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Partitions

Partition

Let [a, b] be a given interval. By a partition P of [a, b] we mean a finite
set of points

a = x0 ≤ x1 ≤ . . . ≤ xn−1 ≤ xn = b.

Example 1

If [a, b] = [0, 1], then {0, 12 , 1} is a partition.

Example 2

If [a, b] = [0, 1], then {
k

n
: k = 0, 1, . . . , n

}
is a partition for every n ∈ N.
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Upper and lower Riemann sums

Suppose f : [a, b]→ R is a bounded function. Corresponding to each
partition P of [a, b] we put

mi = inf
x∈[xi−1,xi ]

f (x), and Mi = sup
x∈[xi−1,xi ]

f (x),

∆xi = xi − xi−1.

Upper and lower Riemann sums

We define

U(P, f ) =
n∑

i=1

Mi∆xi ,

L(P, f ) =
n∑

i=1

mi∆xi .

We always have that L(P, f ) ≤ U(P, f ).
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Examples

Example 1

If f (x) = x and P = {0, 12 , 1}, then

U(P, f ) =
1

2
· 1

2
+ 1 · 1

2
=

3

4
, and L(f , L) = 0 · 1

2
+

1

2
· 1

2
=

1

4
.

Example 2

If f (x) = x2 and

P =

{
k

n
: k = 0, 1, . . . , n

}
,

then

U(P, f ) =
n∑

i=1

1

n

(
i

n

)2

, and L(P, f ) =
n∑

i=1

1

n

(
i − 1

n

)2

.
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Riemann sums - geometric interpretation
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Upper and lower Riemann integral

Upper and lower Riemann integral

We define the upper and lower Riemann integrals of f over [a, b] to be∫ b

a
f (x) dx = sup

P
L(P, f ), and

∫ b

a
f (x) dx = inf

P
U(P, f ),

where the inf and the sup are taken over all partitions P of [a, b].

Riemann integral of f over [a, b]

If the upper and lower integrals are equal, we say that f : [a, b]→ R is
Riemann integrable on [a, b], we write f ∈ R([a, b]) and we denote the
common value (which is called Riemann integral of f over [a, b]) by∫ b

a
f (x) dx =

∫ b

a
f (x) dx =

∫ b

a
f (x) dx .
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Riemann integral is well-defined

Fact

The upper and lower integrals are defined for every bounded function.

Proof. Let

m = inf
x∈[a,b]

f (x),

M = sup
x∈[a,b]

f (x).

Then
m ≤ f (x) ≤ M for all x ∈ [a, b].

Therefore
m(b − a) ≤ L(P, f ) ≤ U(P, f ) ≤ M(b − a)

for every partition P.
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Question of the integrability of f

Example

There is a bounded function f which is not integrable.

Proof. Let us define f on [0, 1] to be

f (x) =

{
1 if x ∈ Q,
0 if x 6∈ Q.

Let us recall

Fact (*)

In any interval [c , d ] such that c < d there is a rational and irrational
number.
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Proof

By the fact (∗), for every partition P of [0, 1], we have

U(P, f ) =
n∑

i=1

Mi∆xi =
n∑

i=1

1 ·∆xi = 1,

L(P, f ) =
n∑

i=1

mi∆xi =
n∑

i=1

0 ·∆xi = 0.

Therefore

∫ b

a
f (x) dx = sup

P
L(P, f ) = 0, and

∫ b

a
f (x) dx = inf

P
U(P, f ) = 1.

Hence
∫ b
a f (x) dx 6=

∫ b
a f (x) dx and f is not integrable.
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Refinements

Refinement

We say that the partition P∗ is a refinement of P if P∗ ⊇ P.

Common refinement

Given two partitions, P1 and P2,we say that P∗ is their common
refinement if

P∗ = P1 ∪ P2.

Example

If [a, b] = [0, 2] and P1 = {0, 12 , 1, 2}, P2 = {0, 14 ,
1
2 ,

3
2 , 2} are partitions,

then their common refinement is

P∗ =

{
0,

1

4
,

1

2
, 1,

3

2
, 2

}
.
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Theorem

Theorem

If P∗ is a refinement of P, then

L(P, f ) ≤ L(P∗, f ),

U(P∗, f ) ≤ U(P, f ).

Proof. We prove the first statement.

Suppose first that P∗ contains just one point more than P. Let this
extra point be x∗, and suppose

xi−1 ≤ x∗ ≤ xi for some i ∈ {1, 2, . . . , n}.
Let

mi = inf
x∈[xi−1,xi ]

f (x),

w1 = inf
x∈[xi−1,x∗]

f (x), and w2 = inf
x∈[x∗,xi ]

f (x)
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Proof

Then w1 ≥ mi and w2 ≥ mi and consequently

L(P∗, f )− L(P, f ) = w1(x∗ − xi−1) + w2(xi − x∗)−mi (xi − xi−1)

= (w1 −mi )(x∗ − xi−1) + (w2 −mi )(xi − x∗) ≥ 0.

Finally, if P∗ contains k points more than P, we repeat this reasoning
k times. The proof of the second statement is analogous.

Claim (*)

For two partitions P1,P2 of an interval [a, b] one has

L(P1, f ) ≤ U(P2, f ).

Proof. Let P∗ = P1 ∪ P2 be the common refinement of two partitions P1

and P2. By the previous theorem

L(P1, f ) ≤ L(P∗, f ) ≤ U(P∗, f ) ≤ U(P2, f ).
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Theorem

Theorem

For any bounded function f : [a, b]→ R we have∫ b

a
f (x)dx ≤

∫ b

a
f (x)dx .

Proof. By the Claim (*) for two partitions P1,P2 of an interval [a, b] one
has

L(P1, f ) ≤ U(P2, f ).

Then ∫ b

a
f (x) dx = sup

P1

L(P1, f ) ≤ inf
P2

U(P2, f ) =

∫ b

a
f (x) dx ,

This completes the proof of the theorem.
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Theorem

Theorem

A function f ∈ R([a, b]) if and only if the following condition (R) holds:

For every ε > 0 there is a partition P of [a, b] such that

U(P, f )− L(P, f ) < ε. (R)

Proof. By the previous theorem, for every partition P we have

L(P, f ) ≤
∫ b

a
f (x)dx ≤

∫ b

a
f (x)dx ≤ U(P, f ).

Thus the condition (R) implies

0 ≤
∫ b

a
f (x)dx −

∫ b

a
f (x)dx ≤ U(P, f )− L(P, f ) < ε.

Since ε > 0 is arbitrary
∫ b
a f (x)dx =

∫ b
a f (x)dx , hence f ∈ R(α).
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Proof

Conversely, suppose that f ∈ R(α). Then for every ε > 0 there are
partitions P1 and P2 such that∫ b

a
f (x)dx − L(P1, f ) <

ε

2
and U(P2, f )−

∫ b

a
f (x)dx <

ε

2
.

We choose P to be the common refinement of P1 and P2. Then

U(P, f ) ≤ U(P2, f )

≤
∫ b

a
f (x)dx +

ε

2
=

∫ b

a
f (x)dx +

ε

2
=

∫ b

a
f (x)dx +

ε

2

≤ L(P1, f ) + ε ≤ L(P, f ) + ε.

This proves condition (R) and completes the proof of the theorem.
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Theorem

Theorem (**)

If condition (R) holds for P = {x0, . . . , xn} and if si , ti are arbitrary points
in [xi−1, xi ], then

n∑
i=1

|f (si )− f (ti )|∆xi < ε.

Proof. Note that f (si ), f (ti ) lies in [mi ,Mi ], hence by the triangle
inequality

|f (ti )− f (si )| ≤ Mi −mi︸ ︷︷ ︸
length

.

Hence
n∑

i=1

|f (si )− f (ti )|∆xi ≤
n∑

i=1

(Mi −mi )∆xi =

∫ b

a
f (x)dx −

∫ b

a
f (x)dx < ε.

This completes the proof.
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Theorem

Theorem

If f ∈ R([a, b]) and the hypotheses of (∗∗) hold, then∣∣∣∣∣
n∑

i=1

f (ti )∆xi −
∫ b

a
f (x) dx

∣∣∣∣∣ < ε.

Proof. It is enough to note that

L(P, f ) ≤
n∑

i=1

f (ti )∆xi ≤ U(P, f ),

L(P, f ) ≤
∫ b

a
f (x) dx ≤ U(P, f ).
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Riemann integrability for continuous functions

Theorem

If f is continuous on [a, b] then f ∈ R([a, b]).

Proof. Let ε > 0 be given. Choose η > 0 such that η(b − a) < ε. Recall
that if f is continuous on [a, b], then it is also uniformly continuous.

Hence, there is δ > 0 such that |f (x)− f (t)| < η if |t − x | < δ.

In particular, that means that Mi −mi < η for every partition such
that ∆xi < δ.

Hence,

U(P, f )− L(P, f ) =
n∑

i=1

(Mi −mi )∆xi ≤ η
n∑

i=1

∆xi = η(b − a) < ε.

The proof is completed.

(MATH 311, Section 4, FALL 2022) Lesson 25 December 9, 2022 18 / 20



Riemann integrability for monotonic functions

Theorem

If f : [a, b]→ R is monotonic, then f ∈ R([a, b]).

Proof. Let ε > 0 be given. For n ∈ N choose a partition P such that
∆xi = b−a

n . We suppose that f is monotonically increasing. Then

Mi −mi = f (xi )− f (xi−1).

Hence, if n is taken large enough, we obtain

U(P, f )− L(P, f ) =
n∑

i=1

(Mi −mi )∆xi

=
b − a

n

n∑
i=1

f (xi )− f (xi−1) =
b − a

n
(f (b)− f (a)) < ε,

and we are done, the proof is analogous in the other case.
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Example

Example 1

Let

f (x) =


x for x ∈ [0, 1],

x2 + 5 for x ∈ (1, 2],

x3 + 9 for x ∈ (3, 4].

Prove that f is Riemann integrable on [0, 4].

Solution. f is increasing, so f is Riemann integrable by the previous
theorem.
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