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Compactness in Euclidean spaces

Theorem

Every closed and bounded set of R” is complete.

Proof. We deduce compactness by showing completeness and total
boundedness.

@ Since every closed subset of R" is complete is suffices to show that
bounded subsets of R"” are totally bounded.

@ Since every bounded set is contained in some cube Q = [—R, R]" it is
enough to show that Q@ is totally bounded.

o Given € > 0 pick the integer k > ‘[ and express @ as the union of
n" congruent subcubes by dividing the interval [-R, R] into k equal
pieces.

@ The side length of these subcubes is 2,5 and hence the diameter is

Vn (2R) < 2¢, so they are contained in the balls of radius ¢ about
their centers. O
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Q@ = [—R, R]" is totally bounded
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Compact sets in Euclidean spaces

Example

Example

Determine if the set

X={(x,y)eR? : (x—1)+(y-1)2<1}

is compact or not in R? with Euclidean metric.

Solution. Note that (2,0) is an accumulation point of X, but (2,0) ¢ X.
Therefore, X is not closed, so it is not compact.

O
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Compact sets in Euclidean spaces

Example

Example

Determine if the set is compact or not in R? with Euclidean metric:

X ={(x,y) € R? : (x — 1)+ (y — 1)*<1}.

O

Solution. X contains all of its accumulation points so it is closed. It is
contained in the ball B(0,10), so it is bounded. Therefore, by the
previous theorem, it is compact. O
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Compact sets in Euclidean spaces

Example

Example

Determine if the set

X={(x,y)eR? : 1<y <2}

is compact or not in R? with Euclidean metric.

Solution. Note that (0, 2) is an accumulation point of X, but (0,2) ¢ X.
Therefore, X is not closed, so it is not compact.

O

Lecture 16 October 27, 2025 6/23




Compact sets in Euclidean spaces

Example

Example

Determine if the set

X ={(xy) eR? : 1<y<2}

is compact or not in R? with Euclidean metric.

Solution. In can be checked that X is closed, although it is not contained
in any ball, so it is not bounded, so it is not compact.

O
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Compact sets in Euclidean spaces

Examples

Example

Determine if the set QQ is compact in R. J
Solution. Q is not contained in any interval, so it is not compact. O
Example

Determine if the set Q N[0, 1] is compact in R. }

Solution. Q is contained in (—1,2), but c1 QN [0,1] =[0,1] # QN [0, 1],
so it is not closed, so it is not compact. []
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Perfect sets

Accumulation and isolated points

Accumulation point

Let (X, p) be a metric space, x € X is called an accumulation point of
E C X if for every open set U > x we have

(EN{x)NU#0.

An accumulation point x of E C X is sometimes also called a limit point
of E or a cluster point of E.

Isolated point

A point x € E is called an isolated point of E if it is not an
accumulation point of E.
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Perfect sets

Perfect sets

We say that a subset E of a metric space (X, p) is perfect if E is closed
and every point of E is its limit point or equivalently

E = acc E.

Theorem

Let ) # P C R¥ be a perfect set. Then P is uncountable.

In the proof we will use the fact that we have just proved:
Proposition

Every closed and bounded set of R¥ is compact. J
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Proof: 1/3

Proof. Since P has limit points, P must be infinite. In fact, for every
xePandr>0
B(x,r)N P s infinite.

@ Suppose not, i.e. there is xp € P and rg > 0 such that

B(x0,n0) NP ={x1,...,xn}.

e Consider
p(x0,x1), - - -, p(X0, Xn)
and let
r= 1r§nii£n p(x0, xi) > 0.
@ Then
B(xo,r)N P =10,

thus xg is not a limit point, contradiction.
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Proof: 2/3

Now we can assume card (P) > card (N). Suppose for a contradiction
that card (P) = card (N), i.e. P = {xq,x0,...}.
o Let Vj = B(xq, r), then of course V4 N P # (). Suppose that V, has
been constructed so that V,, N P # 0.
@ Since every point of P is a limit point of P there is an open set V11
such that
@ cl(Va1) C Vi,
@ xp & cl (Vo)
iii Vo1 NP #* 0.
o Let K, =cl (V,) N P, this set is closed and bounded, thus compact.
Since x, € Kpt1, no point of P lies in ()°2; K, but K, C P, so

() Kn=0.
n=1
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Proof: 3/3

@ On the other hand, K, # (), compact, and K11 C K, and the family
K, has a finite intesection property, i.e. any finite intersection of
members of (Kp)nen is nonempty,

Koy N oN Ky, # 0.

@ Thus
oo
ﬂ Kn # (2)7
n=1
which is a contradiction. Hence P must be uncountable. O
Corollary

Every interval [a, b] with a < b, and also R are uncountable.
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Connected sets

Separated and connected sets

Separated sets

Two subsets A and B of a metric space (X, p) are said to be separated if
both
ANnc(B)=0 and cl(A)NB=10.

In other words, no points of A lies in the closure of B and vice versa.

Connected set

A set E C X is said to be connected if E is not a union of two nonempty
separated sets.

Example

e [0,1] and (1,2) are not separated since 1 is a limit point of (1,2).

e However, (0,1) and (1,2) are separated.
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Theorem

Theorem

E C R is connected iff for all x,y € E if x <z <y, then z € E. J

Proof (). If there exist x,y € E and z € (x,y) such that z ¢ E, then
E=A,UB,, where A,=EN(-00,z) and B,=EN(z,00).

Since x € A, and y € B, then A, # 0, B, # () and also A; C (—o0, 2),
B, C (z,00), so they are separated. Hence E is not connected.
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Proof

Proof («<=). Conversely, suppose that E is not connected.
@ Then there are non-empty separated sets A, B such that AU B = E.
@ Pick x € A and y € B and without loss of generality assume x < y.
Define
z=sup(AN[x,y]).
hence z € cl (A) and z & B. In particular, x <z < y.
e lfz¢Z Aitfollows x <z<yandz¢E.

o If z € Athen z & cl (B) hence there is z; such that z < z; < y and
z1¢ B. Then x <z <yandz € E. O]

Example
Prove that X =R \ {0} is not connected.

Solution. We have —1,1 € X, but -1 <0< 1land 0 ¢ X, so X is not
connected. ]
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There exists a perfect set in R which contains no segment.
o Let Gy = [0,1]. Given C, that consist of 2" disjoint closed intervals

each of length 37" take each of these intervals and delete the open
middle third to produce two closed intervals each of length 3771,

. Co=[0,1] '
G =[0.4]U[z.1]

o Take C,y1 to be the union of 271 closed intervals so formed and
continue.

(MATH 411H, FALL 2025) Lecture 16 October 27, 2025 17/23



Cantor set

Cantor set
The set

C= ﬁ Cn
n=0

is called the Cantor set or ternary Cantor set.

@ Each (3 © GG D (G D ... is closed and bounded thus compact, and

the family (C,)nen has finite intersection property thus the Cantor set
is compact and C # () .

Property (*)
By the construction for each k, m € N we see that no segment of the form

3k+1 3k+2 o .
3m 0 3m has a point in common with C.
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Properties of the Cantor set

@ Since every segment («, 3) contains a segment of the form (*) if m is
sufficiently large, since the set

{;in : meNand0<€<3m—1}

is dense in [0,1]. Thus C contains no segment («, 3). This also shows
int C = 0.

@ To prove that C is perfect it is enough to show that C contains no
isolated point. Let x € C and let /, be the unique interval from C,
which contains x € /,,. Let x, be the endpoint of /, such that x # x,,.
It follows from the construction of C that x, € C. Hence x is a limit
point of C thus C is perfect.
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More about Cantor set

More about Cantor set

@ Each component of C, can be described as the set

n=1

Cn:{zz.:€j€{0,1,2}andaj;«élforlgjgn}, J

o Consequently,
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Fact

Fact

Any number Zj’il ;—f is uniquely determined by its sequence € = (gj)jen
with €j € {0,2}.

Proof. Take € = (&j)jen, d = (0j)jen with €;,9; € {0,2} such that € # 0.
Let N=min{j € N : ¢; # §;} and assume 0 = ey < dy = 2. Then

00 c N—-1 c 0o c N—-1 5 ) 00 1
J - - - —
D32yt X 552y twaly
j=1 j=1 Jj=N+1 Jj=1 Jj=0
N—1 N-1 N-1 [e's)
0; 2 1 ) 1 0; 2 0
< e 44— < 244 < J
- 3 T3 1 3 T3 y+3N*§:y
J=1 3 =1 j=1 J=1
3
2
This completes the proof. O
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Remarks

Remark

We have two different representations

1 oo
j=1
1 2 g
§:Z§J_B e1=0, ¢=2 for j>2.

There is a bijection ¢ : {0,1} — C defined by

w\r\)

o0
Z ?J for z= (ZJ')J'GNa Zj € {0,1},
j=0

and consequently card (C) = card ({0,1}Y) = card (R) = c.
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More about Cantor set

Cantor tree

g = (0,1,1,0,64,€5,. . )
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