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Compact sets in Euclidean spaces

Compactness in Euclidean spaces

Theorem

Every closed and bounded set of Rn is complete.

Proof. We deduce compactness by showing completeness and total
boundedness.

Since every closed subset of Rn is complete is suffices to show that
bounded subsets of Rn are totally bounded.

Since every bounded set is contained in some cube Q = [−R,R]n it is
enough to show that Q is totally bounded.

Given ε > 0 pick the integer k > R
√
n

ε and express Q as the union of
nn congruent subcubes by dividing the interval [−R,R] into k equal
pieces.

The side length of these subcubes is 2R
k and hence the diameter is√

n
(
2R
k

)
< 2ε, so they are contained in the balls of radius ε about

their centers.
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Compact sets in Euclidean spaces

Q = [−R ,R]n is totally bounded
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Compact sets in Euclidean spaces

Example

Example

Determine if the set

X = {(x , y) ∈ R2 : (x − 1)2 + (y − 1)2 < 1}

is compact or not in R2 with Euclidean metric.

Solution. Note that (2, 0) is an accumulation point of X , but (2, 0) ̸∈ X .
Therefore, X is not closed, so it is not compact.
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Compact sets in Euclidean spaces

Example

Example

Determine if the set is compact or not in R2 with Euclidean metric:

X = {(x , y) ∈ R2 : (x − 1)2 + (y − 1)2≤1}.

Solution. X contains all of its accumulation points so it is closed. It is
contained in the ball B(0, 10), so it is bounded. Therefore, by the
previous theorem, it is compact.
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Compact sets in Euclidean spaces

Example

Example

Determine if the set

X = {(x , y) ∈ R2 : 1 < y < 2}

is compact or not in R2 with Euclidean metric.

Solution. Note that (0, 2) is an accumulation point of X , but (0, 2) ̸∈ X .
Therefore, X is not closed, so it is not compact.
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Compact sets in Euclidean spaces

Example

Example

Determine if the set

X = {(x , y) ∈ R2 : 1≤y≤2}

is compact or not in R2 with Euclidean metric.

Solution. In can be checked that X is closed, although it is not contained
in any ball, so it is not bounded, so it is not compact.
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Compact sets in Euclidean spaces

Examples

Example

Determine if the set Q is compact in R.

Solution. Q is not contained in any interval, so it is not compact.

Example

Determine if the set Q ∩ [0, 1] is compact in R.

Solution. Q is contained in (−1, 2), but cl Q ∩ [0, 1] = [0, 1] ̸= Q ∩ [0, 1],
so it is not closed, so it is not compact.
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Perfect sets

Accumulation and isolated points

Accumulation point

Let (X , ρ) be a metric space, x ∈ X is called an accumulation point of
E ⊆ X if for every open set U ∋ x we have

(E \ {x}) ∩ U ̸= ∅.

An accumulation point x of E ⊆ X is sometimes also called a limit point
of E or a cluster point of E .

Isolated point

A point x ∈ E is called an isolated point of E if it is not an
accumulation point of E .
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Perfect sets

Perfect sets

Perfect sets

We say that a subset E of a metric space (X , ρ) is perfect if E is closed
and every point of E is its limit point or equivalently

E = acc E .

Theorem

Let ∅ ≠ P ⊆ Rk be a perfect set. Then P is uncountable.

In the proof we will use the fact that we have just proved:

Proposition

Every closed and bounded set of Rk is compact.
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Perfect sets

Proof: 1/3

Proof. Since P has limit points, P must be infinite. In fact, for every
x ∈ P and r > 0

B(x , r) ∩ P is infinite.

Suppose not, i.e. there is x0 ∈ P and r0 > 0 such that

B(x0, r0) ∩ P = {x1, . . . , xn}.

Consider
ρ(x0, x1), . . . , ρ(x0, xn)

and let
r = min

1≤i≤n
ρ(x0, xi ) > 0.

Then
B(x0, r) ∩ P = ∅,

thus x0 is not a limit point, contradiction.
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Perfect sets

Proof: 2/3

Now we can assume card (P) ≥ card (N). Suppose for a contradiction
that card (P) = card (N), i.e. P = {x1, x2, . . .}.

Let V1 = B(x1, r), then of course V1 ∩ P ̸= ∅. Suppose that Vn has
been constructed so that Vn ∩ P ̸= ∅.
Since every point of P is a limit point of P there is an open set Vn+1

such that
(i) cl (Vn+1) ⊆ Vn,
(ii) xn ̸∈ cl (Vn+1),
(iii) Vn+1 ∩ P ̸= ∅.
Let Kn = cl (Vn) ∩ P, this set is closed and bounded, thus compact.
Since xn ̸∈ Kn+1, no point of P lies in

⋂∞
n=1 Kn, but Kn ⊆ P, so

∞⋂
n=1

Kn = ∅.
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Perfect sets

Proof: 3/3

On the other hand, Kn ̸= ∅, compact, and Kn+1 ⊆ Kn, and the family
Kn has a finite intesection property, i.e. any finite intersection of
members of (Kn)n∈N is nonempty,

Kn1 ∩ . . . ∩ Knk ̸= ∅.

Thus
∞⋂
n=1

Kn ̸= ∅,

which is a contradiction. Hence P must be uncountable.

Corollary

Every interval [a, b] with a < b, and also R are uncountable.
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Connected sets

Separated and connected sets

Separated sets

Two subsets A and B of a metric space (X , ρ) are said to be separated if
both

A ∩ cl (B) = ∅ and cl (A) ∩ B = ∅.

In other words, no points of A lies in the closure of B and vice versa.

Connected set

A set E ⊆ X is said to be connected if E is not a union of two nonempty
separated sets.

Example

[0, 1] and (1, 2) are not separated since 1 is a limit point of (1, 2).

However, (0, 1) and (1, 2) are separated.
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Connected sets

Theorem

Theorem

E ⊆ R is connected iff for all x , y ∈ E if x < z < y , then z ∈ E .

Proof (=⇒). If there exist x , y ∈ E and z ∈ (x , y) such that z ̸∈ E , then

E = Az ∪ Bz , where Az = E ∩ (−∞, z) and Bz = E ∩ (z ,∞).

Since x ∈ Az and y ∈ Bz , then Az ̸= ∅, Bz ̸= ∅ and also Az ⊆ (−∞, z),
Bz ⊆ (z ,∞), so they are separated. Hence E is not connected.
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Connected sets

Proof

Proof (⇐=). Conversely, suppose that E is not connected.

Then there are non-empty separated sets A,B such that A ∪ B = E .

Pick x ∈ A and y ∈ B and without loss of generality assume x < y .
Define

z = sup (A ∩ [x , y ]) .

hence z ∈ cl (A) and z ̸∈ B. In particular, x ≤ z < y .

If z ̸∈ A it follows x < z < y and z ̸∈ E .

If z ∈ A then z ̸∈ cl (B) hence there is z1 such that z < z1 < y and
z1 ̸∈ B. Then x < z1 < y and z1 ̸∈ E .

Example

Prove that X = R \ {0} is not connected.

Solution. We have −1, 1 ∈ X , but −1 < 0 < 1 and 0 ̸∈ X , so X is not
connected.

(MATH 411H, FALL 2025) Lecture 16 October 27, 2025 16 / 23



Cantor set

There exists a perfect set in R which contains no segment.

Let C0 = [0, 1]. Given Cn that consist of 2n disjoint closed intervals
each of length 3−n take each of these intervals and delete the open
middle third to produce two closed intervals each of length 3−n−1.

Take Cn+1 to be the union of 2n+1 closed intervals so formed and
continue.
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Cantor set

Cantor set

Cantor set

The set

C =
∞⋂
n=0

Cn

is called the Cantor set or ternary Cantor set.

Each C0 ⊇ C1 ⊇ C2 ⊇ . . . is closed and bounded thus compact, and
the family (Cn)n∈N has finite intersection property thus the Cantor set
is compact and C ̸= ∅ .

Property (*)

By the construction for each k,m ∈ N we see that no segment of the form(
3k + 1

3m
,
3k + 2

3m

)
has a point in common with C.
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Cantor set

Properties of the Cantor set

Since every segment (α, β) contains a segment of the form (*) if m is
sufficiently large, since the set{

ℓ

3m
: m ∈ N and 0 ≤ ℓ ≤ 3m − 1

}
is dense in [0, 1]. Thus C contains no segment (α, β). This also shows
int C = ∅.

To prove that C is perfect it is enough to show that C contains no
isolated point. Let x ∈ C and let In be the unique interval from Cn

which contains x ∈ In. Let xn be the endpoint of In such that x ̸= xn.
It follows from the construction of C that xn ∈ C. Hence x is a limit
point of C thus C is perfect.
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More about Cantor set

More about Cantor set

Each component of Cn can be described as the set

Cn =

{ ∞∑
n=1

εj
3j

: εj ∈ {0, 1, 2} and εj ̸= 1 for 1 ≤ j ≤ n

}
.

Consequently,

C =

{ ∞∑
n=1

εj
3j

: εj ∈ {0, 2}

}
.
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More about Cantor set

Fact

Fact

Any number
∑∞

j=1
εj
3j

is uniquely determined by its sequence ε = (εj)j∈N
with εj ∈ {0, 2}.

Proof. Take ε = (εj)j∈N, δ = (δj)j∈N with εj , δj ∈ {0, 2} such that ε ̸= δ.
Let N = min{j ∈ N : εj ̸= δj} and assume 0 = εN < δN = 2. Then

∞∑
j=1

εj
3j

=
N−1∑
j=1

εj
3j

+
∞∑

j=N+1

εj
3j

≤
N−1∑
j=1

δj
3j

+
2

3N+1

∞∑
j=0

1

3j

≤
N−1∑
j=1

δj
3j

+
2

3N+1

1

1− 1
3︸ ︷︷ ︸

3
2

=
N−1∑
j=1

δj
3j

+
1

3N
<

N−1∑
j=1

δj
3j

+
2

3N
≤

∞∑
j=1

δj
3j
.

This completes the proof.
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More about Cantor set

Remarks

Remark

We have two different representations

1

3
=

∞∑
j=1

εj
3j

= A, ε1 = 1, εj = 0 for j ≥ 2.

1

3
=

∞∑
j=1

εj
3j

= B, ε1 = 0, εj = 2 for j ≥ 2.

There is a bijection ϕ : {0, 1}N → C defined by

ϕ(z) =
2

3

∞∑
j=0

zj
3j

for z = (zj)j∈N, zj ∈ {0, 1},

and consequently card (C) = card ({0, 1}N) = card (R) = c.
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More about Cantor set

Cantor tree

ε = (0, 1, 1, 0, ε4, ε5, . . .)
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