

Lesson 8

Countable sets, cardinality continuum

MATH 311, Section 4, FALL 2022

September 30, 2022

Countable set

Countable set

A set X is called **countable (or denumerable)** if

$$\text{card}(X) \leq \text{card}(\mathbb{N}).$$

Example 1

In particular, finite sets are countable and for these sets it is convenient to interpret $\text{card}(X)$ as the number of elements in X :

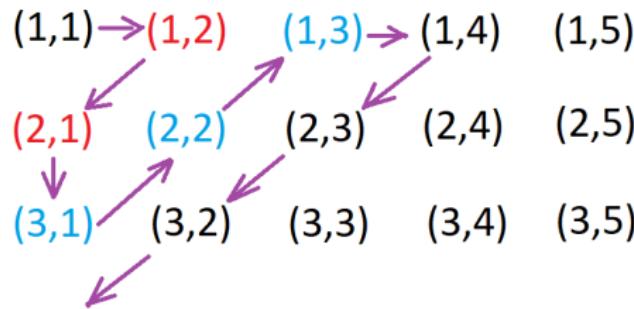
$$\text{card}(X) = n \iff \text{card}(X) = \text{card}(\{1, 2, \dots, n\}).$$

Example 2

If X is countable but not finite, we say that X is **countably infinite**.

Countable sets - example

The set $\mathbb{N} \times \mathbb{N}$ is countable, i.e. $\text{card}(\mathbb{N} \times \mathbb{N}) = \text{card}(\mathbb{N})$. Note that



can be listed as a sequence

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1), (4, 2), ..

establishing a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} .

Proposition

Proposition

- (a) If X and Y are countable, so is $X \times Y$.
- (b) If A is countable and X_α is countable for all $\alpha \in A$, then

$$\bigcup_{\alpha \in A} X_\alpha \text{ is countable.}$$

- (c) If X is countably infinite then $\text{card}(X) = \text{card}(\mathbb{N})$.

Proof of (a). To prove (a) it suffices to show that $\text{card}(\mathbb{N} \times \mathbb{N}) = \text{card}(\mathbb{N})$, but it was shown in the previous example.

Proof of (b). For each $\alpha \in A$ there is a surjection $f_\alpha : \mathbb{N} \rightarrow \mathbb{X}_\alpha$ (here we have used the axiom of choice).

Proof of Proposition 1/2

Then the map $f : \mathbb{N} \times \mathbb{N} \rightarrow \bigcup_{\alpha \in A} X_\alpha$ defined by

$$f(n, \alpha) = f_\alpha(n)$$

is surjective and we are done. Alternatively, to prove

$$\text{card} \left(\bigcup_{\alpha \in A} X_\alpha \right) \leq \text{card} (\mathbb{N}),$$

we can also proceed as follows

$$X_1 = \{x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}, \dots\}$$

$$X_2 = \{x_{2,1}, x_{2,2}, x_{2,3}, x_{2,4}, \dots\}$$

$$X_3 = \{x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}, \dots\}$$

...

$$\bigcup_{j \in \mathbb{N}} X_j = \{x_{1,1}, \textcolor{red}{x_{1,2}}, \textcolor{red}{x_{2,1}}, \textcolor{blue}{x_{1,3}}, \textcolor{blue}{x_{2,2}}, \textcolor{blue}{x_{3,1}}, \dots\}.$$

Proof of Proposition 2/2

Proof of (c). We can assume that X is an infinite subset of \mathbb{N} .

Let $f(1)$ be the smallest element of X and define inductively

$$f(n) = \min \{X \setminus \{f(1), f(2), \dots, f(n-1)\}\}.$$

Then it can be easily verified that f is a bijection from \mathbb{N} to X . □

Corollaries

Corollary

\mathbb{Z} and \mathbb{Q} are countable.

Proof.

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\},$$

- Note that

$$\mathbb{Q} = \bigcup_{n \in \mathbb{N}} \left\{ \frac{m}{n} : m \in \mathbb{Z} \right\}.$$

- Note also that

$$\text{card}(\mathbb{Q}) = \text{card}(\mathbb{N}) = \text{card}(\mathbb{N} \cup \{0\}) = \text{card}(\mathbb{Z}).$$

Countable sets - example

Example

Prove that the following set is countable

$$X = \{(n, m, k) : n, m, k \in \mathbb{N}\}.$$

Solution. Fix $k \in \mathbb{N}$. It is clear that

$$f(n, m) = (n, m, k)$$

is a bijection between $\mathbb{N} \times \mathbb{N}$ and $A_k = \{(n, m, k) : n, m \in \mathbb{N}\}$, so A_k is countable. Then we write

$$X = \bigcup_{k \in \mathbb{N}} A_k$$

and use the previous theorem. □

Countable sets - example

Example

Prove that the set $\mathbb{Q} \times \mathbb{Q}$ is countable.

Solution. Fix $q \in \mathbb{Q}$. It is easy to check that $f(x) = (x, q)$ is bijection between \mathbb{Q} and $A_q = \{(r, q) : r \in \mathbb{Q}\}$. Hence A_q is countable. We write

$$\mathbb{Q} \times \mathbb{Q} = \bigcup_{q \in \mathbb{Q}} A_q$$

and use the previous theorem. □

Proposition

Proposition

$\{0, 1\}^{\mathbb{N}_0}$ is uncountable.

Proof. Suppose that the set $\{0, 1\}^{\mathbb{N}_0}$ is countable, then

$$\{0, 1\}^{\mathbb{N}_0} = \{\alpha_0, \alpha_1, \alpha_2, \dots\}.$$

$$\alpha_0 : \alpha_0(0), \alpha_0(1), \alpha_0(2), \dots$$

$$\alpha_1 : \alpha_1(0), \alpha_1(1), \alpha_1(2), \dots$$

$$\alpha_2 : \alpha_2(0), \alpha_2(1), \alpha_2(2), \dots$$

...

consider a new sequence $\Delta : \mathbb{N}_0 \rightarrow \{0, 1\}$ defined by $\Delta(n) = 1 - \alpha_n(n)$.
 Then $\Delta \neq \alpha_n$ for all $n \in \mathbb{N}_0$, thus $\Delta \notin \{\alpha_n : n \in \mathbb{N}_0\}$, but $\Delta \in \{0, 1\}^{\mathbb{N}_0}$,
 contradiction.

Cardinality continuum

Cardinality continuum

A set X is said to have cardinality **continuum** if

$$\text{card}(X) = \text{card}(\mathbb{R}).$$

We shall write $\text{card}(X) = \mathfrak{c}$ iff $\text{card}(X) = \text{card}(\mathbb{R})$.

Theorem

$$\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}}) = \text{card}(\mathbb{R}).$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}})$: 1/2

We first show that

$$\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}}).$$

Define $F : P(\mathbb{N}) \rightarrow \{0, 1\}^{\mathbb{N}}$ by setting

$$F(A) = \chi_A \in \{0, 1\}^{\mathbb{N}},$$

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Example

If $A = \{1, 2, 3, 5, 7, 9\}$, then χ_A can be identified with the sequence

$$(\underbrace{1}_{1}, \underbrace{1}_{2}, \underbrace{1}_{3}, \underbrace{0}_{4}, \underbrace{1}_{5}, \underbrace{0}_{6}, \underbrace{1}_{7}, \underbrace{0}_{8}, \underbrace{1}_{9}, \underbrace{0}_{10}, \underbrace{0}_{11}, \dots)$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}})$: 2/2

Our aim is to show that F is a bijection.

- Let $A, B \subseteq \mathbb{N}$ be such that $A \neq B$, then we show that $F(A) \neq F(B)$.
Since $A \neq B$ (wlog) there exists $x_0 \in A \setminus B$, thus

$$1 = \chi_A(x_0) \neq \chi_B(x_0) = 0 \iff F(A) \neq F(B),$$

which proves that $F : P(\mathbb{N}) \rightarrow \{0, 1\}^{\mathbb{N}}$ is injective.

- To show that F is surjective take $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}}$ and consider

$$E = \{n \in \mathbb{N} : \alpha_n = 1\}.$$

then

$$F(E) = \chi_E = \alpha \iff 1 = \alpha_n = \chi_E(n) = 1.$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R})$: 1/4

It remains to prove that

$$\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R}).$$

We first show that $\text{card}(P(\mathbb{N})) \leq \text{card}(\mathbb{R})$.

Definition

We will use the convention that

$$\sum_{n \in A} a_n = \sup \left\{ \sum_{n \in F} a_n : F \subseteq A \text{ and } F \text{ is finite} \right\}.$$

We now construct an injection $f : P(\mathbb{N}_0) \rightarrow \mathbb{R}$ by setting

$$f(A) = \sum_{n \in A} \frac{2}{3^{n+1}} \quad \text{for any } A \subseteq \mathbb{N}_0.$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R})$: 2/4

First we have to show that f is well defined, i.e. $f(A)$ is finite for every $A \subseteq \mathbb{N}_0$. Since $f(A) \leq f(\mathbb{N}_0)$ for all $A \subseteq \mathbb{N}_0$ it suffices to show that

$$f(\mathbb{N}_0) \quad \text{is finite.}$$

Let $[N] = \{0, 1, 2, \dots, N\}$ and observe that $f(\mathbb{N}_0) = \sup_{N \in \mathbb{N}_0} f([N])$. Moreover, one has

$$f([N]) = \sum_{n \in [N]} \frac{2}{3^{n+1}} = \frac{2}{3} \frac{1 - \frac{1}{3^{N+1}}}{1 - \frac{1}{3}} = 1 - \frac{1}{3^{N+1}} \leq 1.$$

Geometric sequence

Here we have used the formula $1 + x + x^2 + \dots + x^N = \frac{1-x^{N+1}}{1-x}$, which holds for all $|x| < 1$.

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R})$: 3/4

In fact, one can prove that $f(\mathbb{N}_0) = 1$ (check this!). Now we show that $f : P(\mathbb{N}_0) \rightarrow \mathbb{R}$ is injective. Let $A, B \subseteq \mathbb{N}$ be such that $A \neq B$. Let

$$n_0 = \min\{n \in \mathbb{N}_0 : \chi_A(n) \neq \chi_B(n)\}.$$

Wlog we can assume $n_0 \in B \setminus A$. Then

$$\begin{aligned} f(A) &= \sum_{n \in A} \frac{2}{3^{n+1}} = \sum_{\substack{n \in A \\ n < n_0}} \frac{2}{3^{n+1}} + \sum_{\substack{n \in A \\ n > n_0}} \frac{2}{3^{n+1}} \\ &\leq \sum_{\substack{n \in B \\ n < n_0}} \frac{2}{3^{n+1}} + \sum_{n \in (n_0, \infty)} \frac{2}{3^{n+1}} \\ &< \sum_{\substack{n \in B \\ n < n_0}} \frac{2}{3^{n+1}} + \frac{2}{3^{n_0+1}} \leq f(B). \end{aligned}$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R})$: 4/4

- We have used $f((n_0, \infty) \cap \mathbb{N}_0) = \frac{1}{3^{n_0+1}} < \frac{2}{3^{n_0+1}}$ (check this!). Hence $f(A) \neq f(B)$ as desired, yielding $\text{card}(P(\mathbb{N}_0)) \leq \text{card}(\mathbb{R})$.
- Since $\text{card}(\mathbb{N}_0) = \text{card}(\mathbb{Q})$ thus $\text{card}(P(\mathbb{N}_0)) = \text{card}(P(\mathbb{Q}))$. Now define $g : \mathbb{R} \rightarrow P(\mathbb{Q})$ by

$$g(x) = \{r \in \mathbb{Q} : r < x\} \quad \text{for any } x \in \mathbb{R}.$$

It is easy to see that g is injective, thus

$$\text{card}(\mathbb{R}) \leq \text{card}(P(\mathbb{Q})) = \text{card}(P(\mathbb{N}_0)).$$

By the **Cantor–Bernstein–Schröder** theorem

$$\text{card}(\mathbb{R}) = \text{card}(P(\mathbb{N}_0)) = \text{card}(\{0, 1\}^{\mathbb{N}}). \quad \square$$

Remarks

- A If $\text{card}(X) \geq \mathfrak{c}$, then X is uncountable.
- B $\text{card}(\mathbb{R} \times \mathbb{R}) = \text{card}(\mathbb{R})$.
- C $\text{card}(\{0, 1\}^{\mathbb{N}_0} \times \{0, 1\}^{\mathbb{N}_0}) = \text{card}(\{0, 1\}^{\mathbb{N}_0})$.
- D $\text{card}(\mathbb{R}^k) = \text{card}(\mathbb{R})$ for any $k \in \mathbb{N}$.
- E If $\text{card}(X) \leq \mathfrak{c}$ and $\text{card}(Y) \leq \mathfrak{c}$, then $\text{card}(X \times Y) \leq \mathfrak{c}$.
- F If $\text{card}(A) \leq \mathfrak{c}$ and $\text{card}(X_\alpha) \leq \mathfrak{c}$ for any $\alpha \in A$, then

$$\text{card} \left(\bigcup_{\alpha \in A} X_\alpha \right) \leq \mathfrak{c}.$$

Uncountable sets - example

Example

Prove that $\text{card}(\mathbb{R}) = \text{card}([0, 1])$.

Solution. Define $f : \mathbb{R} \rightarrow [0, 1]$ by

$$f(x) = \frac{x}{|x| + 1}.$$

One can verify that f is a bijection between \mathbb{R} and $[0, 1]$. □

Uncountable sets - example

Example

Determine $\text{card}(X)$, where X is

$$\{[n, n + 1) : n \in \mathbb{N}\}.$$

Solution. We will prove that $\text{card}(X) = \text{card}(\mathbb{N})$. Let us define the function

$$f([n, n + 1)) = n.$$

It is easy to verify that f is bijection between \mathbb{N} and X . □

Uncountable sets - example

Example

Determine $\text{card}(X)$, where X is any infinite set of pairwise disjoint closed intervals.

Solution. We will prove that X is **countably infinite**. Let us define the function $f : X \rightarrow \mathbb{Q}$ by setting

$$f(I) = q,$$

where q is any rational number contained in interval $I \in X$. Then f is injective, so $\text{card}(X) \leq \text{card}(\mathbb{N})$. □