Lecture 12

Axiom of Choice, Cardinality, Cantor's theorem
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Partially ordered sets

Partially ordered sets

Partial ordering

A partial ordering on a nonempty set X is a relation R on X with the
following properties:

@ xRx for all x € X, (reflexivity).
@ If xRy and yRx, then x = y, (antisymmetry).
@ If xRy and yRz, then xRz, (transitivity).

Linear ordering

If R additionally satisfies that for all x,y € X either xRy or yRx, then R is
called linear or total ordering on X.

v

Example

The set of rational numbers Q with the natural order < is totally ordered
set. We say that r < s forr,s € Qiffs—r > 0.
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Partially ordered sets

Examples of partial ordering
Example

If X is any set then P(X) is partially ordered by inclusion, i.e.

ARB <— ACB.

Consider X = {1,2,3} and we have its Hasse diagram
{1,2,3}

(1,2} {1,3} {2,3}
{1} {2} {3}

0
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Poset = partially ordered set

Poset

We say that (X, <) is a poset if the relation “<" is a partial ordering on
X or (X, <) is partially ordered by “<".

e We will write x < y in a poset (X, <) iff x <y and x # y.

Upper (lower) bound

Let AC X, an element x € X is an upper bound of A (resp. lower
bound of A) if a < x for all a € A (resp. x < a for all a € A).

e An upper (lower) bound x € X need not to belong to A. )
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Maximal and greatest elements

Maximal (minimal) element

A maximal (resp. minimal) element of X is an element x € X such that
if ye X and x <y (resp. x > y) then x = y.

Greatest (least) element

A greatest (resp. least) element of X is an element x € X such that
y < xforall y € X (resp. x <y forall y € X).

Well ordered set

If (X, <) is linearly ordered and every non-empty subset of X has a
minimal element, which is necessarily unique, X is said to be well ordered
by < and < is called well ordering on X.

Examples
o (N, <) is well ordered in contrast to (Z, <) which is not well ordered.
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Partially ordered sets

Supremum and infimum of A

Supremum of A

Let A C X be bounded above. We say that an element xg € X is the
least upper bound for A or the supremum of A (xp = sup A) if the
following hold:

Q a<xgforall ac A,
Q if a<x forall a€ A, then xg < x.

Infimum of A

Let A C X be bounded below. We say that an element xg € X is the
greatest lower bound for A or the infimum of A (xg = inf A) if the
following hold:

Q xp < aforall acA,
Q if x < gaforall a€ A, then x < xg.
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Partially ordered sets

Four equivalent statements

Theorem (The axiom of choice (A))
If (Xa)aca is a nonempty collection of nonempty sets, then [],ca Xa # 0.

Theorem (The Hausdorff Maximal Principle (B))

Every partially ordered set has a maximal linearly ordered set, i.e. if (X, <)
is a poset there exists E C X that is linearly ordered by < such that no
subset of X that properly includes E is linearly ordered by <.

Theorem (Kuratowski—Zorn lemma (C))

If X is partially ordered set and every linearly ordered subset of X has an
upper bound, then X has a maximal element.

Theorem (The Well Ordering Principle (D))

Every nonempty set X can be well ordered.
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An auxiliary result

Theorem

Let (X, <) be a poset such that every linearly ordered subset of X has a
supremum in X. Then every function f : X — X obeying

x<f(x) forall xeX

has a fixed point, i.e. there is x* € X such that f(x*) = x*.

Proof. Clearly the empty set ) is linearly ordered so it has the supremum
in X, i.e. a=supl € X, which is the smallest element in (X, <).

Let A C P(X) be the family of all A C X such that

@ acA,

@ f[A]CA,

@ if L C Ais linearly ordered set in (X, <), then sup L € A.
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Proof

@ Note that A # () since X € A. Then consider
A=A

@ It is easy to see that A, € A, equivalently A, satisfies (a), (b), (c).
f[A*]:f[ N A} C () fIAIC (A=A
AcA AcA AcA

@ Our aim will be to prove that A, is linearly ordered set in (X, <).

o Consider
B={xecA,: ifye A, and y < x then f(y) < x}.

@ We shall show that B € A.
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Proof

Proof of (a) for B. Observe that a € B since a € A, and a is the
smallest element of (X, <), so there is no element y such that y < a.

Thus, a € B, hence (a) holds for B.
Fix x € B and define
Bi={ze€ A, : z<xorf(x) <z} CA,

We will show that B, € A for all x € B.
Proof of (a) for B,. Note that a € By since a < x for all x € X.

e Proof of (b) for B,. Take z € B, and we show that f(z) € By. It

will ensure that f[By] C By. Since z € By so z < x or f(x) < z.

e If z < x then f(z) < x by definition of B, so f(z) € B.

Otherwise x = z or f(x) < z. If x = z then f(z) = f(x) so
f(z) € By. If f(x) < z, then

f(x) <z<f(2)

thus we also have f(z) € B.
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Proof
e Proof of (c) for B,. Let L C By be a linearly ordered set. We will
show that sup L € Bk.
o If all elements z € L satisfy z < x, then sup L < x and consequently

supL € B..
e If f(x) < z for some z € L, then

f(x) <z<supl,

then sup L € B,.
@ Thus we have proved that B, € A for all x € B since

A= [)ACBCA
AcA

so B, = A, for all x € B. This means that

z<x or f(x)<z forall xeB and zecA,. (%)
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_Partially ordered sets |
Proof

o Proof of (b) for B. Let x € B. We will show that f(x) € B. Recall
B={xeA,: ifyeA,and y <x then f(y) < x} C A,.

o Let y € A, be such that y < f(x). Then by (*) we have y < x. If
y < x then by the definition of B we have

fly) < x < f(x),

so f(x) € B. If x =y then f(x) = f(y) and also f(x) € B.

e Proof of (c) for B. Let L C B be a linearly ordered set in B. We
will show that supL € B. Let y € A, be so that y < sup L, then there
is x € L such that x £ y. By (*) we have y < x. By the definition of
B one obtains f(y) < x. Since x € L then f(y) < x <sup L thus
sup L € B as desired.
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Proof

@ We have proved that B € A, hence
A.=[)ACBCA,
AcA
thus B = A..
@ Hence, by (*) for all x,z € A, = B we have z < x or f(x) < z. So

x<z orz<x.

@ Now it is easy to see that x, = sup A, € A, by (c). Moreover, x, is a
fixed point of f. Since by (b) we have

Xe < F(xe) < X = sup A,.
——
GA*

Thus x. = f(x) as claimed. ]
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Partially ordered sets

Auxiliary result

Theorem

If (X, <) is a poset such that every linearly ordered set has a supremum,
then X contains a maximal element.

Proof. Suppose for a contradiction that there is no maximal element in

X. So for every x € X there is y € X such that x < y. In other words, the
sets

Ac={yeX: x<y}#0.

Thus [[,cx Ax # 0 by the axiom of choice. Now take f € [[ x Ax, then
f(x) € Ax, so x < f(x). By the previous theorem x < f(x) for all x € X,

hence there is x, € X such that x, < f(x.) = x, contradiction! O
Theorem

The principles (A), (B), (C), and (D) are equivalent.

(MATH 411H, FALL 2025) Lecture 12 October 13, 2025 14 /28



Proof (A) = (B)

Proof (A) = (B).

Principle (B) says that if (X, <) is a poset then X has a maximal
linearly ordered set.

Let £ be a set of all linearly ordered subsets in (X, <). Note that
(L, Q) is a poset ordered by inclusion C.

Let M C L be a linearly ordered set. It is easy to see that
S=|Jm
MeM

is a linearly ordered set in (X, <) and S is the supremum for M.

Thus from the previous theorem there exists a maximal element
L € £ which is the maximal linearly ordered set in (X, <). O]
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Proof (B) = (C)

Proof (B) = (C).
@ Principle (C) states that if (X, <) is a poset and every linearly ordered
subset of X has an upper bound, then X has maximal element.

@ By (B) there is a maximal linearly ordered set L C X. From the
assumption in (C) the set L has an upper bound in X.

@ Let a € X be the upper bound for L. From maximality of L in X we
must have that a € L, or else L U {a} contradicts the maximality of L.

@ Then ais a maximal element of X. If we take x € X'\ L such that
a < x, then a = x. Otherwise we consider L U {x} which is linearly
ordered set containing L, and this contradicts the maximality of L. [J
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Proof (C) = (D)

Proof (C) = (D).
@ Principle (D) states that every nonempty set X can be well ordered.
Let W be the collection of well-orderings of subsets of X defined by

W={(E,<): EC X and < is well ordering on E}

and define the partial ordering on W as follows: If the relations <;
and <, are well orderings on E; and E; respectively, then <; precedes
<5 in the partial order if:

Q <, extends <y, i.e. E; C E; and <3 and <, agree on E;.
Q ifxe B\ Ey, theny <, x forall y € E.
@ It is easy to see that the hypotheses of (C) are satisfied on W. We
take £ C W to be a linearly ordered set in YW and we note that

ULer L is an upper bound for £. Then (C) implies that there is a
maximal element (E, <) € W.
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Proof (C) => (D) and (D) = (A)

@ This must be a well ordering on X itself. If < is a well ordering on a
proper subset E C X and xg € X \ E then < can be extended to a
well ordering on E U {xp} by declaring that x < xq for all x € E, but
this is a contradiction since (E, <) is a maximal element of W. O

Proof (D) = (A).
@ Suppose that (Xy)aca is a nonempty collection of nonempty sets. Let

X:UXa.

acA

@ Using (D) we pick a well ordering on X. For any o € A let f(«) be
the minimal element of X,. Then

fe]]X #0. O

acA
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Cardinality

Cardinality
If X and Y are nonempty sets, we define the expressions

card (X) < card (Y) (injective),

card (X) = card (Y) (bijective),

card (X) > card (Y) (surjective),

to mean that there exists ¥ : X — Y which is injective, bijective, surjective
respectively.

v
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Cardinality - pictures 1/2

card (X) < card (Y), (injective),

fiX->Y

card (X) = card (Y), (bijective)

fi:X->Y
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Cardinality - pictures 2/2

card (X) > card (Y), (surjective)

fiX->Y

@ We also define card (X) < card (Y') to mean that there is an
injection but not a bijection.

@ We also have card () < card (X) and card (X) > card (@) for all
X # 0.
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card (X) -example

Example

Let
X ={1,2,3,4,...}

Y = {101,102, 103, ..., }.
Prove that card (X) = card (Y).

Solution. Let us define f : X — Y by
f(x) = x + 100,

then f is a bijection between X and Y, so card (X) = card (Y). O
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card (X) - example

Example

Let
X =1{1,2,3,4,...}

Y ={12,22,32,42 ... L.
Prove that card (X) = card (Y).

Solution 1. Let us define f : X — Y by

f(x) = x*,
then f is a bijection between X and Y, so card (X) = card (Y).
Solution 2. Let us define g: Y — X by

f(x) = vx,

then g is a bijection between X and Y/, so card (X) = card (Y).
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card (X) - example

Example

Let
X ={1,2,3}

Y = {2,4,6,8).
Prove that card (X) < card (Y).

Solution. Note that f(x) = 2x is an injection from X to Y, so
card (X) < card (Y). On the other hand, any function from X to Y takes
at most 3 values, so it is not a surjection, so card (X) < card (Y). O
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card (X) - example

Example

Let
X =[0,1]

Y =[1,3].
Prove that card (X) = card (Y).

Solution. Let us define f : X — Y by
f(x)=2x+1,

then f is a bijection between X and Y, so card (X) = card (Y). O
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Proposition

Proposition
We have

card (X) < card (Y) <= card (Y) > card (X).

Proof (=). Assume that card (X) < card (Y). This means that there is
an injection f : X — Y. Thus f is a bijection f : X — f[X] C Y. Let !
be the inverse f 1 : f[X] — X. Pick xg € X and define g by

Yy ify e X,
8) = {gm ity € Y\ FIX] J

Then we see that g is surjective from Y to X.
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Cardinality

Proof: 1/2

Proof («<). If card (Y) > card (X), then there is a surjection g : Y — X.
Then g[Y] = X, and, consequently, g~*[{x}] are nonempty and

gl Ng Hxell=0 if x#x.

X2

X1

A

_/

md NN

g 'l & (]
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Proof: 2/2

Using the axiom of choice the set [], .y g *[{x}] # 0. Taking

felle l{x}

xeX

we see that f is an injection from X to Y. Indeed, if x; # xo, then
f(x1) € g [{x1}] and f(x) € g7 [{x2}], but

g Palng e} =0,

thus f(x1) # f(x2). O
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