn(x) =
α(α− 1) · . . . · (α− n)

(n + 1)!
xn+1(1 + xθ)α−n+1.

Claim

For |x | < 1 we have

lim
n→∞

α(α− 1) · . . . · (α− n)

(n + 1)!
xn+1 = 0.
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Taylor’s theorem

Proof 2/4. Proof of the Claim.

To prove the claim it suffices to use the following fact:

Fact

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = q < 1 =⇒ lim
n→∞

an = 0

with an = α(α−1)·...·(α−n)
(n+1)! xn+1. Then∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣α(α− 1) · . . . · (α− n − 1)xn+2

(n + 2)!

(n + 1)!

α(α− 1) · . . . · (α− n + 1)xn+1

∣∣∣∣
=

∣∣∣∣α− n − 1

n + 2
x

∣∣∣∣ −−−→n→∞ |x | < 1.

Thus rn(x) −−−→n→∞ 0 if we show that (1 + θx)α−n−1 is bounded.
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Taylor’s theorem

Proof 3/4

Indeed, assuming that 0 < x < 1 we see

(1 + θx)−n ≤ 1,

For α ≥ 0 we have

1 ≤ (1 + θx)α ≤ (1 + x)α ≤ 2α,

For α < 0 we have

2α ≤ (1 + x)α ≤ (1 + xθ)α ≤ 1

Gathering all together we conclude that (1 + θx)α−n−1 as desired.
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Taylor’s theorem

Proof 4/4

Now we assume that −1 < x < 0. Using the Cauchy remainder
formula we have

rn(x) =
α(α− 1) · . . . · (α− n)

(n + 1)!
xn+1(1− θ)n(1 + θx)α−n−1.

As before we show that (1− θ)(1 + θx)α−n−1 is bounded.
Since −1 < x < 0 then 1 + θx > 1− θ and consequently

(1− θ)n ≤ (1− θ)n(1 + θx)−n =
(1− θ)n

(1 + θx)n
< 1.

For α ≤ 1 we have

1 ≤ (1 + xθ)α−1 ≤ (1 + x)α−1.

For α ≥ 1 we have

(1 + x)α−1 ≤ (1 + θx)α−1 ≤ 1

and we are done.
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Taylor’s theorem

A function which does not have power series representation

Let

f (x) =

{
e−

1
x2 if x 6= 0,

0 if x = 0.

It is not difficult to see that f is infinitely many times differentiable
for any x ∈ R.

Moreover,
f (n)(0) = 0 for any n ≥ 0

and f (x) 6= 0.

Thus we see

0 6= f (x) 6=
∞∑
k=0

f (k)(0)

k!
xk = 0.
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Applications of Calculus

Bernoulli’s inequality: general form

Bernoulli’s inequality: general form

For x > −1 and x 6= 0 we have

(a) (1 + x)α > 1 + αx if α > 1 or α < 0,

(b) (1 + x)α < 1 + αx if 0 < α < 1.

Proof. Applying Taylor’s formula with the Lagrange remainder for
f (x) = (1 + x)α we obtain

(1 + x)α = 1 + αx +
α(α− 1)(1 + θx)α−2

2
x2.
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Applications of Calculus

Proof

For α > 1 or α < 0 we have

α(α− 1)(1 + θx)α−2

2
> 0.

For 0 < α < 1 we have

α(α− 1)(1 + θx)α−2

2
< 0.

Consequently, for α > 1 or α < 0 we obtain

1 + αx +
α(α− 1)(1 + θx)α−2

2
x2 > 1 + xα.

Similarly, for 0 < α < 1, we obtain

1 + αx +
α(α− 1)(1 + θx)α−2

2
x2 > 1 + xα.

This completes the proof.
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Applications of Calculus

Proposition

Proposition

For x > 0 one has

x

x + 1
<

2x

x + 2
≤ log(x + 1) < x .

Proof. Let f (x) = x − log(1 + x), then

f (0) = 0,

f ′(0) = 1− 1

x + 1
> 0 ⇐⇒ x > 0

thus f is increasing for x > 0. Hence f (x) > f (0) for x > 0, so

log(1 + x) < x .
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Applications of Calculus

Proof

We now consider

h(x) = log(1 + x)− 2x

x + 1
for x > 0.

Note that h(0) = 0 and

h′(x) =
x2

(x + 1)(x + 2)2
> 0 for x > 0.

Thus h is increasing for x > 0 and

h(x) > h(0) = 0.

Consequently

log(1 + x) >
2x

x + 2
>

x

x + 1

for x > 0 as desired.
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Applications of Calculus

Graph of the function log(x + 1)− 2x
x+2
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Applications of Calculus

Application

Application

lim
n→∞

(
1

n
+

1

n + 1
+ . . .+

1

2n

)
= log 2.

Proof. Note that

1

n + 1
< log

(
1 +

1

n

)
<

1

n
for n > 1

upon taking x = 1
n in x

x+1 < log(1 + x) < x . Consequently

log

(
2n + 1

n

)
<

1

n
+

1

n + 1
+ . . .+

1

2n
< log

(
2n

n − 1

)
.

Thus

lim
n→∞

(
1

n
+

1

n + 1
+ . . .+

1

2n

)
= log 2.
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Applications of Calculus

Inequalities between weighted means

Theorem

If x1, . . . , xk > 0 and α1, . . . , αk > 0 and
∑k

j=1 αj = 1, then

xα1
1 · . . . · x

αk
k ≤ α1x1 + . . .+ αkxk .

Proof. Let f (x) = log(x) and note that

f ′(x) =
1

x
and f ′′(x) =

−1

x2
< 0.

Thus f ′′(x) < 0 for all x > 0 which means that f is concave. In other
words, for all x1, . . . , xk > 0 and α1, . . . , αk > 0 obeying condition
α1 + . . .+ αk = 1, we have

f (α1x1 + . . .+ αkxk) ≥ α1f (x1) + . . .+ αk f (xk).
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Applications of Calculus

Proof

Consequently, we have

log(xα1
1 · . . . · x

αk
k ) =

k∑
j=1

αj log(xj) ≤ log

 k∑
j=1

αjxj


if and only if

xα1
1 · . . . · x

αk
k ≤

k∑
j=1

αjxj .
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Applications of Calculus

Corollary

Corollary

If p, q > 0 satisfy 1
p + 1

q = 1 and x , y > 0, then

xy ≤ 1

p
xp +

1

q
yq.

Proof. If suffices to apply the previous result with α1 = 1
p , α2 = 1

q and
x1 = xp, x2 = yq, then we obtain

xy = x
1/p
1 x

1/q
2 ≤ 1

p
x1 +

1

q
x2 =

1

p
xp +

1

q
yq.

Remark

The inequality above is the key in the proof of Hölder’s inequality.
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Applications of the power series

Fibonacci sequence

Fibonacci sequence

The Fibonacci sequence (fn)n∈N is defined by

f0 = 0, f1 = 1,

fn = fn−1 + fn−2 for n ≥ 2.

Example

f2 = 0 + 1 = 1,

f3 = 1 + 1 = 2,

f4 = 1 + 2 = 3,

f5 = 2 + 3 = 5,

f6 = 8, f7 = 13, f8 = 21.
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Applications of the power series

Formula for (fn)n∈N - discussion 1/4

Consider
∞∑
n=0

fnx
n = x +

∞∑
n=2

(fn−1 + fn−2)xn

= x + x
∞∑
n=2

fn−1x
n−1 + x2

∞∑
n=2

fn−2x
n−2

= (x + x2)
n=0∑
n=0

fnx
n + x .

Denoting F (x) =
∑∞

n=0 fnx
n we have

F (x) = x + F (x)(x + x2),

so
F (x) =

x

1− x − x2
.
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Applications of the power series

Formula for (fn)n∈N - discussion 2/4

Then
1− x − x2 = −(x + φ)(x + ψ),

where

φ =
1 +
√

5

2
, ψ =

1−
√

5

2
.

Then

F (x) = − x

(x + φ)(x + ψ)
=

A

x + φ
+

B

x + ψ
,

which is equivalent to

−x = A(x + ψ) + B(x + φ).

Hence

A =
−φ√

5
=

1 +
√

5

2
√

5
, B =

ψ√
5

=
1−
√

5

2
√

5
.
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Applications of the power series

Formula for (fn)n∈N - discussion 3/4

So

F (x) =
1√
5

(
ψ

x + ψ
− φ

x + φ

)
.

Recall that for |x | < 1 we have

1

1− x
=
∞∑
n=0

xn.

Therefore
ψ

x + ψ
=

1

1 + x
ψ

=
1

1− xφ
=
∞∑
n=0

φnxn,

φ

x + φ
=
∞∑
n=0

ψnxn.
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Applications of the power series

Formula for (fn)n∈N - discussion 4/4

Finally, we have

∞∑
n=0

fnx
n= F (x)

=
x

1− x − x2
=

1√
5

(
ψ

x + ψ
− φ

x + φ

)
=

1√
5

( ∞∑
n=0

φnxn −
∞∑
n=0

ψnx2

)
=
∞∑
n=0

1√
5

(φn − ψn)xn.

Thus the formula for (fn)n∈N is given by

fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.
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