

Lecture 13

Countable sets, cardinality continuum

MATH 411H, FALL 2025

October 16, 2025

Cardinality

Cardinality

If X and Y are nonempty sets, we define the expressions

$$\text{card}(X) \leq \text{card}(Y) \quad (\text{injective}),$$

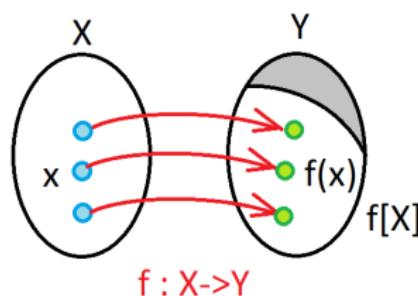
$$\text{card}(X) = \text{card}(Y) \quad (\text{bijective}),$$

$$\text{card}(X) \geq \text{card}(Y) \quad (\text{surjective}),$$

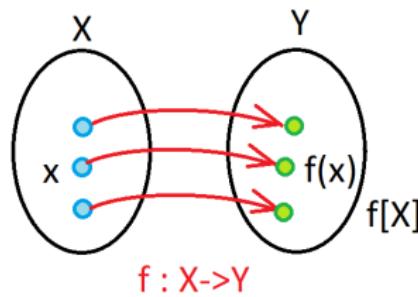
to mean that there exists $f : X \rightarrow Y$ which is injective, bijective, surjective respectively.

Cardinality - pictures 1/2

$\text{card}(X) \leq \text{card}(Y)$, (injective),

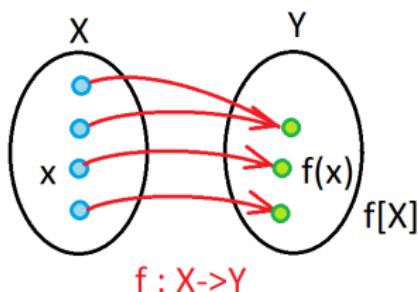


$\text{card}(X) = \text{card}(Y)$, (bijective)



Cardinality - pictures 2/2

$\text{card}(X) \geq \text{card}(Y)$, (surjective)



- We also define $\text{card}(X) < \text{card}(Y)$ to mean that there is an injection but not a bijection.
- We also have $\text{card}(\emptyset) < \text{card}(X)$ and $\text{card}(X) > \text{card}(\emptyset)$ for all $X \neq \emptyset$.

card (X) -example

Example

Let $X = \{1, 2, 3, 4, \dots\}$ and $Y = \{101, 102, 103, \dots, \}$. Prove that $\text{card}(X) = \text{card}(Y)$.

Solution. Let us define $f : X \rightarrow Y$ by $f(x) = x + 100$, then f is a bijection between X and Y , so $\text{card}(X) = \text{card}(Y)$. □

Example

Let $X = \{1, 2, 3, 4, \dots\}$ and $Y = \{1^2, 2^2, 3^2, 4^2, \dots, \}$. Prove that $\text{card}(X) = \text{card}(Y)$.

Solution. Let us define $f : X \rightarrow Y$ by

$$f(x) = x^2,$$

then f is a bijection between X and Y , so $\text{card}(X) = \text{card}(Y)$. □

card (X) - example

Example

Let $X = \{1, 2, 3\}$ and $Y = \{2, 4, 6, 8\}$. Prove that $\text{card}(X) < \text{card}(Y)$.

Solution. Note that $f(x) = 2x$ is an injection from X to Y , so $\text{card}(X) \leq \text{card}(Y)$. On the other hand, any function from X to Y takes at most 3 values, so it is not a surjection, so $\text{card}(X) < \text{card}(Y)$. □

Example

Let $X = [0, 1]$ and $Y = [1, 3]$. Prove that $\text{card}(X) = \text{card}(Y)$.

Solution. Let us define $f : X \rightarrow Y$ by

$$f(x) = 2x + 1,$$

then f is a bijection between X and Y , so $\text{card}(X) = \text{card}(Y)$. □

Proposition

Proposition

We have

$$\text{card}(X) \leq \text{card}(Y) \iff \text{card}(Y) \geq \text{card}(X).$$

Proof (\Rightarrow). Assume that $\text{card}(X) \leq \text{card}(Y)$. This means that there is an injection $f : X \rightarrow Y$. Thus f is a bijection $f : X \rightarrow f[X] \subseteq Y$. Let f^{-1} be the inverse $f^{-1} : f[X] \rightarrow X$. Pick $x_0 \in X$ and define g by

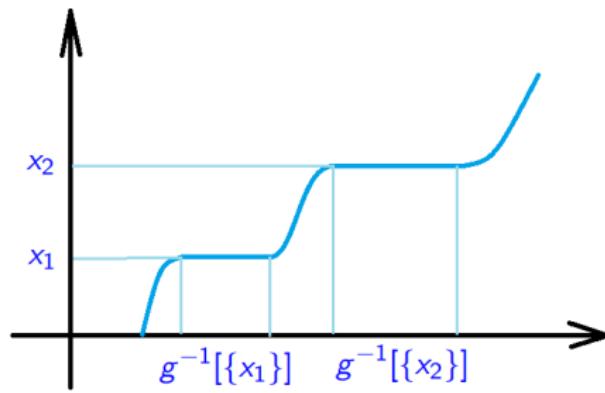
$$g(y) = \begin{cases} f^{-1}(y) & \text{if } y \in f[X], \\ g(y) = x_0 & \text{if } y \in Y \setminus f[X]. \end{cases}$$

Then we see that g is surjective from Y to X .

Proof: 1/2

Proof (\Leftarrow). If $\text{card}(Y) \geq \text{card}(X)$, then there is a surjection $g : Y \rightarrow X$. Then $g[Y] = X$, and, consequently, $g^{-1}[\{x\}]$ are nonempty and

$$g^{-1}[\{x_1\}] \cap g^{-1}[\{x_2\}] = \emptyset \quad \text{if} \quad x_1 \neq x_2.$$



Proof: 2/2

Using the axiom of choice the set $\prod_{x \in X} g^{-1}[\{x\}] \neq \emptyset$. Taking

$$f \in \prod_{x \in X} g^{-1}[\{x\}]$$

we see that f is an injection from X to Y . Indeed, if $x_1 \neq x_2$, then $f(x_1) \in g^{-1}[\{x_1\}]$ and $f(x_2) \in g^{-1}[\{x_2\}]$, but

$$g^{-1}[\{x_1\}] \cap g^{-1}[\{x_2\}] = \emptyset,$$

thus $f(x_1) \neq f(x_2)$.

□

card (X) - example

Example

Let

$$X = [0, 1],$$

$$Y = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

Prove that $\text{card}(X) \geq \text{card}(Y)$.**Solution.** One has $\text{card}(Y) \leq \text{card}(X)$. Indeed, define $f : Y \rightarrow X$ by

$$f(x) = x,$$

which is injective, so $\text{card}(X) \geq \text{card}(Y)$. □

Remark

Actually we have $\text{card}(X) > \text{card}(Y)$, which will be proved later.

Theorem

Theorem

For any sets X and Y

either $\text{card}(X) \leq \text{card}(Y)$ or $\text{card}(Y) \leq \text{card}(X)$.

Proof. Consider

$$\mathcal{I} = \{f : \overbrace{A}^{\text{dom}} \rightarrow \overbrace{B}^{\text{rng}} : f \text{ is injection and } A \subseteq X, B \subseteq Y\}$$

We say $f \preccurlyeq g$ for any $f, g \in \mathcal{I}$ if

$$\text{dom}(f) \subseteq \text{dom}(g) \quad \text{and} \quad f(x) = g(x) \text{ if } x \in \text{dom}(f).$$

- It is easy to see that $(\mathcal{I}, \preccurlyeq)$ is a poset. Moreover, $(\mathcal{I}, \preccurlyeq)$ satisfies the hypotheses of **Kuratowski–Zorn's lemma**.

Proof

- By Kuratowski–Zorn's lemma, \mathcal{I} has a maximal element $f \in \mathcal{I}$ with $\text{dom}(f) = A$ and $\text{rng}(f) = B$.
- By maximality we deduce that $A = X$ or $Y = B$. If not, there are $x_0 \in X \setminus A$ and $y_0 \in Y \setminus B$, then f can be extended to a one-to-one map from $A \cup \{x_0\}$ to $B \cup \{y_0\}$. We simply set

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \in A, \\ y_0 & \text{if } x = x_0. \end{cases}$$

- Then \tilde{f} is an extension of f , but this is a contradiction since f is a maximal element in \mathcal{I} . Hence either

$$A = X, \quad \text{then} \quad \text{card}(X) \leq \text{card}(Y),$$

or

$$B = Y, \quad \text{then} \quad \text{card}(Y) \leq \text{card}(X),$$

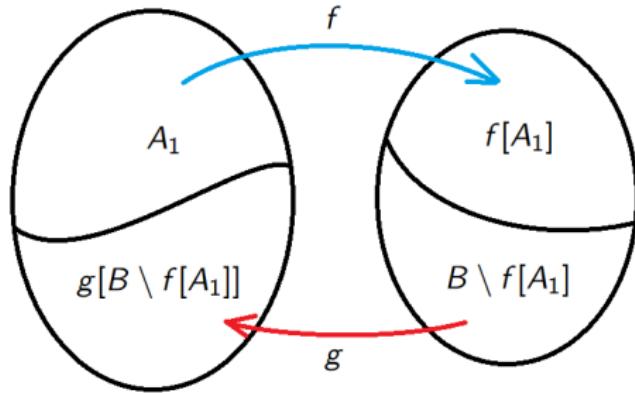
and the proof is finished. □

Banach lemma

Banach lemma

Let $f : A \rightarrow B$ and $g : B \rightarrow A$ be injections. Then there are sets A_1, A_2, B_1, B_2 such that

- ① $A_1 \cup A_2 = A$ and $A_1 \cap A_2 = \emptyset$,
- ② $B_1 \cup B_2 = B$ and $B_1 \cap B_2 = \emptyset$,
- ③ $f[A_1] = B_1$ and $f[A_2] = B_2$.



Proof

Proof. Consider the map $\Phi : P(A) \rightarrow P(A)$ defined by

$$\Phi(X) = A \setminus g[B \setminus f[X]] \quad \text{for } X \in P(X).$$

Since g is injective we note that

$$\Phi \left[\bigcup_{t \in I} A_t \right] = \bigcup_{t \in I} \Phi[A_t]$$

for any family $(A_t)_{t \in I}$ such that $A_t \subseteq A$ for all $t \in I$. Consider

$$\Omega = \emptyset \cup \Phi[\emptyset] \cup \Phi \circ \Phi[\emptyset] \cup \dots \cup \overbrace{\Phi \circ \Phi \circ \dots \circ \Phi}^n[\emptyset] \cup \dots,$$

in other words

$$\Omega = \bigcup_{n=0}^{\infty} \Phi^n[\emptyset].$$

Proof

Then

$$\Phi[\Omega] = \bigcup_{n=0}^{\infty} \Phi^{n+1}[\emptyset] = \bigcup_{n=1}^{\infty} \Phi^n[\emptyset] = \left(\bigcup_{n=1}^{\infty} \Phi^n[\emptyset] \right) \cup \emptyset = \bigcup_{n=0}^{\infty} \Phi^n[\emptyset] = \Omega,$$

thus the set Ω is a fixed point of Φ , i.e. $\Phi[\Omega] = \Omega$. Taking

$$A_1 = \Omega, \quad A_2 = A \setminus A_1,$$

$$B_1 = f[A_1], \quad B_2 = B \setminus B_1$$

we obtain

$$A_1 = \Phi[A_1] = A \setminus g[B \setminus f[A_1]] = A \setminus g[B \setminus B_1] = A \setminus g[B_2],$$

thus

$$A_2 = A \setminus A_1 = A \setminus (A \setminus g[B_2]) = g[B_2].$$

Cantor–Bernstein–Schröder theorem

Cantor–Bernstein–Schröder theorem

If $\text{card}(X) \leq \text{card}(Y)$ and $\text{card}(Y) \leq \text{card}(X)$, then $\text{card}(X) = \text{card}(Y)$.

Proof. By Banach lemma there are A_1, A_2, B_1, B_2 such that

$$A_1 \cup A_2 = X, \quad f[A_1] = B_1, \quad A_1 \cap A_2 = \emptyset$$

$$B_1 \cup B_2 = X, \quad g[B_2] = A_2, \quad B_1 \cap B_2 = \emptyset$$

whenever $f : X \rightarrow Y$ and $g : Y \rightarrow X$ are injections. Define $h : X \rightarrow Y$ by setting

$$h(x) = \begin{cases} f(x) & \text{if } x \in A_1, \\ g^{-1}(x) & \text{if } x \in A_2. \end{cases}$$

Then we see that h is a bijection between X and Y . □

Cantor–Bernstein–Schröder theorem - example

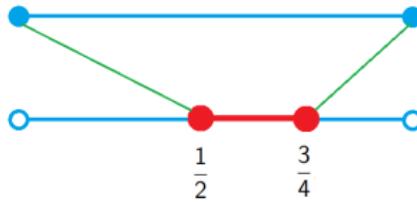
Example

Let $X = [0, 1]$, $Y = (0, 1)$. Prove that $\text{card}(X) = \text{card}(Y)$.

Solution. Note that $\text{card}(Y) \leq \text{card}(X)$, because $f(x) = x$ is injective. Then, let us prove that $\text{card}(X) \leq \text{card}(Y)$. We define

$$g(x) = \frac{x}{4} + \frac{1}{2}.$$

One can check that g is injective, so, by **Cantor–Bernstein–Schröder theorem**, $\text{card}(X) = \text{card}(Y)$. □



Cantor's theorem

Cantor's Theorem

For any set X we have $\text{card}(X) < \text{card}(P(X))$.

Proof. The map $f : X \rightarrow P(X)$ defined by $f(x) = \{x\}$ is an injection from X to $P(X)$. Thus $\text{card}(X) \leq \text{card}(P(X))$.

We now show that there is no bijection between X and $P(X)$. Let $g : X \rightarrow P(X)$ and consider the set

$$Y = \{x \in X : x \notin g(x)\} \in P(X).$$

Then we claim that $Y \notin g[X]$.

Proof

If

$$Y = \{x \in X : x \notin g(x)\} \in g[X],$$

then there is $x_0 \in X$ so that $g(x_0) = Y$.

- On the one hand

$$x_0 \in Y \iff x_0 \notin g(x_0).$$

- On the other hand

$$x_0 \in Y \iff x_0 \in g(x_0).$$

- Thus

$$x_0 \in g(x_0) \iff x_0 \notin g(x_0),$$

which is impossible, and we conclude $\text{card}(X) < \text{card}(P(X))$. □

Countable set

Countable set

A set X is called **countable (or denumerable)** if

$$\text{card}(X) \leq \text{card}(\mathbb{N}).$$

Example 1

In particular, finite sets are countable and for these sets it is convenient to interpret $\text{card}(X)$ as the number of elements in X :

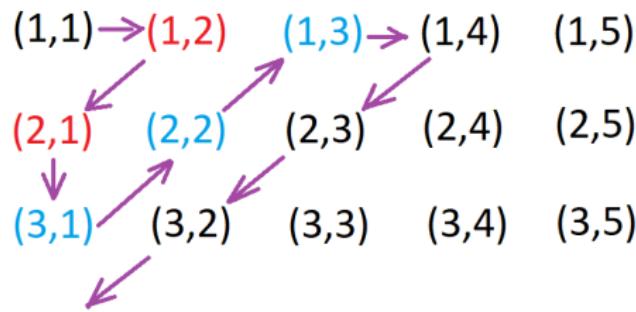
$$\text{card}(X) = n \iff \text{card}(X) = \text{card}(\{1, 2, \dots, n\}).$$

Example 2

If X is countable but not finite, we say that X is **countably infinite**.

Countable sets - example

The set $\mathbb{N} \times \mathbb{N}$ is countable, i.e. $\text{card}(\mathbb{N} \times \mathbb{N}) = \text{card}(\mathbb{N})$. Note that



can be listed as a sequence

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), (5, 1), (4, 2), ..

establishing a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} .

Proposition

Proposition

- (a) If X and Y are countable, so is $X \times Y$.
- (b) If A is countable and X_α is countable for all $\alpha \in A$, then

$$\bigcup_{\alpha \in A} X_\alpha \text{ is countable.}$$

- (c) If X is countably infinite then $\text{card}(X) = \text{card}(\mathbb{N})$.

Proof of (a). To prove (a) it suffices to show that $\text{card}(\mathbb{N} \times \mathbb{N}) = \text{card}(\mathbb{N})$, but it was shown in the previous example.

Proof of (b). For each $\alpha \in A$ there is a surjection $f_\alpha : \mathbb{N} \rightarrow X_\alpha$ (here we have used the axiom of choice).

Proof of Proposition 1/2

Then the map $f : \mathbb{N} \times \mathbb{N} \rightarrow \bigcup_{\alpha \in A} X_\alpha$ defined by

$$f(n, \alpha) = f_\alpha(n)$$

is surjective and we are done. Alternatively, to prove

$$\text{card} \left(\bigcup_{\alpha \in A} X_\alpha \right) \leq \text{card} (\mathbb{N}),$$

we can also proceed as follows

$$X_1 = \{x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}, \dots\}$$

$$X_2 = \{x_{2,1}, x_{2,2}, x_{2,3}, x_{2,4}, \dots\}$$

$$X_3 = \{x_{3,1}, x_{3,2}, x_{3,3}, x_{3,4}, \dots\}$$

...

$$\bigcup_{j \in \mathbb{N}} X_j = \{x_{1,1}, \textcolor{red}{x_{1,2}}, \textcolor{red}{x_{2,1}}, \textcolor{blue}{x_{1,3}}, \textcolor{blue}{x_{2,2}}, \textcolor{blue}{x_{3,1}}, \dots\}.$$

Proof of Proposition 2/2

Proof of (c). We can assume that X is an infinite subset of \mathbb{N} .

Let $f(1)$ be the smallest element of X and define inductively

$$f(n) = \min \{X \setminus \{f(1), f(2), \dots, f(n-1)\}\}.$$

Then it can be easily verified that f is a bijection from \mathbb{N} to X . □

Corollary

\mathbb{Z} and \mathbb{Q} are countable.

Proof. One has $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\}$ and

$$\mathbb{Q} = \bigcup_{n \in \mathbb{N}} \left\{ \frac{m}{n} : m \in \mathbb{Z} \right\}.$$

Note also that

$$\text{card}(\mathbb{Q}) = \text{card}(\mathbb{N}) = \text{card}(\mathbb{N} \cup \{0\}) = \text{card}(\mathbb{Z}).$$
□

Countable sets - example

Example

Prove that the following set is countable $X = \{(n, m, k) : n, m, k \in \mathbb{N}\}$.

Solution. Fix $k \in \mathbb{N}$. It is clear that $f(n, m) = (n, m, k)$ is a bijection between $\mathbb{N} \times \mathbb{N}$ and $A_k = \{(n, m, k) : n, m \in \mathbb{N}\}$, so A_k is countable. Then we write $X = \bigcup_{k \in \mathbb{N}} A_k$ and use the previous theorem. □

Example

Prove that the set $\mathbb{Q} \times \mathbb{Q}$ is countable.

Solution. Fix $q \in \mathbb{Q}$. It is easy to check that $f(x) = (x, q)$ is bijection between \mathbb{Q} and $A_q = \{(r, q) : r \in \mathbb{Q}\}$. Hence A_q is countable. We write

$$\mathbb{Q} \times \mathbb{Q} = \bigcup_{q \in \mathbb{Q}} A_q$$

and use the previous theorem. □

Proposition

Proposition

$\{0, 1\}^{\mathbb{N}_0}$ is uncountable.

Proof. Suppose that the set $\{0, 1\}^{\mathbb{N}_0}$ is countable, then

$$\{0, 1\}^{\mathbb{N}_0} = \{\alpha_0, \alpha_1, \alpha_2, \dots\}.$$

$$\alpha_0 : \alpha_0(0), \alpha_0(1), \alpha_0(2), \dots$$

$$\alpha_1 : \alpha_1(0), \alpha_1(1), \alpha_1(2), \dots$$

$$\alpha_2 : \alpha_2(0), \alpha_2(1), \alpha_2(2), \dots$$

...

consider a new sequence $\Delta : \mathbb{N}_0 \rightarrow \{0, 1\}$ defined by $\Delta(n) = 1 - \alpha_n(n)$.
 Then $\Delta \neq \alpha_n$ for all $n \in \mathbb{N}_0$, thus $\Delta \notin \{\alpha_n : n \in \mathbb{N}_0\}$, but $\Delta \in \{0, 1\}^{\mathbb{N}_0}$,
 contradiction. □

Cardinality continuum

Cardinality continuum

A set X is said to have cardinality **continuum** if

$$\text{card}(X) = \text{card}(\mathbb{R}).$$

We shall write $\text{card}(X) = \mathfrak{c}$ iff $\text{card}(X) = \text{card}(\mathbb{R})$.

Theorem

$$\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}}) = \text{card}(\mathbb{R}).$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}})$: 1/2

We first show that

$$\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}}).$$

Define $F : P(\mathbb{N}) \rightarrow \{0, 1\}^{\mathbb{N}}$ by setting

$$F(A) = \chi_A \in \{0, 1\}^{\mathbb{N}},$$

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Example

If $A = \{1, 2, 3, 5, 7, 9\}$, then χ_A can be identified with the sequence

$$(\underbrace{1}_{1}, \underbrace{1}_{2}, \underbrace{1}_{3}, \underbrace{0}_{4}, \underbrace{1}_{5}, \underbrace{0}_{6}, \underbrace{1}_{7}, \underbrace{0}_{8}, \underbrace{1}_{9}, \underbrace{0}_{10}, \underbrace{0}_{11}, \dots)$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\{0, 1\}^{\mathbb{N}})$: 2/2

Our aim is to show that F is a bijection.

- Let $A, B \subseteq \mathbb{N}$ be such that $A \neq B$, then we show that $F(A) \neq F(B)$.
Since $A \neq B$ (wlog) there exists $x_0 \in A \setminus B$, thus

$$1 = \chi_A(x_0) \neq \chi_B(x_0) = 0 \iff F(A) \neq F(B),$$

which proves that $F : P(\mathbb{N}) \rightarrow \{0, 1\}^{\mathbb{N}}$ is injective.

- To show that F is surjective take $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}}$ and consider

$$E = \{n \in \mathbb{N} : \alpha_n = 1\}.$$

then

$$F(E) = \chi_E = \alpha \iff 1 = \alpha_n = \chi_E(n) = 1.$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R})$: 1/3

- It remains to prove that

$$\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R}).$$

- We first show that $\text{card}(P(\mathbb{N})) \leq \text{card}(\mathbb{R})$.
- We now construct an injection $f : P(\mathbb{N}_0) \rightarrow \mathbb{R}$ by setting

$$f(A) = \sum_{n \in A} \frac{2}{3^{n+1}} \quad \text{for any } A \subseteq \mathbb{N}_0.$$

- $f(\mathbb{N}_0) = 1$, since

$$\sum_{n=0}^N \frac{2}{3^{n+1}} = \frac{2}{3} \frac{1 - \frac{1}{3^{N+1}}}{1 - \frac{1}{3}} = 1 - \frac{1}{3^{N+1}} \leq 1.$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R})$: 2/3

Now we show that $f : P(\mathbb{N}_0) \rightarrow \mathbb{R}$ is injective. Let $A, B \subseteq \mathbb{N}$ be such that $A \neq B$. Let

$$n_0 = \min\{n \in \mathbb{N}_0 : \chi_A(n) \neq \chi_B(n)\}.$$

Wlog we can assume $n_0 \in B \setminus A$. Then

$$\begin{aligned} f(A) &= \sum_{n \in A} \frac{2}{3^{n+1}} = \sum_{\substack{n \in A \\ n < n_0}} \frac{2}{3^{n+1}} + \sum_{\substack{n \in A \\ n > n_0}} \frac{2}{3^{n+1}} \\ &\leq \sum_{\substack{n \in B \\ n < n_0}} \frac{2}{3^{n+1}} + \sum_{n \in (n_0, \infty)} \frac{2}{3^{n+1}} \\ &< \sum_{\substack{n \in B \\ n < n_0}} \frac{2}{3^{n+1}} + \frac{2}{3^{n_0+1}} \leq f(B). \end{aligned}$$

Proof of $\text{card}(P(\mathbb{N})) = \text{card}(\mathbb{R})$: 3/3

- We have used $f((n_0, \infty) \cap \mathbb{N}_0) = \frac{1}{3^{n_0+1}} < \frac{2}{3^{n_0+1}}$ (check this!). Hence $f(A) \neq f(B)$ as desired, yielding $\text{card}(P(\mathbb{N}_0)) \leq \text{card}(\mathbb{R})$.
- Since $\text{card}(\mathbb{N}_0) = \text{card}(\mathbb{Q})$ thus $\text{card}(P(\mathbb{N}_0)) = \text{card}(P(\mathbb{Q}))$. Now define $g : \mathbb{R} \rightarrow P(\mathbb{Q})$ by

$$g(x) = \{r \in \mathbb{Q} : r < x\} \quad \text{for any } x \in \mathbb{R}.$$

It is easy to see that g is injective, thus

$$\text{card}(\mathbb{R}) \leq \text{card}(P(\mathbb{Q})) = \text{card}(P(\mathbb{N}_0)).$$

By the **Cantor–Bernstein–Schröder** theorem

$$\text{card}(\mathbb{R}) = \text{card}(P(\mathbb{N}_0)) = \text{card}(\{0, 1\}^{\mathbb{N}}). \quad \square$$

Remarks

- A** If $\text{card}(X) \geq \mathfrak{c}$, then X is uncountable.
- B** $\text{card}(\mathbb{R} \times \mathbb{R}) = \text{card}(\mathbb{R})$.
- C** $\text{card}(\{0,1\}^{\mathbb{N}_0} \times \{0,1\}^{\mathbb{N}_0}) = \text{card}(\{0,1\}^{\mathbb{N}_0})$.
- D** $\text{card}(\mathbb{R}^k) = \text{card}(\mathbb{R})$ for any $k \in \mathbb{N}$.
- E** If $\text{card}(X) \leq \mathfrak{c}$ and $\text{card}(Y) \leq \mathfrak{c}$, then $\text{card}(X \times Y) \leq \mathfrak{c}$.
- F** If $\text{card}(A) \leq \mathfrak{c}$ and $\text{card}(X_\alpha) \leq \mathfrak{c}$ for any $\alpha \in A$, then

$$\text{card} \left(\bigcup_{\alpha \in A} X_\alpha \right) \leq \mathfrak{c}.$$

Uncountable sets - example

Example

Prove that $\text{card}(\mathbb{R}) = \text{card}([0, 1])$.

Solution. Define $f : \mathbb{R} \rightarrow [0, 1]$ by $f(x) = \frac{x}{|x|+1}$. One can verify that f is a bijection between \mathbb{R} and $[0, 1]$. □

Example

Determine $\text{card}(X)$, where X is

$$\{[n, n+1) : n \in \mathbb{N}\}.$$

Solution. We will prove that $\text{card}(X) = \text{card}(\mathbb{N})$. Define

$$f([n, n+1)) = n.$$

It is easy to verify that f is bijection between \mathbb{N} and X . □

Uncountable sets - example

Example

Determine $\text{card}(X)$, where X is any infinite set of pairwise disjoint closed intervals.

Solution. We will prove that X is **countably infinite**. Let us define the function $f : X \rightarrow \mathbb{Q}$ by setting

$$f(I) = q,$$

where q is any rational number contained in interval $I \in X$. Then f is injective, so $\text{card}(X) \leq \text{card}(\mathbb{N})$. □