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Partially ordered sets

Partially ordered sets

Partial ordering

A partial ordering on a nonempty set X is a relation R on X with the
following properties:

(a) xRx for all x ∈ X , (reflexivity).

(b) If xRy and yRx , then x = y , (antisymmetry).

(c) If xRy and yRz , then xRz , (transitivity).

Linear ordering

If R additionally satisfies that for all x , y ∈ X either xRy or yRx , then R is
called linear or total ordering on X .

Example

The set of rational numbers Q with the natural order ≤ is totally ordered
set. We say that r ≤ s for r , s ∈ Q iff s − r ≥ 0.
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Partially ordered sets

Examples of partial ordering

Example

If X is any set then P(X ) is partially ordered by inclusion, i.e.

ARB ⇐⇒ A ⊆ B.

Consider X = {1, 2, 3} and we have its Hasse diagram
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Partially ordered sets

Poset ≡ partially ordered set

Poset

We say that (X ,≤) is a poset if the relation “≤” is a partial ordering on
X or (X ,≤) is partially ordered by “≤”.

We will write x < y in a poset (X ,≤) iff x ≤ y and x ̸= y .

Upper (lower) bound

Let A ⊆ X , an element x ∈ X is an upper bound of A (resp. lower
bound of A) if a ≤ x for all a ∈ A (resp. x ≤ a for all a ∈ A).

An upper (lower) bound x ∈ X need not to belong to A.
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Partially ordered sets

Maximal and greatest elements

Maximal (minimal) element

A maximal (resp. minimal) element of X is an element x ∈ X such that
if y ∈ X and x ≤ y (resp. x ≥ y) then x = y .

Greatest (least) element

A greatest (resp. least) element of X is an element x ∈ X such that
y ≤ x for all y ∈ X (resp. x ≤ y for all y ∈ X ).

Well ordered set

If (X ,≤) is linearly ordered and every non-empty subset of X has a
minimal element, which is necessarily unique, X is said to be well ordered
by ≤ and ≤ is called well ordering on X .

Examples

(N,≤) is well ordered in contrast to (Z,≤) which is not well ordered.
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Partially ordered sets

Supremum and infimum of A

Supremum of A

Let A ⊆ X be bounded above. We say that an element x0 ∈ X is the
least upper bound for A or the supremum of A (x0 = supA) if the
following hold:

1 a ≤ x0 for all a ∈ A,

2 if a ≤ x for all a ∈ A, then x0 ≤ x .

Infimum of A

Let A ⊆ X be bounded below. We say that an element x0 ∈ X is the
greatest lower bound for A or the infimum of A (x0 = inf A) if the
following hold:

1 x0 ≤ a for all a ∈ A,

2 if x ≤ a for all a ∈ A, then x ≤ x0.
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Partially ordered sets

Four equivalent statements

Theorem (The axiom of choice (A))

If (Xα)α∈A is a nonempty collection of nonempty sets, then
∏

α∈A Xα ̸= ∅.

Theorem (The Hausdorff Maximal Principle (B))

Every partially ordered set has a maximal linearly ordered set, i.e. if (X ,≤)
is a poset there exists E ⊆ X that is linearly ordered by ≤ such that no
subset of X that properly includes E is linearly ordered by ≤.

Theorem (Kuratowski–Zorn lemma (C))

If X is partially ordered set and every linearly ordered subset of X has an
upper bound, then X has a maximal element.

Theorem (The Well Ordering Principle (D))

Every nonempty set X can be well ordered.
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Partially ordered sets

An auxiliary result

Theorem

Let (X ,≤) be a poset such that every linearly ordered subset of X has a
supremum in X . Then every function f : X → X obeying

x ≤ f (x) for all x ∈ X

has a fixed point, i.e. there is x∗ ∈ X such that f (x∗) = x∗.

Proof. Clearly the empty set ∅ is linearly ordered so it has the supremum
in X , i.e. a = sup ∅ ∈ X , which is the smallest element in (X ,≤).

Let A ⊆ P(X ) be the family of all A ⊆ X such that

(a) a ∈ A,

(b) f [A] ⊆ A,

(c) if L ⊆ A is linearly ordered set in (X ,≤), then sup L ∈ A.
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Partially ordered sets

Proof

Note that A ≠ ∅ since X ∈ A. Then consider

A∗ =
⋂
A∈A

A.

It is easy to see that A∗ ∈ A, equivalently A∗ satisfies (a), (b), (c).

f [A∗] = f

[ ⋂
A∈A

A

]
⊆

⋂
A∈A

f [A] ⊆
⋂
A∈A

A = A∗.

Our aim will be to prove that A∗ is linearly ordered set in (X ,≤).

Consider

B = {x ∈ A∗ : if y ∈ A∗ and y < x then f (y) ≤ x}.

We shall show that B ∈ A.
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Partially ordered sets

Proof

Proof of (a) for B. Observe that a ∈ B since a ∈ A∗ and a is the
smallest element of (X ,≤), so there is no element y such that y < a.
Thus, a ∈ B, hence (a) holds for B.

Fix x ∈ B and define

Bx = {z ∈ A∗ : z ≤ x or f (x) ≤ z} ⊆ A∗

We will show that Bx ∈ A for all x ∈ B.

Proof of (a) for Bx . Note that a ∈ Bx since a ≤ x for all x ∈ X .

Proof of (b) for Bx . Take z ∈ Bx and we show that f (z) ∈ Bx . It
will ensure that f [Bx ] ⊆ Bx . Since z ∈ Bx so z ≤ x or f (x) ≤ z .

If z < x then f (z) ≤ x by definition of B, so f (z) ∈ Bx .

Otherwise x = z or f (x) ≤ z . If x = z then f (z) = f (x) so
f (z) ∈ Bx . If f (x) ≤ z , then

f (x) ≤ z ≤ f (z)

thus we also have f (z) ∈ Bx .
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Partially ordered sets

Proof

Proof of (c) for Bx . Let L ⊆ Bx be a linearly ordered set. We will
show that sup L ∈ Bx .

If all elements z ∈ L satisfy z ≤ x , then sup L ≤ x and consequently
sup L ∈ Bx .

If f (x) ≤ z for some z ∈ L, then

f (x) ≤ z ≤ sup L,

then sup L ∈ Bx .

Thus we have proved that Bx ∈ A for all x ∈ B since

A∗ =
⋂
A∈A

A ⊆ Bx ⊆ A∗

so Bx = A∗ for all x ∈ B. This means that

z ≤ x or f (x) ≤ z for all x ∈ B and z ∈ A∗. (∗)
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Partially ordered sets

Proof

Proof of (b) for B. Let x ∈ B. We will show that f (x) ∈ B. Recall

B = {x ∈ A∗ : if y ∈ A∗ and y < x then f (y) ≤ x} ⊆ A∗.

Let y ∈ A∗ be such that y < f (x). Then by (*) we have y ≤ x . If
y < x then by the definition of B we have

f (y) ≤ x ≤ f (x),

so f (x) ∈ B. If x = y then f (x) = f (y) and also f (x) ∈ B.

Proof of (c) for B. Let L ⊆ B be a linearly ordered set in B. We
will show that sup L ∈ B. Let y ∈ A∗ be so that y < sup L, then there
is x ∈ L such that x ̸≤ y . By (*) we have y < x . By the definition of
B one obtains f (y) ≤ x . Since x ∈ L then f (y) ≤ x ≤ sup L thus
sup L ∈ B as desired.
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Partially ordered sets

Proof

We have proved that B ∈ A, hence

A∗ =
⋂
A∈A

A ⊆ B ⊆ A∗,

thus B = A∗.

Hence, by (*) for all x , z ∈ A∗ = B we have z ≤ x or f (x) ≤ z . So

x ≤ z or z ≤ x .

Now it is easy to see that x∗ = supA∗ ∈ A∗ by (c). Moreover, x∗ is a
fixed point of f . Since by (b) we have

x∗ ≤ f (x∗)︸ ︷︷ ︸
∈A∗

≤ x∗ = supA∗.

Thus x∗ = f (x∗) as claimed.
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Partially ordered sets

Auxiliary result

Theorem

If (X ,≤) is a poset such that every linearly ordered set has a supremum,
then X contains a maximal element.

Proof. Suppose for a contradiction that there is no maximal element in
X . So for every x ∈ X there is y ∈ X such that x < y . In other words, the
sets

Ax = {y ∈ X : x < y} ≠ ∅.

Thus
∏

x∈X Ax ̸= ∅ by the axiom of choice. Now take f ∈
∏

x∈X Ax , then
f (x) ∈ Ax , so x < f (x). By the previous theorem x ≤ f (x) for all x ∈ X ,
hence there is x∗ ∈ X such that x∗ < f (x∗) = x∗, contradiction!

Theorem

The principles (A), (B), (C), and (D) are equivalent.
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Partially ordered sets

Proof (A) =⇒ (B)

Proof (A) =⇒ (B).

Principle (B) says that if (X ,≤) is a poset then X has a maximal
linearly ordered set.

Let L be a set of all linearly ordered subsets in (X ,≤). Note that
(L,⊆) is a poset ordered by inclusion ⊆.

Let M ⊆ L be a linearly ordered set. It is easy to see that

S =
⋃

M∈M
M

is a linearly ordered set in (X ,≤) and S is the supremum for M.

Thus from the previous theorem there exists a maximal element
L ∈ L which is the maximal linearly ordered set in (X ,≤).
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Partially ordered sets

Proof (B) =⇒ (C)

Proof (B) =⇒ (C).

Principle (C) states that if (X ,≤) is a poset and every linearly ordered
subset of X has an upper bound, then X has maximal element.

By (B) there is a maximal linearly ordered set L ⊆ X . From the
assumption in (C) the set L has an upper bound in X .

Let a ∈ X be the upper bound for L. From maximality of L in X we
must have that a ∈ L, or else L ∪ {a} contradicts the maximality of L.

Then a is a maximal element of X . If we take x ∈ X \ L such that
a ≤ x , then a = x . Otherwise we consider L ∪ {x} which is linearly
ordered set containing L, and this contradicts the maximality of L.
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Partially ordered sets

Proof (C) =⇒ (D)

Proof (C) =⇒ (D).

Principle (D) states that every nonempty set X can be well ordered.
Let W be the collection of well-orderings of subsets of X defined by

W = {(E ,≤) : E ⊆ X and ≤ is well ordering on E}

and define the partial ordering on W as follows: If the relations ≤1

and ≤2 are well orderings on E1 and E2 respectively, then ≤1 precedes
≤2 in the partial order if:

1 ≤2 extends ≤1, i.e. E1 ⊆ E2 and ≤1 and ≤2 agree on E1.

2 if x ∈ E2 \ E1, then y ≤2 x for all y ∈ E1.

It is easy to see that the hypotheses of (C) are satisfied on W. We
take L ⊆ W to be a linearly ordered set in W and we note that⋃

L∈L L is an upper bound for L. Then (C) implies that there is a
maximal element (E ,≤) ∈ W.

(MATH 411H, FALL 2025) Lecture 12 October 13, 2025 17 / 28



Partially ordered sets

Proof (C) =⇒ (D) and (D) =⇒ (A)

This must be a well ordering on X itself. If ≤ is a well ordering on a
proper subset E ⊂ X and x0 ∈ X \ E then ≤ can be extended to a
well ordering on E ∪ {x0} by declaring that x ≤ x0 for all x ∈ E , but
this is a contradiction since (E ,≤) is a maximal element of W.

Proof (D) =⇒ (A).

Suppose that (Xα)α∈A is a nonempty collection of nonempty sets. Let

X =
⋃
α∈A

Xα.

Using (D) we pick a well ordering on X . For any α ∈ A let f (α) be
the minimal element of Xα. Then

f ∈
∏
α∈A

Xα ̸= ∅.
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Cardinality

Cardinality

Cardinality

If X and Y are nonempty sets, we define the expressions

card (X ) ≤ card (Y ) (injective),

card (X ) = card (Y ) (bijective),

card (X ) ≥ card (Y ) (surjective),

to mean that there exists f : X → Y which is injective, bijective, surjective
respectively.
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Cardinality

Cardinality - pictures 1/2

card (X ) ≤ card (Y ), (injective),

card (X ) = card (Y ), (bijective)
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Cardinality

Cardinality - pictures 2/2

card (X ) ≥ card (Y ), (surjective)

We also define card (X ) < card (Y ) to mean that there is an
injection but not a bijection.

We also have card (∅) < card (X ) and card (X ) > card (∅) for all
X ̸= ∅.
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Cardinality

card (X ) -example

Example

Let
X = {1, 2, 3, 4, . . .}

Y = {101, 102, 103, . . . , }.

Prove that card (X ) = card (Y ).

Solution. Let us define f : X → Y by

f (x) = x + 100,

then f is a bijection between X and Y , so card (X ) = card (Y ).
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Cardinality

card (X ) - example

Example

Let
X = {1, 2, 3, 4, . . .}

Y = {12, 22, 32, 42, . . . , }.

Prove that card (X ) = card (Y ).

Solution 1. Let us define f : X → Y by

f (x) = x2,

then f is a bijection between X and Y , so card (X ) = card (Y ).

Solution 2. Let us define g : Y → X by

f (x) =
√
x ,

then g is a bijection between X and Y , so card (X ) = card (Y ).
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Cardinality

card (X ) - example

Example

Let
X = {1, 2, 3}

Y = {2, 4, 6, 8}.

Prove that card (X ) < card (Y ).

Solution. Note that f (x) = 2x is an injection from X to Y , so
card (X ) ≤ card (Y ). On the other hand, any function from X to Y takes
at most 3 values, so it is not a surjection, so card (X ) < card (Y ).
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Cardinality

card (X ) - example

Example

Let
X = [0, 1]

Y = [1, 3].

Prove that card (X ) = card (Y ).

Solution. Let us define f : X → Y by

f (x) = 2x + 1,

then f is a bijection between X and Y , so card (X ) = card (Y ).
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Cardinality

Proposition

Proposition

We have

card (X ) ≤ card (Y ) ⇐⇒ card (Y ) ≥ card (X ).

Proof (⇒). Assume that card (X ) ≤ card (Y ). This means that there is
an injection f : X → Y . Thus f is a bijection f : X → f [X ] ⊆ Y . Let f −1

be the inverse f −1 : f [X ] → X . Pick x0 ∈ X and define g by

g(y) =

{
f −1(y) if y ∈ f [X ],

g(y) = x0 if y ∈ Y \ f [X ].

Then we see that g is surjective from Y to X .

(MATH 411H, FALL 2025) Lecture 12 October 13, 2025 26 / 28



Cardinality

Proof: 1/2

Proof (⇐). If card (Y ) ≥ card (X ), then there is a surjection g : Y → X .
Then g [Y ] = X , and, consequently, g−1[{x}] are nonempty and

g−1[{x1}] ∩ g−1[{x2}] = ∅ if x1 ̸= x2.
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Cardinality

Proof: 2/2

Using the axiom of choice the set
∏

x∈X g−1[{x}] ̸= ∅. Taking

f ∈
∏
x∈X

g−1[{x}]

we see that f is an injection from X to Y . Indeed, if x1 ̸= x2, then
f (x1) ∈ g−1[{x1}] and f (x2) ∈ g−1[{x2}], but

g−1[{x1}] ∩ g−1[{x2}] = ∅,

thus f (x1) ̸= f (x2).
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