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Absolute and conditional convergence of infinite series
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Absolute and conditional convergence

Absolute convergence

Absolute convergence

The series
∑∞

n=1 an is said to converge absolutely if the series

∞∑
n=1

|an| < ∞

converges.

Theorem

If
∑∞

n=1 |an| < ∞, then |
∑∞

n=1 an| < ∞.

Proof. The claim follows from the Cauchy Criterion, since∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

|ak |

and we are done.
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Absolute and conditional convergence

Conditional convergence

Conditional convergence

If the series
∑∞

n=1 an converges but

∞∑
n=1

|an| = ∞

diverges then we say that
∑∞

n=1 an converges conditionally.

Example 1

For series with positive terms, absolute convergence is the same as
convergence.

Example 2∑∞
n=1(−1)n 1

n2
converges absolutely, since

∑∞
n=1

1
n2

< ∞.
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Absolute and conditional convergence

Anharmonic series

Anharmonic series

The series
∞∑
n=1

(−1)n

n

converges conditionally.

It is easy to see that

∞∑
n=1

∣∣∣∣(−1)n

n

∣∣∣∣ = ∞∑
n=1

1

n
= ∞.

To prove
∣∣∑∞

n=1
(−1)n

n

∣∣ < ∞ we will show a more general result.
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Summation by parts (Abel summation formula)

Summation by parts (Abel summation formula)

Abel summation formula

Given two sequences (an)n∈N and (bn)n∈N set

An =
n∑

k=0

ak for n ≥ 0, and A−1 = 0.

Then if 0 ≤ p ≤ q one has

q∑
n=p

anbn =

q−1∑
n=p

An (bn − bn+1) + Aqbq − Ap−1bp.
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Summation by parts (Abel summation formula)

Proof of Abel summation formula

Proof: Note that

q∑
n=p

anbn =

q∑
n=p

(An − An−1)︸ ︷︷ ︸
an

bn =

q∑
n=p

Anbn −
q∑

n=p

An−1bn

=

q∑
n=p

Anbn −
q−1∑

n=p−1

Anbn+1

=

q−1∑
n=p

An (bn − bn+1) + Aqbq − Ap−1bp.

The proof follows.
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Summation by parts (Abel summation formula)

Theorem

Dirichlet’s test

Suppose that

(a) The partial sums An =
∑n

k=1 ak of (an)n∈N form a bounded sequence.

(b) b0 ≥ b1 ≥ b2 ≥ b3 ≥ . . .,

(c) limn→∞ bn = 0.

Then
∑∞

n=1 anbn converges.

Proof. Choose M ≥ 0 so that |An| ≤ M for all n ∈ N. Given ε > 0 there
is Nε ∈ N so that

bNε <
ε

2M
,

since limn→∞ bn = 0.
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Summation by parts (Abel summation formula)

Proof

For Nε ≤ p ≤ q, by the summation by parts formula, one has∣∣∣∣∣
q∑

n=p

anbn

∣∣∣∣∣ =
∣∣∣∣∣
q−1∑
n=p

An (bn − bn+1) + Aqbq − Ap−1bp

∣∣∣∣∣
≤

∣∣∣∣∣
q−1∑
n=p

An (bn − bn+1)

∣∣∣∣∣+ |Aqbq|+ |Ap−1bp|

≤ M

q−1∑
n=p

|(bn − bn+1)|+Mbq +Mbp ≤ 2Mbp ≤ 2MbNε < ε.

since

bp − bq =

q−1∑
n=p

|(bn − bn+1)| =
q−1∑
n=p

(bn − bn+1)

= (bp − bp+1) + (bp+1 − bp+2) + (bp+2 − bp+3) + . . .+ bq−1 − bq.

(MATH 411H, FALL 2025) Lecture 10 October 6, 2025 8 / 25



Summation by parts (Abel summation formula)

Anharmonic series

We now show that
∑∞

n=1
(−1)n

n converges. Let

an = (−1)n, and bn =
1

n

in the previous theorem. We see that∣∣∣∣∣
∞∑
n=1

(−1)n

n

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
n=1

anbn

∣∣∣∣∣ < ∞

since

|An| =

∣∣∣∣∣
n∑

k=1

(−1)k

∣∣∣∣∣ ≤ 1.
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Summation by parts (Abel summation formula)

Alternating Series Test

A more general result can be proved:

Alternating Series Test

Let (an)n∈N be such that

(i) a1 ≥ a2 ≥ . . . ≥ an ≥ . . .,

(ii) limn→∞ an = 0.

Then the alternating series
∑∞

n=1(−1)nan converges.

Proof. We apply the previous theorem.
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Summation by parts (Abel summation formula)

Example

Exercise

Determine if the series
∑∞

n=1
(−1)n√
n2+1

converges and converges absolutely.

Solution. Let an = 1√
n2+1

.

We have

an ≥ 1√
4n2

=
1

2n
,

so the series does not converges absolutely, since
∑∞

n=1
1
n diverges.

On the other hand, we have

an ≥ an+1 and lim
n→∞

an = 0,

so the assumptions of the previous theorem are satisfied. Hence∑∞
n=1

(−1)n√
n2+1

converges conditionally.
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Summation by parts (Abel summation formula)

Product of two series

Definition

Given
∑∞

n=0 an and
∑∞

n=0 bn we set

cn =
n∑

k=0

akbn−k = a0bn + a1bn−1 + . . .+ an−1b1 + anb0

and call
∑∞

n=0 cn the product of the two given series( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

cn.
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Summation by parts (Abel summation formula)

Theorem

Theorem

Suppose that

(a)
∑∞

n=0 |an| < ∞,

(b)
∑∞

n=0 an = A,

(c)
∑∞

n=0 bn = B,

(d) cn =
∑n

k=0 akbn−k .

Then
∞∑
n=0

cn = AB.
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Summation by parts (Abel summation formula)

Proof: 1/2

Proof. Let

An =
n∑

k=0

ak , Bn =
n∑

k=0

bk , Cn =
n∑

k=0

ck ,

βn = Bn − B.

Then

Cn = a0b0 + (a0b1 + a1b0) + . . .+ (a0bn + a1bn−1 + . . .+ anb0)

= a0Bn + a1Bn−1 + . . .+ anB0

= a0(B + βn) + a1(B + βn−1) + . . .+ an(B + β0).

Thus
Cn = AnB + a0βn + a1βn−1 + . . .+ anβ0︸ ︷︷ ︸

γn

.

We will show that Cn −−−→n→∞ AB. Since AnB −−−→n→∞ AB it suffices to prove
that γn −−−→n→∞ 0.
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Summation by parts (Abel summation formula)

Proof: 2/2

Set α =
∑∞

n=0 |an|. Let ε > 0 be given. By (b) βn −−−→n→∞ 0, thus we find
N ∈ N such that

|βn| < ε for n ≥ N,

then

|γn| ≤ |β0an + . . .+ βNan−N |+ |βN+1an−N+1 + . . .+ βna0|
≤ |β0an + . . .+ βNan−N |+ εα.

We keep N ∈ N fixed and letting n → ∞ we obtain

lim sup
n→∞

|γn| ≤ εα

since ak −−−→
k→∞ 0. But ε > 0 is arbitrary we get

lim inf
n→∞

|γn| = lim sup
n→∞

|γn| = 0 = lim
n→∞

|γn|.
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Summation by parts (Abel summation formula)

Remark

Remark

If
∑∞

n=0 an = A,
∑∞

n=0 bn = B,
∑∞

n=0 cn = C , and

cn =
n∑

k=0

akbn−k = a0bn + a1bn−1 + . . .+ an−1b1 + anb0

then C = AB.
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Rearrangements

Rearrangements

Rearrangement

Let (kn)n∈N be a sequence in which every positive integer appears once
and only once. Setting

a′n = akn

we say that
∑∞

n=1 a
′
n is rearrangement of

∑∞
n=1 an.

Example

Consider the convergent series

S =
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
−1

4
+

1

5︸ ︷︷ ︸
<0

−1

6
+

1

7︸ ︷︷ ︸
<0

− . . .
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Rearrangements

Example

Consider also a rearrangement S ′ of S given by:

S ′ = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . .+

=
∞∑
k=1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
Observe that S < 1− 1

2 + 1
3 = 5

6 and

1

4k − 3
+

1

4k − 1
− 1

2k
> 0 for all k ∈ N.

If S ′
n is the partial sum of S ′ then

S ′
3 < S ′

6 < S ′
9 < . . .

hence lim supn→∞ S ′
n > S ′

3 =
5
6 .

Thus S ′ does not converge to S < 5
6 .
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Rearrangements

Theorem

Theorem

Let
∑∞

n=1 an be a series that converges conditionally. Suppose that

−∞ ≤ α ≤ β ≤ +∞.

Then there exists a reaarangement
∑∞

n=0 a
′
n with partial sums s ′n so that

lim inf
n→∞

s ′n = α, and lim sup
n→∞

s ′n = β.

Proof. Let

pn =
|an|+ an

2
≥ 0, and qn =

|an| − an
2

≥ 0.

Then
pn − qn = an and pn + qn = |an|.
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Rearrangements

Proof: 1/5

Claim

The series
∑∞

n=1 pn and
∑∞

n=1 qn both diverge.

Indeed, if both were convergent then

+∞ =
∞∑
n=1

|an| =
∞∑
n=1

(pn + qn) < +∞,

contradiction.

Since
N∑

n=1

an =
N∑

n=1

(pn − qn) =
N∑

n=1

pn −
N∑

n=1

qn,

then divergence of
∑∞

n=1 pn and convergence of
∑∞

n=1 qn (or vice
versa) implies divergence of

∑
n=1 an, contradiction.
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Rearrangements

Proof: 2/5

Let P1,P2, . . . denote the nonnegative terms of
∑∞

n=1 an in the order
in which they occur.

Let Q1,Q2, . . . be the absolute values of the negative terms of∑∞
n=1 an also in their original order.

The series
∑∞

n=1 Pn and
∑∞

n=1Qn differ from
∑∞

n=1 pn and
∑∞

n=1 qn
also by zero terms and therefore thay also diverge.

Claim

We shall construct (mn)n∈N and (kn)n∈N such that the series

P1 + . . .+ Pm1−Q1 − . . .− Qk1

+Pm+1 + . . .+ Pm2−Qk1+1 − . . .− Qk2 + . . .

which is a rearrangement of
∑∞

n=1 an satisfies

lim inf
n→∞

s ′n = α and lim sup
n→∞

s ′n = β.
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Rearrangements

Proof: 3/5

Choose (αn)n∈N and (βn)n∈N so that αn < βn with β1 > 0 and

αn −−−→n→∞ α, and βn −−−→n→∞ β.

Let m1, k1 be the smallest integers such that

P1 + . . .+ Pm1 > β1 and P1 + . . .+ Pm1 − Q1 − . . .− Qk1 < α1.

Let m2, k2 be the smallest integers such that

P1 + . . .+ Pm1−Q1 − . . .− Qk1+Pm1+1 + . . .+ Pm2 > β2,

and

P1 + . . .+ Pm1−Q1 − . . .− Qk1

+Pm+1 + . . .+ Pm2−Qk1+1 − . . .− Qk2 < α2.

and we continue this way.
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Rearrangements

Proof: 4/5

This is possible since∣∣∣∣∣
∞∑
n=1

Pn

∣∣∣∣∣ = ∞ and

∣∣∣∣∣
∞∑
n=1

Qn

∣∣∣∣∣ = ∞.

If xn, yn are the partial sums of

P1 + . . .+ Pm1−Q1 − . . .− Qk1

+Pm+1 + . . .+ Pm2−Qk1+1 − . . .− Qk2

whose last terms respectively are Pmn and Qkn then

|xn − βn| ≤ Pmn and |yn − αn| ≤ Qkn .
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Rearrangements

Proof: 5/5

Since
βn < xn ≤ (xn − Pmn) + Pmn ≤ βn + Pmn ,

then
0 < xn − βn ≤ Pmn .

Since Pn −−−→n→∞ 0 and Qn −−−→n→∞ 0 we see that

xn −−−→n→∞ β.

Similarly we conclude that

yn −−−→n→∞ α.

Finally it is clear that no number less that α or greater that β can be
subsequential limit of the partial sums of s ′n.

This completes the proof of the theorem.
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Rearrangements

Theorem

If
∑∞

n=1 |an| < ∞, then every rearrangement of
∑∞

n=1 an converge to the
same limit.

Proof. Let
∑∞

n=1 a
′
n be a rearrangement of

∑∞
n=1 an with partial sums s ′n.

Given ε > 0 there is Nε ∈ N such that m ≥ n ≥ Nε implies

m∑
k=n

|ak | < ε.

Now choose p ∈ N such that

{1, 2, . . . ,Nε} ⊆ {k1, k2, . . . , kp}; here a′n = akn .

If n > p then the numbers a1, . . . , aNε will cancel in the difference sn − s ′n
so that

|sn − s ′n| < ε.

Hence s ′n converges to the same limit as (sn)n∈N.
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