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Trigonometric functions: sine and cosine

Discussion

Suppose that two functions f , g : R→ R obeying the following condition

(∗) f ′ = g , g ′ = −f , f (0) = 0, g(0) = 1 exist.

We will show that they are determined uniquely. Note that

f 2(x) + g2(x) = 1.

Indeed, differentiating f 2 + g2 we obtain

(f 2 + g2)′(x) = 2(f ′f + g ′g)(x) = 2(fg − fg) = 0.

Hence f 2(x) + g2(x) = C , but f (0) = 0 and g(0) = 1, so C = 1.
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Trigonometric functions: sine and cosine

Proof of the uniqueness 1/2

Suppose that there are two functions f1, g1 : R→ R obeying

f ′1 = g1, g ′1 = −f1, f1(0) = 0, g1(0) = 1.

Our aim is to show that f = f1 and g = g1.

Note that

(fg1 − f1g)′ = f ′g1 + fg ′1 − f ′1g − f1g ′ = gg1 − ff1 − gg1 + f1f = 0,

and

(ff1 + gg1)′ = f ′f1 + ff ′1 + g ′g1 + gg ′1 = gf1 + fg1 − fg1 − gf1 = 0.

Hence fg1 − f1g and ff1 + gg1 are constant functions and we have{
fg1 − f1g = a | · f
ff1 + g1g = b | · g ,

⇐⇒

{
f 2g1 − ff1g = af

ff1g + g1g2 = bg .
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Trigonometric functions: sine and cosine

Proof of the uniqueness 2/2

Adding the equations and using f 2 + g2 ≡ 1 we get g1 = af + bg .

Similarly{
fg1 − f1g = a | · g
ff1 + g1g = b | · f ,

⇐⇒

{
fgg1 − f1g2 = ag

f 2f1 + g1gf = bf .

Subtracting the equations and using f 2 + g2 ≡ 1 we get f1 = bf − ag .

Hence {
g1 = af + bg

f1 = bf − ag .
(∗)

Using f (0) = f1(0) = 0 and g(0) = g1(0) = 1 we get a = 0, b = 1
and, finally, we conclude that f = f1, g = g1.
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Trigonometric functions: sine and cosine

Heuristics 1/2

If functions f , g : R→ R obeying the following condition

(∗) f ′ = g , g ′ = −f , f (0) = 0, g(0) = 1

exist, then they are differentiable infinitely many times.

Since f ′ = g and g ′ = −f , thus

f ′′ = −f , g ′′ = −g , f ′′′ = −g , g ′′′ = f , f (4) = f , g (4) = g .

Using Taylor’s formula with Lagrange’s remainder at x0 = 0 one has

f (x) =
n∑

k=0

f (k)(0)

k!
xk + rn(x), where rn(x) =

f (n+1)(θx)

(n + 1)!
xn+1.

g(x) =
n∑

k=0

g (k)(0)

k!
xk + r̃n(x), where r̃n(x) =

g (n+1)(θx)

(n + 1)!
xn+1.
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Trigonometric functions: sine and cosine

Heuristics 2/2

Since f 2(x) + g2(x) = 1, so |f (x)|, |g(x)| ≤ 1, and consequently

|f (n)(x)| ≤ 1 and |g (n)(x)| ≤ 1,

which implies

|rn(x)| ≤ 1

(n + 1)!
|x |n+1 and |r̃n(x)| ≤ 1

(n + 1)!
|x |n+1.

This in turn implies that

lim
n→∞

|rn(x)| = 0 and lim
n→∞

|r̃n(x)| = 0.

Therefore if f , g exist then they are defined as the power series

f (x) =
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1, and g(x) =

∞∑
n=0

(−1)n

(2n)!
x2n.
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Trigonometric functions: sine and cosine

Proof of the existence 1/3

It make sense to define

S(x) =
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1, and C (x) =

∞∑
n=0

(−1)n

(2n)!
x2n.

We show that

S ′(x) = C (x), C ′(x) = −S(x), S(0) = 0, C (0) = 1.

Obviously we have S(0) = 0 and C (0) = 1. We only have to show
that S ′(x) = C (x) and C ′(x) = −S(x).
Indeed, to prove S ′(x) = C (x), note that

1

h
(S(x + h)− S(x)) =

1

h

( ∞∑
n=0

(−1)n

(2n + 1)!
[(x + h)2n+1 − x2n+1]

)

=
1

h

∞∑
n=0

(−1)n

(2n + 1)!

[
2n+1∑
k=0

(
2n + 1

k

)
hkx2n+1−k − x2n+1

]
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Trigonometric functions: sine and cosine

Proof of the existence 2/3

Thus

1

h
(S(x + h)− S(x))

=
1

h

∞∑
n=0

(−1)n

(2n + 1)!

2n+1∑
k=1

(
2n + 1

k

)
hkx2n+1−k

=
1

h

∞∑
n=0

(−1)n

(2n + 1)!

[
x2n(2n + 1) +

2n+1∑
k=2

(
2n + 1

k

)
hkx2n+1−k

]

=
∞∑
n=0

(−1)n

(2n)!
x2n

︸ ︷︷ ︸
C(x)

+
∞∑
n=0

(−1)n

(2n + 1)!

2n+1∑
k=2

(
2n + 1

k

)
hk−1x2n+1−k

︸ ︷︷ ︸
R(x)

.
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Trigonometric functions: sine and cosine

Proof of the existence 3/3

Recalling that

R(x) =
∞∑
n=0

(−1)n

(2n + 1)!

2n+1∑
k=2

(
2n + 1

k

)
hk−1x2n+1−k

Then if |h| ≤ 1
2 one has

|R(x)| ≤ |h|
∞∑
n=1

1

(2n + 1)!

2n+1∑
k=0

(
2n + 1

k

)
|x |2n+1−k

≤ |h|
∞∑
n=1

(|x |+ 1)2n+1

(2n + 1)!
−−−→n→∞ 0.

Hence S ′(x) = C (x). Similarly C ′(x) = −S(x).
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Trigonometric functions: sine and cosine

Sine and Cosine functions

Theorem

There are unique functions S ,C : R→ R such that

S ′(x) = C (x), C ′(x) = −S(x), S(0) = 0, C (0) = 1.

In other words, the functions S ,C satisfy condition (*), and they are given
explicitly by the following formulas

S(x) =
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1, and C (x) =

∞∑
n=0

(−1)n

(2n)!
x2n.

They will be called respectively sine and cosine functions and will be
denoted by sin(x) = S(x) and cos(x) = C (x).
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Properties of sin(x) and cos(x)

Properties of sin(x) and cos(x)

Properties

We have the following properties

(a) sin(x)2 + cos(x)2 = 1,

(b) sin(−x) = − sin(x),

(c) cos(−x) = cos(x),

(d) sin(x + y) = sin(x) cos(y) + cos(x) sin(y),

(e) cos(x + y) = cos(x) cos(y)− sin(x) sin(y).

Proof of (a). It is clear since sin(x) = S(x) and cos(x) = C (x), and
S(0) = 0, C (0) = 1 and

S ′(x) = C (x) and C ′(x) = −S(x).

Thus
S(x)2 + C (x)2 = 1.
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Properties of sin(x) and cos(x)

Proof of (b) and (c)

Proof of (b).

sin(−x) =
∞∑
n=0

(−1)n

(2n + 1)!
(−x)2n+1 = − sin(x).

Proof of (c).

cos(−x) =
∞∑
n=0

(−1)n

(2n)!
(−x)2n = cos(x).
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Properties of sin(x) and cos(x)

Proof of (d) and (e)

Proof of (d) and (e). Taking

f (x) = sin(x), g(x) = cos(x),

and
f1(x) = sin(x + y), g1(x) = cos(x + y),

for a fixed y > 0. Proceeding as in the proof of the uniqueness we obtain

{
g1 = af + bg

f1 = bf − ag .
(∗)

Solving this equation one sees that

a = − sin(y) and b = cos(y).

This completes the proof of the theorem.
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Properties of sin(x) and cos(x)

Observations

Observation 1

Since (sin(x))2 + (cos(x))2 = 1 thus

| sin(x)| ≤ 1,

| cos(x)| ≤ 1.

Observations

The derivative of sin(x) at 0 is equal to 1, and the derivative is
continuous. Thus it follows that the derivative of sin(x) (which is
cos(x)) is positive for all numbers in some open interval containing 0.

Hence sin(x) is strictly increasing in such an interval and strictly
positive for all x > 0 in such an interval.
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Properties of sin(x) and cos(x)

Observations

Observation 3

We shall prove that there is x0 > 0 such that sin(x0) = 1, which
means that cos(x0) = 0. Suppose that no such number exists.

Since cos(x) is continuous, we conclude that cos(x) cannot be
negative for any value of x > 0 by the intermediate value theorem.

Hence sin(x) is strictly increasing for all x > 0 and cos(x) is strictly
decreasing for all x > 0. Let a > 0. Then

0 < cos(2a) = cos(a)2 − sin(a)2 < cos2(a).

By induction

0 < cos(2na) < (cos(a))2
n

for all n ∈ N.

Hence limn→∞ cos(2na) = 0 since 0 < cos(a) < 1.
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Properties of sin(x) and cos(x)

Observations

Observation 3

Since cos(x) is strictly decreasing for x > 0 it follows that cos(x)
approaches to 0 as x →∞, and hence limx→∞ sin(x) = 1.

In particular, there is b > 0 so that

cos(b) <
1

4
and sin(b) >

1

2
.

Then

0 < cos(2b) = cos2(b)− sin2(b) <
1

16
− 1

4
< − 3

16
< 0,

which is a contradiction.

Thus there is x0 > 0 so that cos(x0) = 0.
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Properties of sin(x) and cos(x)

Observations

Observation 4

By Observation 3

A = {x > 0 : cos(x) = 0} = {x > 0 : | sin(x)| = 1} 6= ∅.

Let c = inf A. By the continuity of cos(x) we see that

cos(c) = 0 and | sin(c)| = 1.

and c > 0.

We define π = 2c thus c = π
2 .

Since c = inf A thus there is no 0 ≤ x < π
2 so that

cos(x) = 0 and | sin(x)| = 1.
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Properties of sin(x) and cos(x)

Observations

Observation 4

By the intermediate value theorem if follows that for 0 ≤ x < π
2

we have
0 ≤ sin(x) < 1 and 0 < cos(x) ≤ 1

and
sin

π

2
= 1, cos

π

2
= 0.

Consequently

sin(π) = 0 and cos(π) = −1,

sin(2π) = 0 and cos(2π) = 1.
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Properties of sin(x) and cos(x)

Observations

Observation 5

For all x ∈ R one has

(a) sin(x + π
2 ) = cos(x),

(b) cos(x + π
2 ) = − sin(x),

(c) sin(x + π) = − sin(x),

(d) cos(x + π) = − cos(x),

(e) sin(x + 2π) = sin(x),

(f) cos(x + 2π) = cos(x).

The derivative of the sin(x) is positive for 0 < x < π
2 . Hence sin(x) is

strictly increasing on 0 ≤ x ≤ π
2 .

Similarly cos(x) is strictly decreasing on this interval. For π
2 ≤ x ≤ π

we use the relation sin(x) = cos(x − π
2 ).

For π to 2π we use sin(x) = − sin(x − π).
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Properties of sin(x) and cos(x)

Graphs of sin(x) and cos(x)

Now we can sketch the graphs of sin(x) and cos(x):
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Properties of sin(x) and cos(x)

Periodic functions

Periodic function

A function φ : R→ R is periodic and a number s > 0 is called a period
of φ if

φ(x + s) = φ(x) for all x ∈ R.

We see that 2π is a period for sin(x) and cos(x).

If s1, s2 are periods for φ then s1 + s2 is a period as well. Indeed,

φ(x) = φ(x + s1) = φ(x + s1 + s2).

If s > 0 is a period then −s is a period as well

φ(x) = φ(x − s + s) = φ(x − s).
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Properties of sin(x) and cos(x)

Periods of sin(x) and cos(x)

Let s be a period for sin(x), then {m ∈ N : 2πm ≤ s} 6= ∅. Let

n = max{m ∈ N : 2πm ≤ s}.

Consider t = s − 2πn, then 0 ≤ t < 2π, t is also a period of sin(x).
We must have

sin(t + 0) = sin(t) = 0, cos(0 + t) = cos(0) = 1.

From the known values of sin(x) and cos(x) for 0 ≤ x ≤ 2π it may
only happen when t = 0.

Thus s = 2πn.
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Properties of sin(x) and cos(x)

Theorem

Theorem

Given a pair of numbers a, b such that a2 + b2 = 1, there exists a unique
number 0 ≤ t ≤ 2π such that a = sin(t), b = cos(t).

Proof. We consider four different cases according to a, b are ≥ 0 or ≤ 0.
In any case |a| ≤ 1 and |b| ≤ 1.

Consider for instance the case

−1 ≤ a ≤ 0 and 0 ≤ b ≤ 1.

By the intermediate value theorem, there is exactly one value of t
such that π

2 ≤ t ≤ π and cos(t) = a.

We have b2 = 1− a2 = 1− cos2(t) = sin2(t).

Since π
2 ≤ t ≤ π then sin(t) ≥ 0 so b and sin(t) ≥ 0 and b = sin(t).

Other cases follows similarly.
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Properties of sin(x) and cos(x)

Limit limh→0
sin(h)

h

Theorem

We have

lim
h→0

sin(h)

h
= 0.

Proof. We have

lim
h→0

sin(h)

h
= lim

h→0

sin(h)− sin(0)

h
= sin′(0) = cos(0) = 1.
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