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Ordered sets

Order on set

Order

Let S be a set. The order on S is the relation, denoted by <, with the
following properties:

1 If x , y ∈ S , then one and only one of the following statements is
true:

(A) x < y ,
(B) y < x (equivalently x > y),
(C) x = y .

2 If x , y , z ∈ S , x < y and y < z , then x < z .

Notation: x ≤ y means (x = y or x < y). Equivalently, x ≤ y is the
negation of x > y .
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Ordered sets

Ordered set

Ordered set

Ordered set is the set S on which the order is defined.

Example

The set of rational numbers Q is ordered set if < is the usual order on
numbers. We say that r < s for r , s ∈ Q iff s − r > 0.
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Ordered sets

Upper and lower bound

Upper bound

Suppose that S is an ordered set and E ⊆ S . If there is β ∈ S such that
α ≤ β for all α ∈ E , then E is bounded above and β is called the upper
bound of E .

Lower bound

Suppose that S is an ordered set and E ⊆ S . If there is β ∈ S such that
β ≤ α for all α ∈ E , then E is bounded below and β is called the lower
bound of E .
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Ordered sets

supE

supE

Suppose that S is an ordered set, E ⊂ S , and E is bounded from above.
Suppose that there exists α ∈ S with the following properties

(A) α is a upper bound of E ,

(B) if γ < α, then γ is not an upper bound of E (equivalently, there is
x ∈ E such that γ < x ≤ α).

Then α is called a least upper bound or supremum of E . We write

α = supE .
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Ordered sets

inf E

inf E

Suppose that S is an ordered set, E ⊂ S , and E is bounded from below.
Suppose that there exists α ∈ S with the following properties

(A) α is a lower bound of E ,

(B) if γ > α, then γ is not a lower bound of E (equivalently, there is
x ∈ E such that α ≤ x < γ).

Then α is called the greatest lower bound or infimum of E . We write

α = inf E .
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Ordered sets

Examples

Example 1

Let
A = {p ∈ Q : p > 0, p2 < 2},

B = {p ∈ Q : p > 0, p2 > 2}.

The set A is bounded from above. In fact, the upper bounds of A are
exactly the members of B. Since B contains no smallest member, it has
no least upper bound in Q.

Example 2

Let

E =

{
1

n
: n ∈ N

}
.

Then supE = 1 and 1 ∈ E , inf E = 0 and 0 6∈ E .
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Axiom of completeness

Least–upper–bound property

Least–upper–bound property

An ordered set S is said to have least–upper–bound property if the
supremum supE exists in S for all nonempty subsets E ⊆ S that are
bounded above.

Example 1

Let
A = {p ∈ Q : p > 0, p2 < 2}.

The previous slide shows that Q has not least–upper–bound property.
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Axiom of completeness

Theorem

Theorem

Suppose that S is an ordered set with the least–upper–bound property.
Let ∅ 6= B ⊆ S be bounded below. Let L be the set of all lower bounds of
B. Then α = sup L exists in S and α = inf B.
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Axiom of completeness

Proof

Proof. Let
L = {y ∈ S : y ≤ x for all x ∈ B}.

We see that L 6= ∅, since B is bounded below. Every x ∈ B is an upper
bound of L. Thus L is bounded above and consequently the
least–upper–bound property implies that α = sup L exists in S .

We show that α ∈ L. It suffices to prove that α ≤ x for all x ∈ B.
Suppose for a contradiction that there is γ ∈ B such that γ < α. By the
definition of supremum γ is not an upper bound. Therefore, there exists
y ∈ L such that γ < y ≤ α, so y ≤ x for every x ∈ B, and hence γ < x for
all x ∈ B. In particular, we obtain γ < γ since γ ∈ B, which is impossible!

Now we show that α = inf B. We have shown that α ∈ L, which means
that α is a lower bound of B, since α ≤ x for all x ∈ B. If α < β, then
β 6∈ L since α is an upper bound of L. If β 6∈ L then there exists x ∈ B
such that β > x ≥ α. This proves that α = inf B.
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Axiom of completeness

supE and inf E - example

Example

Find supE and inf E , where

E = {(−1)n : n ∈ N0} .

Solution. We have (−1)n = 1 for even n and (−1)n = −1 for odd n.
Hence

E = {−1, 1}

supE = maxE = 1,

inf E = minE = −1.
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Axiom of completeness

supE and inf E - example

Example

Find supE and inf E , where

E =

{
1

n2 + 1
: n ∈ N0

}
.

Solution. Note that for all n ∈ N0 we have

1

n2 + 1
≤ 1

1

and for n = 0 we have 1
n2+1

= 1
1 . Hence supE = 1.

On the other hand, 1
n2+1

> 0 for all n ∈ N0 and 1
n2+1

is small for large n
(it will be formalized later). Hence inf E = 0 6∈ E .
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Axiom of completeness

supE and inf E - example

Example

Find supE and inf E , where

E =

{
nm

n2 + m2
: n,m ∈ N

}
.

Solution. Note that nm
n2+m2 > 0 and for m = 1 we have

nm

n2 + m2
=

n

1 + n2
<

1

n
.

Hence inf E = 0. On the other hand, for all m, n ∈ N we have

mn

m2 + n2
≤ 1

2
⇐⇒ 2nm ≤ m2 + n2 ⇐⇒ 0 ≤ (m − n)2,

so mn
m2+n2

≤ 1
2 for all m, n ∈ N. Moreover, mn

m2+n2
= 1

2 for n = m = 1.

Hence supE = 1
2 .
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Fields

Field 1/2

Field

A field F is a set with two operations called addition (+) and
multiplication (( · ) or without symbol), which satisfies the following field
axioms (A), (M), and (D).

Addition axioms (A)

(A1) if x , y ∈ F, then x + y ∈ F,

(A2) addition is commutative, i.e. x + y = y + x for all x , y ∈ F,

(A3) addition is associative, i.e. (x + y) + z = x + (y + z) for all
x , y , z ∈ F,

(A4) F contains the element 0 such that x + 0 = x for all x ∈ F,

(A5) to every x ∈ F corresponds an element (−x) ∈ F such that

x + (−x) = 0.
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Fields

Field 2/2

Multiplication axioms (M)

(M1) if x , y ∈ F, then their product xy ∈ F,

(M2) multiplication is commutative, i.e. xy = yx for all x , y ∈ F,

(M3) addition is associative, i.e. (xy)z = x(yz) for all x , y , z ∈ F,

(M4) F contains the element 1 6= 0 such that 1x = x for all x ∈ F,

(M5) if x ∈ F and x 6= 0 then there exists an element 1
x ∈ F such that

x · 1

x
= 1.

Distributive law (D)

(D1) x(y + z) = xy + xz holds for all x , y , z ∈ F.
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Fields

Field properties - addition

Example 1

Q is a field.

Example 2

Z is not a field, because (M5) does not hold, i.e. there is no x ∈ Z such
that 2x = 1.

Properties of addition

The axioms of addition imply the following:

(A) if x + y = x + z , then y = z ,

(B) if x = x + y , then y = 0,

(C) if x + y = 0, then y = (−x),

(D) (−(−x)) = x .
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Fields

Proofs

Proof of (A).

y

(A4)︷︸︸︷
= 0 + y

(A5)︷︸︸︷
= (−x + x) + y

(A3)︷︸︸︷
= −x + (x + y)

= −x + (x + z)

(A3)︷︸︸︷
= (−x + x) + z

(A5)︷︸︸︷
= 0 + z

(A4)︷︸︸︷
= z .

To prove (B), we take z = 0 in (A).

To prove (C) we take z = −x in (A).

Since x + (−x) = 0, so by (C) with −x in place of x we get

(−(−x)) = x .
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Fields

Field properties - multiplication

Properties of multiplication

The axioms of multiplication imply the following:

(A) if x 6= 0 and xy = xz , then y = z ,

(B) if x 6= 0 and x = xy , then y = 1,

(C) if x 6= 0 and xy = 1, then y = 1
x ,

(D) if x 6= 0, then 1
1
x

= x

Exercise.
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Fields

Further field properties

Properties of fields

The field axioms imply the following:

1 x · 0 = 0 for all x ∈ F,

2 if x 6= 0 and y 6= 0, then xy 6= 0,

3 (−x)y = −(xy) = x(−y) for all x , y ∈ F,

4 (−x)(−y) = xy for all x , y ∈ F.

For the proof of (A), we use (D1):

0x + 0x

(D1)︷︸︸︷
= (0 + 0)x = 0x .

Thus we must have 0x = 0.
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Fields

Proofs

To prove (B) assume x , y 6= 0, but xy = 0. Then

1 =
1

x

1

y
xy =

1

x

1

y
0 = 0,

but 0 6= 1.

To prove (C) we write

(−x)y + xy

(D1)︷︸︸︷
= (−x + x)y = 0y = 0,

thus (−x)y = −(xy).

To prove (D) we use (C ) and we write

(−x)(−y) = −(x(−y)) = −(−(xy)) = xy .
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Fields

Ordered field

Ordered field

An ordered field is a field with is also an ordered set such that

(A) if x , y , z ∈ F and y < z , then x + y < x + z ,

(B) xy > 0 if x > 0 and y > 0.

Positive element

The element x ∈ F is called positive if x > 0.

Negative element

The element x ∈ F is called negative if x < 0.

Example

Q is an ordered field.
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Fields

Properties of ordered fields

Proposition

The following are true in every ordered field:

(A) if x > 0, then −x < 0 and vice versa,

(B) if x > 0 and y < z , then xy < xz ,

(C) if x < 0 and y < z , then xy > xz ,

(D) if x 6= 0, then x · x = x2 > 0. In particular, 1 > 0,

(E) if 0 < x < y , then 0 < 1
y <

1
x .
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Fields

Proofs 1/2

Proof of (A). If x > 0, then 0 = −x + x > −x + 0, thus −x < 0. If
x < 0, then 0 = −x + x < −x + 0, so that −x > 0.

Proof of (B). Since z > y we have z − y > y − y = 0, hence
x(z − y) > 0 if x > 0. Thus

xz = x(z − y) + xy > 0 + xy = xy .

Proof of (C). By (A),(B), and (−x)y = −(xy) = x(−y):

−(x(z − y)) = (−x)(z − y) > 0

so that x(z − y) < 0 hence xz < xy .
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Fields

Proofs 2/2

Proof of (D). If x > 0 we get x2 > 0. If x < 0, then −x > 0, hence
(−x)2 > 0, but x2 = (−x)2. We also see 12 = 1, thus 1 > 0.

Proof of (E). If y > 0 and v ≤ 0, then yv ≤ 0. But 1
y · y = 1 > 0, thus

1
y > 0. In similar way 1

x > 0. Multiplying the inequality x < y by
(
1
x

) (
1
y

)
we have

0 <
1

y
<

1

x
.

(MATH 311, Section 04, FALL 2022) Lesson 3 September 13, 2022 24 / 26



Fields

The real field

Subfield

We say A is subfield of B if A is a field and every element of A belongs to
B.

Theorem

There exists an ordered field which has the least-upper-bound property and
contains Q as a subfield. It will be called the real field and denoted by R.
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Axiom of completeness

Axiom of completeness

We will say that the set of real numbers R satisfies axiom of completeness.

Axiom of completeness

Every non-empty set E of real numbers R that is bounded above has a
least upper bound. In other words, supE exists in R.
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