

Lesson 24

Power series of trigonometric functions done right

MATH 311, Section 4, FALL 2022

December 6, 2022

Discussion

Suppose that two functions $f, g : \mathbb{R} \rightarrow \mathbb{R}$ obeying the following condition

$$(*) \quad f' = g, \quad g' = -f, \quad f(0) = 0, \quad g(0) = 1 \quad \text{exist.}$$

- We will show that they are **determined uniquely**. Note that

$$f^2(x) + g^2(x) = 1.$$

- Indeed, differentiating $f^2 + g^2$ we obtain

$$(f^2 + g^2)'(x) = 2(f'f + g'g)(x) = 2(fg - fg) = 0.$$

- Hence $f^2(x) + g^2(x) = C$, but $f(0) = 0$ and $g(0) = 1$, so $C = 1$.

Proof of the uniqueness 1/2

- Suppose that there are two functions $f_1, g_1 : \mathbb{R} \rightarrow \mathbb{R}$ obeying

$$f'_1 = g_1, \quad g'_1 = -f_1, \quad f_1(0) = 0, \quad g_1(0) = 1.$$

- Our aim is to show that $f = f_1$ and $g = g_1$.
- Note that

$$(fg_1 - f_1g)' = f'g_1 + fg'_1 - f'_1g - f_1g' = gg_1 - ff_1 - gg_1 + f_1f = 0,$$

and

$$(ff_1 + gg_1)' = f'f_1 + ff'_1 + g'g_1 + gg'_1 = gf_1 + fg_1 - fg_1 - gf_1 = 0.$$

- Hence $fg_1 - f_1g$ and $ff_1 + gg_1$ are constant functions and we have

$$\left\{ \begin{array}{l} fg_1 - f_1g = a \\ ff_1 + gg_1 = b \end{array} \right. \quad \left| \begin{array}{l} \cdot f \\ \cdot g \end{array} \right. \iff \left\{ \begin{array}{l} f^2g_1 - ff_1g = af \\ ff_1g + gg^2 = bg. \end{array} \right.$$

Proof of the uniqueness 2/2

- Adding the equations and using $f^2 + g^2 \equiv 1$ we get $g_1 = af + bg$.
- Similarly

$$\begin{cases} fg_1 - f_1g = a & | \cdot g \\ ff_1 + g_1g = b & | \cdot f, \end{cases} \iff \begin{cases} fgg_1 - f_1g^2 = ag \\ f^2f_1 + g_1gf = bf. \end{cases}$$

- Subtracting the equations and using $f^2 + g^2 \equiv 1$ we get $f_1 = bf - ag$.
- Hence

$$\begin{cases} g_1 = af + bg \\ f_1 = bf - ag. \end{cases} \quad (*)$$

Using $f(0) = f_1(0) = 0$ and $g(0) = g_1(0) = 1$ we get $a = 0$, $b = 1$ and, finally, we conclude that $f = f_1$, $g = g_1$. □

Heuristics 1/2

- If functions $f, g : \mathbb{R} \rightarrow \mathbb{R}$ obeying the following condition

$$(*) \quad f' = g, \quad g' = -f, \quad f(0) = 0, \quad g(0) = 1$$

exist, then they are differentiable infinitely many times.

- Since $f' = g$ and $g' = -f$, thus

$$f'' = -f, \quad g'' = -g, \quad f''' = -g, \quad g''' = f, \quad f^{(4)} = f, \quad g^{(4)} = g.$$

- Using Taylor's formula with Lagrange's remainder at $x_0 = 0$ one has

$$f(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k + r_n(x), \quad \text{where} \quad r_n(x) = \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}.$$

$$g(x) = \sum_{k=0}^n \frac{g^{(k)}(0)}{k!} x^k + \tilde{r}_n(x), \quad \text{where} \quad \tilde{r}_n(x) = \frac{g^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}.$$

Heuristics 2/2

- Since $f^2(x) + g^2(x) = 1$, so $|f(x)|, |g(x)| \leq 1$, and consequently

$$|f^{(n)}(x)| \leq 1 \quad \text{and} \quad |g^{(n)}(x)| \leq 1,$$

which implies

$$|r_n(x)| \leq \frac{1}{(n+1)!} |x|^{n+1} \quad \text{and} \quad |\tilde{r}_n(x)| \leq \frac{1}{(n+1)!} |x|^{n+1}.$$

- This in turn implies that

$$\lim_{n \rightarrow \infty} |r_n(x)| = 0 \quad \text{and} \quad \lim_{n \rightarrow \infty} |\tilde{r}_n(x)| = 0.$$

- Therefore if f, g exist then they are defined as the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad \text{and} \quad g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

Proof of the existence 1/3

- It make sense to define

$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad \text{and} \quad C(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

- We show that

$$S'(x) = C(x), \quad C'(x) = -S(x), \quad S(0) = 0, \quad C(0) = 1.$$

- Obviously we have $S(0) = 0$ and $C(0) = 1$. We only have to show that $S'(x) = C(x)$ and $C'(x) = -S(x)$.
- Indeed, to prove $S'(x) = C(x)$, note that

$$\begin{aligned} \frac{1}{h}(S(x+h) - S(x)) &= \frac{1}{h} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} [(x+h)^{2n+1} - x^{2n+1}] \right) \\ &= \frac{1}{h} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left[\sum_{k=0}^{2n+1} \binom{2n+1}{k} h^k x^{2n+1-k} - x^{2n+1} \right] \end{aligned}$$

Proof of the existence 2/3

- Thus

$$\begin{aligned}
 & \frac{1}{h}(S(x+h) - S(x)) \\
 &= \frac{1}{h} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \sum_{k=1}^{2n+1} \binom{2n+1}{k} h^k x^{2n+1-k} \\
 &= \frac{1}{h} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left[x^{2n}(2n+1) + \sum_{k=2}^{2n+1} \binom{2n+1}{k} h^k x^{2n+1-k} \right] \\
 &= \underbrace{\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}}_{C(x)} + \underbrace{\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \sum_{k=2}^{2n+1} \binom{2n+1}{k} h^{k-1} x^{2n+1-k}}_{R(x)}.
 \end{aligned}$$

Proof of the existence 3/3

- Recalling that

$$R(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \sum_{k=2}^{2n+1} \binom{2n+1}{k} h^{k-1} x^{2n+1-k}$$

- Then if $|h| \leq \frac{1}{2}$ one has

$$\begin{aligned} |R(x)| &\leq |h| \sum_{n=1}^{\infty} \frac{1}{(2n+1)!} \sum_{k=0}^{2n+1} \binom{2n+1}{k} |x|^{2n+1-k} \\ &\leq |h| \sum_{n=1}^{\infty} \frac{(|x|+1)^{2n+1}}{(2n+1)!} \xrightarrow{n \rightarrow \infty} 0. \end{aligned}$$

- Hence $S'(x) = C(x)$. Similarly $C'(x) = -S(x)$.

Sine and Cosine functions

Theorem

There are unique functions $S, C : \mathbb{R} \rightarrow \mathbb{R}$ such that

$$S'(x) = C(x), \quad C'(x) = -S(x), \quad S(0) = 0, \quad C(0) = 1.$$

In other words, the functions S, C satisfy condition $(*)$, and they are given explicitly by the following formulas

$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad \text{and} \quad C(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

They will be called respectively **sine** and **cosine** functions and will be denoted by $\sin(x) = S(x)$ and $\cos(x) = C(x)$.

Properties of $\sin(x)$ and $\cos(x)$

Properties

We have the following properties

- (a) $\sin(x)^2 + \cos(x)^2 = 1$,
- (b) $\sin(-x) = -\sin(x)$,
- (c) $\cos(-x) = \cos(x)$,
- (d) $\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$,
- (e) $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$.

Proof of (a). It is clear since $\sin(x) = S(x)$ and $\cos(x) = C(x)$, and $S(0) = 0$, $C(0) = 1$ and

$$S'(x) = C(x) \quad \text{and} \quad C'(x) = -S(x).$$

Thus

$$S(x)^2 + C(x)^2 = 1.$$

Proof of (b) and (c)

Proof of (b).

$$\sin(-x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (-x)^{2n+1} = -\sin(x).$$

Proof of (c).

$$\cos(-x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (-x)^{2n} = \cos(x).$$

Proof of (d) and (e)

Proof of (d) and (e). Taking

$$f(x) = \sin(x), \quad g(x) = \cos(x),$$

and

$$f_1(x) = \sin(x + y), \quad g_1(x) = \cos(x + y),$$

for a fixed $y > 0$. Proceeding as in the proof of the uniqueness we obtain

$$\begin{cases} g_1 = af + bg \\ f_1 = bf - ag. \end{cases} \quad (*)$$

Solving this equation one sees that

$$a = -\sin(y) \quad \text{and} \quad b = \cos(y).$$

This completes the proof of the theorem. □

Observations

Observation 1

- Since $(\sin(x))^2 + (\cos(x))^2 = 1$ thus

$$|\sin(x)| \leq 1,$$
$$|\cos(x)| \leq 1.$$

Observations

- The derivative of $\sin(x)$ at 0 is equal to 1, and the derivative is continuous. Thus it follows that the derivative of $\sin(x)$ (which is $\cos(x)$) is positive for all numbers in some open interval containing 0.
- Hence $\sin(x)$ is strictly increasing in such an interval and strictly positive for all $x > 0$ in such an interval.

Observations

Observation 3

- We shall prove that there is $x_0 > 0$ such that $\sin(x_0) = 1$, which means that $\cos(x_0) = 0$. **Suppose that no such number exists.**
- Since $\cos(x)$ is continuous, we conclude that $\cos(x)$ cannot be negative for any value of $x > 0$ by the intermediate value theorem.
- Hence $\sin(x)$ is strictly increasing for all $x > 0$ and $\cos(x)$ is strictly decreasing for all $x > 0$. Let $a > 0$. Then

$$0 < \cos(2a) = \cos(a)^2 - \sin(a)^2 < \cos^2(a).$$

- By induction

$$0 < \cos(2^n a) < (\cos(a))^{2^n} \quad \text{for all } n \in \mathbb{N}.$$

- Hence $\lim_{n \rightarrow \infty} \cos(2^n a) = 0$ since $0 < \cos(a) < 1$.

Observations

Observation 3

- Since $\cos(x)$ is strictly decreasing for $x > 0$ it follows that $\cos(x)$ approaches to 0 as $x \rightarrow \infty$, and hence $\lim_{x \rightarrow \infty} \sin(x) = 1$.
- In particular, there is $b > 0$ so that

$$\cos(b) < \frac{1}{4} \quad \text{and} \quad \sin(b) > \frac{1}{2}.$$

- Then

$$0 < \cos(2b) = \cos^2(b) - \sin^2(b) < \frac{1}{16} - \frac{1}{4} < -\frac{3}{16} < 0,$$

which is a contradiction.

- **Thus there is $x_0 > 0$ so that $\cos(x_0) = 0$.**

Observations

Observation 4

- By Observation 3

$$A = \{x > 0 : \cos(x) = 0\} = \{x > 0 : |\sin(x)| = 1\} \neq \emptyset.$$

- Let $c = \inf A$. By the continuity of $\cos(x)$ we see that

$$\cos(c) = 0 \quad \text{and} \quad |\sin(c)| = 1.$$

and $c > 0$.

- We define $\pi = 2c$ thus $c = \frac{\pi}{2}$.
- Since $c = \inf A$ thus there is no $0 \leq x < \frac{\pi}{2}$ so that

$$\cos(x) = 0 \quad \text{and} \quad |\sin(x)| = 1.$$

Observations

Observation 4

- By **the intermediate value theorem** it follows that for $0 \leq x < \frac{\pi}{2}$ we have

$$0 \leq \sin(x) < 1 \quad \text{and} \quad 0 < \cos(x) \leq 1$$

and

$$\sin \frac{\pi}{2} = 1, \quad \cos \frac{\pi}{2} = 0.$$

- Consequently

$$\sin(\pi) = 0 \quad \text{and} \quad \cos(\pi) = -1,$$

$$\sin(2\pi) = 0 \quad \text{and} \quad \cos(2\pi) = 1.$$

Observations

Observation 5

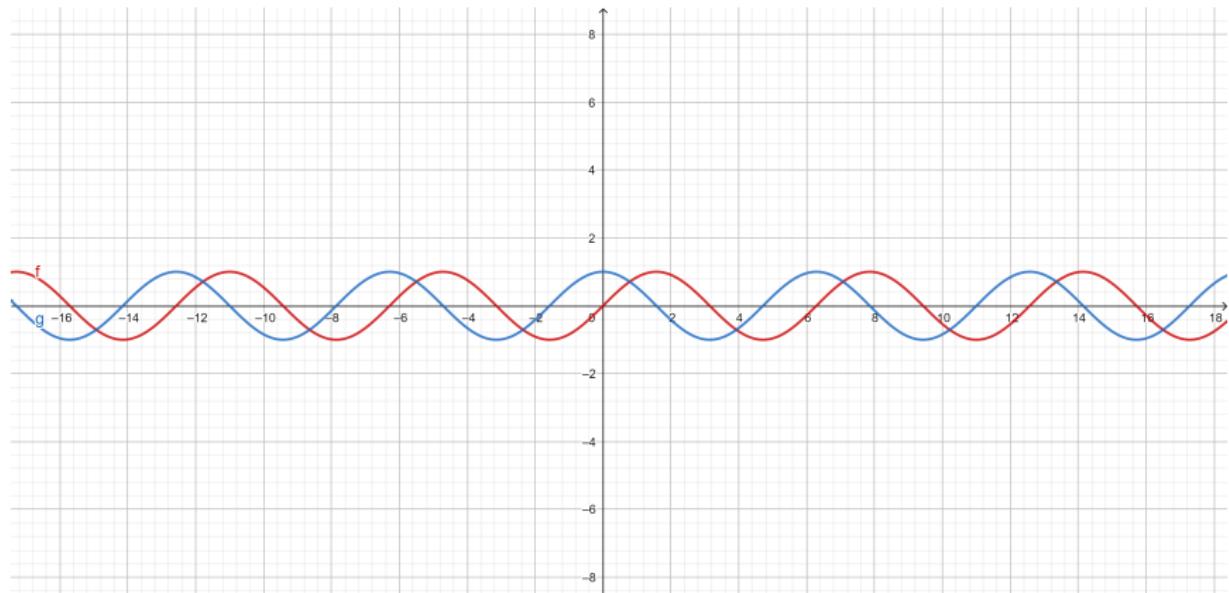
For all $x \in \mathbb{R}$ one has

- (a) $\sin(x + \frac{\pi}{2}) = \cos(x)$,
- (b) $\cos(x + \frac{\pi}{2}) = -\sin(x)$,
- (c) $\sin(x + \pi) = -\sin(x)$,
- (d) $\cos(x + \pi) = -\cos(x)$,
- (e) $\sin(x + 2\pi) = \sin(x)$,
- (f) $\cos(x + 2\pi) = \cos(x)$.

- The derivative of the $\sin(x)$ is positive for $0 < x < \frac{\pi}{2}$. Hence $\sin(x)$ is strictly increasing on $0 \leq x \leq \frac{\pi}{2}$.
- Similarly $\cos(x)$ is strictly decreasing on this interval. For $\frac{\pi}{2} \leq x \leq \pi$ we use the relation $\sin(x) = \cos(x - \frac{\pi}{2})$.
- For π to 2π we use $\sin(x) = -\sin(x - \pi)$.

Graphs of $\sin(x)$ and $\cos(x)$

Now we can sketch the graphs of $\sin(x)$ and $\cos(x)$:



Periodic functions

Periodic function

A function $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is **periodic** and a number $s > 0$ is called **a period of ϕ** if

$$\phi(x + s) = \phi(x) \quad \text{for all } x \in \mathbb{R}.$$

- We see that 2π is a period for $\sin(x)$ and $\cos(x)$.
- If s_1, s_2 are periods for ϕ then $s_1 + s_2$ is a period as well. Indeed,

$$\phi(x) = \phi(x + s_1) = \phi(x + s_1 + s_2).$$

- If $s > 0$ is a period then $-s$ is a period as well

$$\phi(x) = \phi(x - s + s) = \phi(x - s).$$

Periods of $\sin(x)$ and $\cos(x)$

- Let s be a period for $\sin(x)$, then $\{m \in \mathbb{N} : 2\pi m \leq s\} \neq \emptyset$. Let

$$n = \max\{m \in \mathbb{N} : 2\pi m \leq s\}.$$

- Consider $t = s - 2\pi n$, then $0 \leq t < 2\pi$, t is also a period of $\sin(x)$. We must have

$$\sin(t + 0) = \sin(t) = 0, \quad \cos(0 + t) = \cos(0) = 1.$$

- From the known values of $\sin(x)$ and $\cos(x)$ for $0 \leq x \leq 2\pi$ it may only happen when $t = 0$.
- Thus $s = 2\pi n$.

Theorem

Theorem

Given a pair of numbers a, b such that $a^2 + b^2 = 1$, there exists a unique number $0 \leq t \leq 2\pi$ such that $a = \sin(t)$, $b = \cos(t)$.

Proof. We consider four different cases according to a, b are ≥ 0 or ≤ 0 .
In any case $|a| \leq 1$ and $|b| \leq 1$.

- Consider for instance the case

$$-1 \leq a \leq 0 \quad \text{and} \quad 0 \leq b \leq 1.$$

- By **the intermediate value theorem**, there is exactly one value of t such that $\frac{\pi}{2} \leq t \leq \pi$ and $\cos(t) = a$.
- We have $b^2 = 1 - a^2 = 1 - \cos^2(t) = \sin^2(t)$.
- Since $\frac{\pi}{2} \leq t \leq \pi$ then $\sin(t) \geq 0$ so b and $\sin(t) \geq 0$ and $b = \sin(t)$.
Other cases follows similarly. □

Limit $\lim_{h \rightarrow 0} \frac{\sin(h)}{h}$

Theorem

We have

$$\lim_{h \rightarrow 0} \frac{\sin(h)}{h} = 0.$$

Proof. We have

$$\lim_{h \rightarrow 0} \frac{\sin(h)}{h} = \lim_{h \rightarrow 0} \frac{\sin(h) - \sin(0)}{h} = \sin'(0) = \cos(0) = 1.$$

□