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Proposition

Proposition

Let (X, p) be a metric space, E C X is closed iff for every sequence
(xn)nen C E such that x, ;552 x € X we have x € E.

n

Proof. (=) Suppose that E is closed and consider (xp)neny C E such
that x, ;52 x € X. We have to show that x € E. Observe that

B(x,r)NE#( forany r>0.

But x, 7= x iff x, € B(x, r) for all but finitely many n € N, and
consequently we conclude that x € cl (E), hence x € E.

(<) Conversely, if x € cl (E) then there is a sequence (x,)neny C E so
that x, ;552 x € ¢l (E) C X thus by our assumption x € E. O
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Theorem

Theorem

The subsequential limits of a sequence (x,)nen in @ metric space (X, p)
form a closed subset of X.

Proof. Let E* be the set of subsequential limits of (x,)nen and let g be
an accumulation point of E*. We will show that g € E*.

@ Choose n; € N so that E* 3 x,, # g (if no such point exists then E*
has only one point and there is nothing to prove). Set

6= p(ana q) > 0.

@ Suppose that nq,...,n;_1 have been chosen. Since q is an
accumulation point of E* there is x € E* so that

p(x,q) < 62771,

Since x € E* there is n; > n;_1 such that p(x, x, ) < 62771,
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N
Proof

@ Hence, by the triangle inequality
p(q, xn.) < p(q,x) + p(x, xp.) < 627 L 4 52771 = 527,
@ This means that (x,, )ien converges to g, i.e.
lim x,, =q <= lim p(x,,q9)=0
i—o0 i—oo0

thus g € E*.
@ In fact, we have shown that

acc (E*) C E™,

which means that E* is closed. O
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Cauchy sequences and complete spaces

Cauchy sequences

Cauchy sequence

A sequence (x,)nen is @ metric space (X, p) is said to be a Cauchy
sequence if for every € > 0 there is N. € N such that

m,n> N; implies  p(xm,%n) < €.

Complete spaces

A subset of a metric space (X, p) is called complete if every Cauchy
sequence in E converges and its limit is in E.
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Cauchy sequences and complete spaces

Complete spaces - examples

Example 1
The set of real numbers R is complete.

Example 2
The open unit interval (0,1) is not complete space in R.

@ Indeed, let x, = % for n € N, then x, € (0,1) and (x»)nen is Cauchy
in (0,1), but 0, which is the limit of (x)nen is not in (0, 1).

Example 3

[0, 1] is complete space in R.
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Cauchy sequences and complete spaces

Some facts

Fact 1
If (xn)nen is Cauchy in a metric space (X, p) then (xp)nqen is bounded.

Fact 2

If (xn)nen is @ Cauchy sequence in a metric space (X, p) and
liMk—00 P(Xn,, x) = 0 for some (xp, )ken, then

lim p(xn, x) = 0.

n—oo

Proposition
A closed subset of a complete metric space is complete and a complete
subset of an arbitrary metric space is closed.
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Proof of the Proposition

Proof. If (X, p) is complete, E C X is closed and (xp)nen is a Cauchy
sequence in E, then (x,)pen has a limit in X. But cl (E) = E, thus
x€cl(E), sox¢€E.

If E C X is complete and x € cl (E) then we know that there exists
(xn)nen C E converging to x. But (x,)nen is Cauchy so its limit lies in E,
thus cl (E) = E as desired. O

Remark

In the second part of the proof we have used the fact that if (x,)nen
converges (say to x in a metric space (X, p)) then (xp)nen is Cauchy.
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Cauchy sequences and complete spaces

Cantor intersection theorem

Cantor intersection theorem

A metric space is complete iff for every decreasing sequence
FRFDOFRDOFRD...

of nonempty closed sets in X with diam (Fj,) 7=z 0, one has

ﬂ Fn={x0} forsome xp€ X.
neN
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Proof (=):

Assume that (X, p) is complete.
o Let (Fy)nen be such that F1 O F» O F3 D ... and diam (F,) ;5= 0.
@ Choose x, € Fp,, let € > 0 and pick N. € N such that diam (F,) < ¢
for all n > N.. Note that for n > m > N. we have

xn € Fn C Fp,
S0
P(Xn, Xm) < diam (Fp) < e.

@ This ensures that (x,)nen is a Cauchy sequence and, consequently,
converges to some xp € X. Since each F, is closed then xo € F, for
all n €N, thus xo € (,en Fo-

@ Suppose there is y # xg so that y € [),cx Fa, then

0 < p(x0,y) < diam (F,) 752 0,
contradiction. Thus (,cn Fn = {X0}.
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Proof («—):

To prove the converse implication assume that (x,)nen is a Cauchy
sequence.

o Let
Fn=cl ({xm : m>n}).

Fact

diam (E) = diam (cl (E)).

@ Weseethat F 2D F, D F3 D ... and

diam (F,) = diam ({xm : m > n}) == 0.
Thus (e Fn = {x0} for some xp € X.

e Finally, we conclude lim,_o p(xn, X0) = 0 as desired. O
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Compact sets

Coverings and compact sets

Coverings
Let (X, p) be a metric space.

o If EC X and (Va)aea is a family of sets such that £ C (J,c4 Vo
then (Vi )aea is called a cover of E and E is said to be covered by

the V,'s.
e If additionally each V,, is open (V4 )aea is called an open cover of E.

Heine—Borel property

A subset K of a metric space (X, p) is said to be compact if every open
cover of K contains a finite subcover. More explicitly, if (V,)aeca is an
open cover of K then there are finitely many a1, as,...,a, € A such that
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Compact sets

Compact sets - examples

Example 1
Every finite subset of R is compact.

Example 2
K ={% : ne N}uU{0} is compact in R.

@ Indeed, let (V,)aca be an open cover of K, then there is ag € A such
that 0 € V,, since Iim,Hoo% =0 and V,, is open thus it contains all
but finitely many %'s. In other words, there is ng € N such that
n > ng implies % € Vi,. Then, for each j € {1,2,...,np — 1} we can
pick o € A so that Jl € Vi, and we see

v
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Compact sets

Theorem

Theorem
Compact subsets of metric spaces are closed. J

Proof. Let K be compact subset of a metric space X.
@ We shall prove that K€ is open in X. Let x € X \ K. If y € K, let

Vy, = B(x,r,) and W, = B(y,r),
where r, < 3p(x,y), then V, N W, = 0.

W, = B(y,r,) V, = B(x,r,)

e\

(MATH 411H, FALL 2025) Lecture 15 October 23, 2025 14 /27




Proof

@ Since K is compact K C UyeK , then we can find y1,...,yp, € K

so that .
U —

o If V=V, N...NV, then V is an open set containing x and

Vnw=90.

@ Hence x € V C W€ C K€ thus x is an interior point of K€. ]
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Compact sets

Theorem

Theorem
Closed subsets of compact sets are compact.

Proof. Suppose that F C K C X and F is closed in X and K is compact.
o Let (V4)aca be an open cover of F. Observe that

FCKC Vo, U_F°€ .
cke |V
acA open
——
FC

@ The set K is compact thus there is a finite subcover of

(Va)aca U{F}

that covers K.

@ But F C K hence this is also a finite subcover of F upon removing
F€ as desired. O
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Theorem

Theorem

If (Ka)aca is a collection of compact sets of a metric space (X, p) such
that the intersection of every finite subcollection of (K, )aca is non-empty

then
) Ko # 0.

acA

Proof. Fix a member K, of (Ky)aca and set G, = K¢.
@ Suppose that

(N Ka=Ku| [] Kol =0

a€cA acA\{a}
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Compact sets

Proof
@ Then
Ko € |J Ga
acA\{ap}
@ Since K,, is compact there are aq,...,a, € A so that
n
Kao € | Go;-
j=1
@ Hence

Koo NKay NN Ky, =0,

which is a contradiction. So we must have

() Ko #0.

a€A
as desired.
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Totally bounded sets

Totally bounded set

Let (X, p) be a metric space, E C X is called totally bounded if for every
g > 0, the set E can be covered by finitely many balls of radius ¢.

@ It means that there is N. € N so that

=

E C| |B(xj,e) forsome xi,x2,...,xn. € X.
1

J

Remark 1
If E is totally bounded so is cl (E). Indeed,

Ne

EC U (x,6) = cl (E) € | B(xj, 22).
j=1
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Compact sets

Remark

Remark 2
Every totally bounded set E is bounded. If
Ne

x,y € EC U B(xj,¢),
j=1

then say x € B(x1,¢), y € B(x,¢) and

p(X7y) < p(X,Xl) + p(X17X2) + p(X27y)
<e+max{p(xi,x;) : 1<i,j <N} +e.

@ The converse is false in general.
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Compact sets

Characterization of compactness

Theorem
If E is a subset of a metric space (X, p) the following are equivalent.

@ E is complete and totally bounded.

@ (The Bolzano—\Weierstrass property) Every sequence in E has a
subsequence that converges to a point of E.

@ (The Heine—Borel property) If (V,,)aca is an open cover of E then
there is finite F C A such that (V,).cF covers E.

Remark
This theorem can be thought of as a characterization of compactness in
metric spaces.
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Proof of (a) = (b): 1/2

Suppose that (a) holds and (xp)seny € E. We find (X, )ken such that
p(Xn; X0) == 0 for some xo € E.

@ E can be covered by finitely many balls of radius 1/2. At least one of
them must contain x, for infinitely many n € N:

e say x, € By for n € N; C N and card (N;) = card (N).

@ Now E N By can be covered by finitely many balls of radius 1/4. At
least one of them must contain x, for infinitely many n € N:

e say x, € B, for n € N, C Nj and card (N,) = card (N).

@ Continuing inductively we obtain a sequence of balls B; of radius 27J
and decreasing sequence of subsets N; of N such that

e x, € Bj for n € Nj, Nj;; CN; CN, card (N;) = card (N).
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Proof of (a) = (b): 2/2

@ Pick n; € N1, np € Ny, ... such that
m<m<n<....
@ Then (xy,)jen is a Cauchy sequence for
P(Xn;» Xny) < 217 i k>,
since Xnjs Xn, € B; and
diam (B;) < 2'.
@ Since E is complete the sequence (x,, )ken has a limit in E and the

implication (a) = (b) is proved. O
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Proof of (b) = (a)

We show that of either condition in (a) fails then so does (b).

e If E is not complete there is a Cauchy sequence (xp)neny C E, with no
limit in E. No subsequence of (x,)nen can converge in E, for
otherwise the whole sequence would converge to the same limit.

@ On the other hand if E is not totally bounded, let € > 0 be such that
E cannot be covered by finitely many balls of radius ¢ > 0. Choose
Xxp € E inductively as follows. Let x; € E, and having chosen

X1,...,Xp pick
n

Xn+1 € E\ U B(Xj,E),
j=1

then p(xn, xm) > € for all n # m, so (x,)nen has no convergent
subsequence. Thus (b) = (a). O
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Proof of theorem (a) and (b) = (¢)

It suffices to show that if (b) holds and (V,)aca is an open cover of E
then the following claim holds:

Claim
There exists € > 0 such that every ball of radius € > 0 that intersects E is
contained in some V,,.

Then E can be covered by finitely many such balls by (a) this allows us to
find a finite subcover of (Vy)aca.
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Proof of Claim

Suppose for a contradiction that the claim is not true.

@ For each n € N there is a ball B, of radius 27" such that B, N E # ()
and B, is contained in no V,.

@ Pick x, € B, N E. Using (b), (by passing to a subsequence if
necessary) we may assume limp_o p(xn, x) = 0 for some x € E.

@ We have x € V,, for some o € A and since V,, is open there is e > 0
so that B(x,e) C V,.

e If nis large enough so that p(x,,x) < § and 27" < £, then
B, C B(x,e) C V4, which is contradiction.

@ Indeed, pick y € B, then

p(y:x) < p(xn,y) + pxn, x) <277 + = <e.

£

3
This completes the proof of the implication (a) and (b) = (c). O
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Proof of (c) = (b)

o If (xn)nen C E, with no convergent sequence, for each x € E there is
a ball By centered at x that contains x, for only finitely many n.

@ Otherwise, some sequence would converge to x. Then

(BX)XGE

is a cover of E by open sets with no finite subcover. O
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