

## Lesson 4

Consequences of the Axiom of Completeness,  
Decimals, Extended Real Number System

MATH 311, Section 04, FALL 2022

September 16, 2022

# Archimedean property of $\mathbb{Q}$

## Archimedean property on $\mathbb{Q}$

- ① Given any number  $x \in \mathbb{Q}$  there exists  $n \in \mathbb{N}$  satisfying

$$n > x.$$

- ② Given any rational number  $y > 0$  there exists an  $n \in \mathbb{N}$  satisfying

$$\frac{1}{n} < y.$$

# Proof

The second property follows from the first one by taking  $x = \frac{1}{y}$ . Thus it suffices to prove the first statement. If  $x \in \mathbb{Q}$  and  $x \leq 0$ , then there is nothing to do. Suppose that  $x > 0$ , then  $x = \frac{p}{q}$  for some  $p, q \in \mathbb{N}$ .

Consider the set

$$A = \{n \in \mathbb{N}_0 : n \leq x\}.$$

This set is nonempty since  $x > 0$ . We see that  $m \in A$  iff  $p - qm \geq 0$ .

Consider now the set

$$B = \{p - qn : n \in A\} \subset \mathbb{N}_0, \quad \text{and} \quad B \neq \emptyset.$$

By the well-ordering principle  $B$  contains the smallest element, say  $p - qm_0$  for some  $m_0 \in A$ . Thus for all  $n \in A$  we have

$$p - qm_0 \leq p - qn \iff n \leq m_0 \leq x.$$

Now we see that  $x < m_0 + 1$  has desired property. □

# Example

## Example

Let  $E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \subset \mathbb{Q}$ . Then

$$\sup E = 1 \quad \text{and} \quad 1 \in E,$$

$$\inf E = 0 \quad \text{and} \quad 0 \notin E.$$

- We now show that  $\sup E = 1$ . Of course  $\frac{1}{n} \leq 1$  for all  $n \in \mathbb{N}$  and  $1 \in E$ , which shows that  $\sup E = 1$ .
- To prove that  $\inf E = 0$  we note that  $\frac{1}{n} > 0$  for all  $n \in \mathbb{N}$ . Now take  $x \in \mathbb{Q}$  such that  $x > 0$ . By the Archimedean property we always find  $m \in \mathbb{N}$  such that  $0 < \frac{1}{m} < x$  and we are done.

# Axiom of completeness AoC

Let us recall the axiom of completeness.

## Axiom of completeness AoC

Every non-empty set of real numbers that is bounded above has a least upper bound.

Our goal is to apply the axiom of completeness to study some properties of real numbers.

# Application 1 - nested interval property

## Nested interval property

For each  $n \in \mathbb{N}$ , assume we are given a closed interval

$$I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}.$$

Assume also that  $I_n \supseteq I_{n+1}$  for all  $n \in \mathbb{N}$ . Then the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

has a nonempty intersection, that is

$$\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset.$$

## Proof 1/2



Using **(AoC)** we will produce  $x \in \mathbb{R}$  so that  $x \in I_n$  for every  $n \in \mathbb{N}$ . Then

$$\bigcap_{n \in \mathbb{N}} I_n \supset \{x\} \neq \emptyset.$$

Consider the set  $A = \{a_n : n \in \mathbb{N}\}$  of all left-hand endpoints of the intervals  $I_n$ . Because the intervals are nested one sees that every  $b_n$  serves as an upper bound for  $A$ . Thus by the **(AoC)** we are allowed to write

$$x = \sup A \in \mathbb{R}.$$

The proof will be complete if we show  $x \in I_n$  for all  $n \in \mathbb{N}$ .

## Proof 2/2

Since  $x$  is an upper bound for  $A$  thus

$$a_n \leq x \quad \text{for all } n \in \mathbb{N}.$$

The fact that  $b_n$  is an upper bound for  $A$  and that  $x$  is the least upper bound implies

$$x \leq b_n \quad \text{for all } n \in \mathbb{N}.$$

Thus

$$a_n \leq x \leq b_n$$

for all  $n \in \mathbb{N}$  hence  $x \in I_n$  for all  $n \in \mathbb{N}$  and consequently

$$x \in \bigcap_{n \in \mathbb{N}} I_n.$$



# Application 2 - Archimedean property of $\mathbb{R}$

## Archimedean property

- (i) Given any number  $x \in \mathbb{R}$  there exists  $n \in \mathbb{N}$  satisfying

$$n > x.$$

- (ii) Given any real number  $y > 0$  there exists an  $n \in \mathbb{N}$  satisfying

$$\frac{1}{n} < y.$$

# Proof

**Proof.** Note that (ii) follows from (i) by letting  $x = \frac{1}{y}$ . It suffices to prove (i).

Without loss of generality we can assume that  $x > 0$  and consider

$$A = \{nx : n \in \mathbb{N}\}.$$

Suppose for a contradiction that  $A$  is bounded, i.e. there is  $y \geq 0$  such that  $nx \leq y$  for any  $n \in \mathbb{N}$ . This means that  $y$  is an upper bound for  $A$ .

By the (AoC):

$$\alpha = \sup A \in \mathbb{R}.$$

Since  $x > 0$ ,  $\alpha - x < \alpha$  and  $\alpha - x$  is not upper bound of  $A$ . Thus we find  $m \in \mathbb{N}$  such that

$$\alpha - x < mx \iff \alpha < (m + 1)x.$$

This is contradiction since  $\alpha$  is the supremum of  $A$ .

# Corollary - $\mathbb{Q}$ is dense in $\mathbb{R}$

$\mathbb{Q}$  is dense in  $\mathbb{R}$

If  $x, y \in \mathbb{R}$  and  $x < y$  then there is  $p \in \mathbb{Q}$  such that  $x < p < y$ .

**Proof.** Since  $x < y$ , by **Archimedean property** there is  $n \in \mathbb{N}$  such that

$$n(y - x) > 1.$$

- Then, we apply **Archimedean property** to find  $m_1, m_2 \in \mathbb{Z}$  such that  $m_1 > nx$  and  $m_2 > -nx$ . Then  $-m_2 < nx < m_1$ .
- Hence there is an integer  $m$  with  $-m_2 \leq m \leq m_1$  such that

$$m - 1 \leq nx < m.$$

- We combine these inequalities to get

$$nx < m \leq nx + 1 < ny, \quad \text{so} \quad x < p = \frac{m}{n} < y.$$



# More general

## Theorem 1.4.5

For every real  $x > 0$  and  $n \in \mathbb{N}$  there is a unique real number  $y > 0$  such that

$$y^n = x.$$

**Proof: Uniqueness.** The fact that there exists at most one such  $y$  is clear, since  $0 < y_1 < y_2$  implies

$$y_1^n < y_2^n.$$

Identity  $b^n - a^n$ 

In the proof (in the existence part), we will use the following identity

$$b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-2}b + a^{n-1})$$

which holds for all  $a, b \in \mathbb{R}$  and  $n \in \mathbb{N}$ .

## Proof: 1/3

- **Proof: Existence.** Let

$$E = \{t > 0 : t^n < x\}.$$

- If  $t = \frac{x}{x+1}$ , then  $0 \leq t < 1$  hence

$$t^n \leq t < x$$

thus  $t \in E$  and  $E \neq \emptyset$ .

- If  $t > x + 1$ , then  $t^n > t > x$ , so that  $t \notin E$ . Thus  $x + 1$  is an upper bound of  $E$ .
- By the (AoC) we may write  $y = \sup E \in \mathbb{R}$ . We will show that

$$y^n = x.$$

- It suffices to show that  $y^n < x$  and  $y^n > x$  cannot hold.

Proof: 2/3. Case  $y^n < x$ .

- The identity

$$b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-2}b + a^{n-1})$$

gives

$$b^n - a^n < (b - a)nb^{n-1}$$

if  $0 < a < b$ .

- Assume  $y^n < x$ . Choose  $0 < h < 1$  so that

$$h < \frac{x - y^n}{n(y + 1)^{n-1}}.$$

- Put  $a = y$ ,  $b = y + h$ . Then

$$(y + h)^n - y^n < hn(y + h)^{n-1} < hn(y + 1)^{n-1} < x - y^n.$$

- Thus  $(y + h)^n < x$  and  $y + h \in E$ . Since  $y + h > y$  this contradicts the fact that  $y$  is an upper bound of  $E$ .

Proof: 3/3. Case  $y^n > x$ .

- Assume that  $y^n > x$  and set

$$k = \frac{y^n - x}{ny^{n-1}}.$$

- Then  $0 < k < y$ . If  $t \geq y - k$  we conclude

$$y^n - t^n \leq y^n - (y - k)^n < kny^{n-1} = y^n - x.$$

- Thus  $t^n > x$  and  $t \notin E$ . It follows that  $y - k$  is an upper bound of  $E$ .  
But

$$y - k < y,$$

which contradicts the fact that  $y$  is the least upper bound of  $E$ .

- Hence

$$y^n = x.$$

# Corollary

## Corollary

If  $a, b > 0$  are real numbers and  $n \in \mathbb{N}$ , then

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$

It is a consequence of the uniqueness property in the previous theorem.

$x^y$  for  $x, y \in \mathbb{R}$

Fix  $b > 1$ .

- If  $m, n, p, q \in \mathbb{Z}$ ,  $n, q > 0$  and  $r = \frac{m}{n} = \frac{p}{q}$ , then

$$(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}.$$

- Hence, it makes sense to define  $b^r = (b^m)^{\frac{1}{n}}$ .
- If  $r, s \in \mathbb{Q}$ , then

$$b^{r+s} = b^r b^s.$$

- If  $x \in \mathbb{R}$  define

$$B(x) = \{b^t : t \in \mathbb{Q}, t \leq x\}.$$

- Then  $b^n = \sup B(x)$  when  $r \in \mathbb{Q}$ . Hence, it makes sense to define

$$b^x = \sup B(x)$$

for every  $x \in \mathbb{R}$ .

# Decimals 1/2

Let  $x > 0$  be real. Let  $n_0$  be the largest integer such that  $n_0 \leq x$ .

## Remark

Note that the existence of  $n_0$  follows from the Archimedean property. **Why?**

Then, we define  $n_1$  to be the largest integer such that

$$n_0 + \frac{n_1}{10} \leq x.$$

then, having  $n_0, n_1$ , we define  $n_2$  to be the largest integer such that

$$n_0 + \frac{n_1}{10} + \frac{n_2}{100} \leq x.$$

We continue this procedure...

## Decimals 2/2

Having chosen

$$n_0, n_1, \dots, n_{k-1}$$

let  $n_k$  be the largest integer such that

$$n_0 + \frac{n_1}{10} + \frac{n_2}{10^2} + \dots + \frac{n_k}{10^k} \leq x.$$

Let

$$E = \left\{ n_0 + \frac{n_1}{10} + \frac{n_2}{10^2} + \dots + \frac{n_k}{10^k} : k \in \mathbb{N}_0 \right\}.$$

Then one can show that  $x = \sup E$ .

# Decimal system - example

## Example

Write down  $0,25$  in the form  $\frac{n}{m}$ .

**Solution.** We write

$$0,25 = \frac{2}{10} + \frac{5}{100} = \frac{20}{100} + \frac{5}{100} = \frac{25}{100} = \frac{1}{4}.$$



# Decimal system - example

## Example

Write down  $x = 0,101010101\dots$  in the form  $\frac{n}{m}$ .

**Solution.** Note that

$$10x = 10,10101010\dots,$$

hence

$$10x = 10 + x$$

$$9x = 10 \iff x = \frac{10}{9}.$$



# The extended real number system

## The extended real number system

**The extended real number system** consists of real numbers  $\mathbb{R}$  and **two symbols**  $+\infty$  and  $-\infty$ .

We preserve the original order in  $\mathbb{R}$  and define

$$-\infty < x < +\infty$$

for all  $x \in \mathbb{R}$ .

### Example

If  $E \subseteq \mathbb{R}$ ,  $E \neq \emptyset$  but not bounded then

$$\sup E = +\infty.$$

# Properties of the extended real number system

## Properties

If  $x \in \mathbb{R}$ , then

- A  $x + \infty = \infty, x - \infty = -\infty, \frac{x}{+\infty} = \frac{x}{-\infty} = 0,$
- B if  $x > 0$ , then  $x(+\infty) = +\infty, x(-\infty) = -\infty,$
- C if  $x < 0$ , then  $x(+\infty) = -\infty, x(-\infty) = +\infty.$