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Proposition

Proposition

Let (X , ρ) be a metric space, E ⊆ X is closed iff for every sequence
(xn)n∈N ⊆ E such that xn −−−→n→∞ x ∈ X we have x ∈ E .

Proof. (=⇒) Suppose that E is closed and consider (xn)n∈N ⊆ E such
that xn −−−→n→∞ x ∈ X . We have to show that x ∈ E . Observe that

B(x , r) ∩ E ̸= ∅ for any r > 0.

But xn −−−→n→∞ x iff xn ∈ B(x , r) for all but finitely many n ∈ N, and
consequently we conclude that x ∈ cl (E ), hence x ∈ E .

(⇐=) Conversely, if x ∈ cl (E ) then there is a sequence (xn)n∈N ⊆ E so
that xn −−−→n→∞ x ∈ cl (E ) ⊆ X thus by our assumption x ∈ E .
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Theorem

Theorem

The subsequential limits of a sequence (xn)n∈N in a metric space (X , ρ)
form a closed subset of X .

Proof. Let E ∗ be the set of subsequential limits of (xn)n∈N and let q be
an accumulation point of E ∗. We will show that q ∈ E ∗.

Choose n1 ∈ N so that E ∗ ∋ xn1 ̸= q (if no such point exists then E ∗

has only one point and there is nothing to prove). Set

δ = ρ(xn1 , q) > 0.

Suppose that n1, . . . , ni−1 have been chosen. Since q is an
accumulation point of E ∗ there is x ∈ E ∗ so that

ρ(x , q) < δ2−i−1.

Since x ∈ E ∗ there is ni > ni−1 such that ρ(x , xni ) < δ2−i−1.
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Proof

Hence, by the triangle inequality

ρ(q, xni ) ≤ ρ(q, x) + ρ(x , xni ) < δ2−i−1 + δ2−i−1 = δ2−i .

This means that (xni )i∈N converges to q, i.e.

lim
i→∞

xni = q ⇐⇒ lim
i→∞

ρ(xni , q) = 0

thus q ∈ E ∗.

In fact, we have shown that

acc (E ∗) ⊆ E ∗,

which means that E ∗ is closed.
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Cauchy sequences and complete spaces

Cauchy sequences

Cauchy sequence

A sequence (xn)n∈N is a metric space (X , ρ) is said to be a Cauchy
sequence if for every ε > 0 there is Nε ∈ N such that

m, n ≥ Nε implies ρ(xm, xn) < ε.

Complete spaces

A subset of a metric space (X , ρ) is called complete if every Cauchy
sequence in E converges and its limit is in E .

(MATH 411H, FALL 2025) Lecture 15 October 23, 2025 5 / 27



Cauchy sequences and complete spaces

Complete spaces - examples

Example 1

The set of real numbers R is complete.

Example 2

The open unit interval (0, 1) is not complete space in R.
Indeed, let xn = 1

n for n ∈ N, then xn ∈ (0, 1) and (xn)n∈N is Cauchy
in (0, 1), but 0, which is the limit of (xn)n∈N is not in (0, 1).

Example 3

[0, 1] is complete space in R.
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Cauchy sequences and complete spaces

Some facts

Fact 1

If (xn)n∈N is Cauchy in a metric space (X , ρ) then (xn)n∈N is bounded.

Fact 2

If (xn)n∈N is a Cauchy sequence in a metric space (X , ρ) and
limk→∞ ρ(xnk , x) = 0 for some (xnk )k∈N, then

lim
n→∞

ρ(xn, x) = 0.

Proposition

A closed subset of a complete metric space is complete and a complete
subset of an arbitrary metric space is closed.
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Cauchy sequences and complete spaces

Proof of the Proposition

Proof. If (X , ρ) is complete, E ⊆ X is closed and (xn)n∈N is a Cauchy
sequence in E , then (xn)n∈N has a limit in X . But cl (E ) = E , thus
x ∈ cl (E ), so x ∈ E .

If E ⊆ X is complete and x ∈ cl (E ) then we know that there exists
(xn)n∈N ⊆ E converging to x . But (xn)n∈N is Cauchy so its limit lies in E ,
thus cl (E ) = E as desired.

Remark

In the second part of the proof we have used the fact that if (xn)n∈N
converges (say to x in a metric space (X , ρ)) then (xn)n∈N is Cauchy.
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Cauchy sequences and complete spaces

Cantor intersection theorem

Cantor intersection theorem

A metric space is complete iff for every decreasing sequence

F1 ⊇ F2 ⊇ F3 ⊇ . . .

of nonempty closed sets in X with diam (Fn) −−−→n→∞ 0, one has⋂
n∈N

Fn = {x0} for some x0 ∈ X .
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Cauchy sequences and complete spaces

Proof (=⇒):

Assume that (X , ρ) is complete.

Let (Fn)n∈N be such that F1 ⊇ F2 ⊇ F3 ⊇ . . . and diam (Fn) −−−→n→∞ 0.
Choose xn ∈ Fn, let ε > 0 and pick Nε ∈ N such that diam (Fn) < ε
for all n ≥ Nε. Note that for n ≥ m ≥ Nε we have

xn ∈ Fn ⊆ Fm,

so
ρ(xn, xm) ≤ diam (Fm) < ε.

This ensures that (xn)n∈N is a Cauchy sequence and, consequently,
converges to some x0 ∈ X . Since each Fn is closed then x0 ∈ Fn for
all n ∈ N, thus x0 ∈

⋂
n∈N Fn.

Suppose there is y ̸= x0 so that y ∈
⋂

n∈N Fn, then

0 < ρ(x0, y) ≤ diam (Fn) −−−→n→∞ 0,

contradiction. Thus
⋂

n∈N Fn = {x0}.
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Cauchy sequences and complete spaces

Proof (⇐=):

To prove the converse implication assume that (xn)n∈N is a Cauchy
sequence.

Let
Fn = cl ({xm : m ≥ n}) .

Fact

diam (E ) = diam (cl (E )).

We see that F1 ⊇ F2 ⊇ F3 ⊇ . . . and

diam (Fn) = diam ({xm : m ≥ n}) −−−→n→∞ 0.

Thus
⋂

n∈N Fn = {x0} for some x0 ∈ X .

Finally, we conclude limn→∞ ρ(xn, x0) = 0 as desired.

(MATH 411H, FALL 2025) Lecture 15 October 23, 2025 11 / 27



Compact sets

Coverings and compact sets

Coverings

Let (X , ρ) be a metric space.

If E ⊆ X and (Vα)α∈A is a family of sets such that E ⊆
⋃

α∈A Vα,
then (Vα)α∈A is called a cover of E and E is said to be covered by
the Vα’s.

If additionally each Vα is open (Vα)α∈A is called an open cover of E .

Heine–Borel property

A subset K of a metric space (X , ρ) is said to be compact if every open
cover of K contains a finite subcover. More explicitly, if (Vα)α∈A is an
open cover of K then there are finitely many α1, α2, . . . , αn ∈ A such that

K ⊆
n⋃

j=1

Vαj .
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Compact sets

Compact sets - examples

Example 1

Every finite subset of R is compact.

Example 2

K = { 1
n : n ∈ N} ∪ {0} is compact in R.

Indeed, let (Vα)α∈A be an open cover of K , then there is α0 ∈ A such
that 0 ∈ Vα0 since limn→∞

1
n = 0 and Vα0 is open thus it contains all

but finitely many 1
n ’s. In other words, there is n0 ∈ N such that

n ≥ n0 implies 1
n ∈ Vα0 . Then, for each j ∈ {1, 2, . . . , n0 − 1} we can

pick αj ∈ A so that 1
j ∈ Vαj and we see

K ⊆
n0⋃
j=0

Vαj .
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Compact sets

Theorem

Theorem

Compact subsets of metric spaces are closed.

Proof. Let K be compact subset of a metric space X .

We shall prove that K c is open in X . Let x ∈ X \ K . If y ∈ K , let

Vy = B(x , ry ) and Wy = B(y , ry ),

where ry < 1
2ρ(x , y), then Vy ∩Wy = ∅.
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Compact sets

Proof

Since K is compact K ⊆
⋃

y∈K Wy , then we can find y1, . . . , yn ∈ K
so that

K ⊆
n⋃

j=1

Wyj = W .

If V = Vy1 ∩ . . . ∩ Vyn then V is an open set containing x and

V ∩W = ∅.

Hence x ∈ V ⊆ W c ⊆ K c thus x is an interior point of K c .
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Compact sets

Theorem

Theorem

Closed subsets of compact sets are compact.

Proof. Suppose that F ⊆ K ⊆ X and F is closed in X and K is compact.

Let (Vα)α∈A be an open cover of F . Observe that

F ⊆ K ⊆
⋃
α∈A

Vα︸ ︷︷ ︸
F⊆

∪ F c︸︷︷︸
open

.

The set K is compact thus there is a finite subcover of

(Vα)α∈A ∪ {F c}

that covers K .

But F ⊆ K hence this is also a finite subcover of F upon removing
F c as desired.
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Compact sets

Theorem

Theorem

If (Kα)α∈A is a collection of compact sets of a metric space (X , ρ) such
that the intersection of every finite subcollection of (Kα)α∈A is non-empty
then ⋂

α∈A
Kα ̸= ∅.

Proof. Fix a member Kα0 of (Kα)α∈A and set Gα = K c
α.

Suppose that

⋂
α∈A

Kα = Kα0 ∩

 ⋂
α∈A\{α0}

Kα

 = ∅.
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Compact sets

Proof

Then
Kα0 ⊆

⋃
α∈A\{α0}

Gα.

Since Kα0 is compact there are α1, . . . , αn ∈ A so that

Kα0 ⊆
n⋃

j=1

Gαj .

Hence
Kα0 ∩ Kα1 ∩ . . . ∩ Kαn = ∅,

which is a contradiction. So we must have⋂
α∈A

Kα ̸= ∅.

as desired.
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Compact sets

Totally bounded sets

Totally bounded set

Let (X , ρ) be a metric space, E ⊆ X is called totally bounded if for every
ε > 0, the set E can be covered by finitely many balls of radius ε.

It means that there is Nε ∈ N so that

E ⊆
Nε⋃
j=1

B(xj , ε) for some x1, x2, . . . , xNε ∈ X .

Remark 1

If E is totally bounded so is cl (E ). Indeed,

E ⊆
Nε⋃
j=1

B(xj , ε) =⇒ cl (E ) ⊆
Nε⋃
j=1

B(xj , 2ε).
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Compact sets

Remark

Remark 2

Every totally bounded set E is bounded. If

x , y ∈ E ⊆
Nε⋃
j=1

B(xj , ε),

then say x ∈ B(x1, ε), y ∈ B(x2, ε) and

ρ(x , y) ≤ ρ(x , x1) + ρ(x1, x2) + ρ(x2, y)

≤ ε+max{ρ(xi , xj) : 1 ≤ i , j ≤ Nε}+ ε.

The converse is false in general.

(MATH 411H, FALL 2025) Lecture 15 October 23, 2025 20 / 27



Compact sets

Characterization of compactness

Theorem

If E is a subset of a metric space (X , ρ) the following are equivalent.

(a) E is complete and totally bounded.

(b) (The Bolzano–Weierstrass property) Every sequence in E has a
subsequence that converges to a point of E .

(c) (The Heine–Borel property) If (Vα)α∈A is an open cover of E then
there is finite F ⊆ A such that (Vα)α∈F covers E .

Remark

This theorem can be thought of as a characterization of compactness in
metric spaces.
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Compact sets

Proof of (a) ⇒ (b): 1/2

Suppose that (a) holds and (xn)n∈N ⊆ E . We find (xnk )k∈N such that
ρ(xnk , x0) −−−→

k→∞ 0 for some x0 ∈ E .

E can be covered by finitely many balls of radius 1/2. At least one of
them must contain xn for infinitely many n ∈ N:

say xn ∈ B1 for n ∈ N1 ⊆ N and card (N1) = card (N).

Now E ∩ B1 can be covered by finitely many balls of radius 1/4. At
least one of them must contain xn for infinitely many n ∈ N:

say xn ∈ B2 for n ∈ N2 ⊆ N1 and card (N2) = card (N).

Continuing inductively we obtain a sequence of balls Bj of radius 2
−j

and decreasing sequence of subsets Nj of N such that

xn ∈ Bj for n ∈ Nj , Nj+1 ⊆ Nj ⊆ N, card (Nj) = card (N).
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Compact sets

Proof of (a) ⇒ (b): 2/2

Pick n1 ∈ N1, n2 ∈ N2, . . . such that

n1 < n2 < n3 < . . . .

Then (xnj )j∈N is a Cauchy sequence for

ρ(xnj , xnk ) < 21−j if k ≥ j ,

since xnj , xnk ∈ Bj and

diam (Bj) ≤ 21−j .

Since E is complete the sequence (xnk )k∈N has a limit in E and the
implication (a) ⇒ (b) is proved.
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Compact sets

Proof of (b) ⇒ (a)

We show that of either condition in (a) fails then so does (b).

If E is not complete there is a Cauchy sequence (xn)n∈N ⊆ E , with no
limit in E . No subsequence of (xn)n∈N can converge in E , for
otherwise the whole sequence would converge to the same limit.

On the other hand if E is not totally bounded, let ε > 0 be such that
E cannot be covered by finitely many balls of radius ε > 0. Choose
xn ∈ E inductively as follows. Let x1 ∈ E , and having chosen
x1, . . . , xn pick

xn+1 ∈ E \
n⋃

j=1

B(xj , ε),

then ρ(xn, xm) ≥ ε for all n ̸= m, so (xn)n∈N has no convergent
subsequence. Thus (b) ⇒ (a).
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Compact sets

Proof of theorem (a) and (b) ⇒ (c)

It suffices to show that if (b) holds and (Vα)α∈A is an open cover of E
then the following claim holds:

Claim

There exists ε > 0 such that every ball of radius ε > 0 that intersects E is
contained in some Vα.

Then E can be covered by finitely many such balls by (a) this allows us to
find a finite subcover of (Vα)α∈A.
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Compact sets

Proof of Claim

Suppose for a contradiction that the claim is not true.

For each n ∈ N there is a ball Bn of radius 2−n such that Bn ∩ E ̸= ∅
and Bn is contained in no Vα.

Pick xn ∈ Bn ∩ E . Using (b), (by passing to a subsequence if
necessary) we may assume limn→∞ ρ(xn, x) = 0 for some x ∈ E .

We have x ∈ Vα for some α ∈ A and since Vα is open there is ε > 0
so that B(x , ε) ⊆ Vα.

If n is large enough so that ρ(xn, x) <
ε
3 and 2−n < ε

3 , then
Bn ⊆ B(x , ε) ⊆ Vα, which is contradiction.

Indeed, pick y ∈ Bn, then

ρ(y , x) ≤ ρ(xn, y) + ρ(xn, x) < 21−n +
ε

3
≤ ε.

This completes the proof of the implication (a) and (b) ⇒ (c).
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Compact sets

Proof of (c) ⇒ (b)

If (xn)n∈N ⊆ E , with no convergent sequence, for each x ∈ E there is
a ball Bx centered at x that contains xn for only finitely many n.

Otherwise, some sequence would converge to x . Then

(Bx)x∈E

is a cover of E by open sets with no finite subcover.
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