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Limits

Limits
Let (X, px), (Y, py) be metric spaces. Suppose EC X and f : E — Y
and p is a limit point of E. We write

f(x) xz5pq or  limf(x)=gq.

X—p
if there is a point g € X satisfying the following -6 condition:

@ For every € > 0 there exists § > 0 such that

py(f(x),q) <e

for all points x € E for which 0 < px(x, p) <.
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Special case

If X =Y =R then

px(x,y) = py(xy) =[x =yl
and the condition reads as follows:
Limit
For every € > 0 there exists § > 0 such that for all x € E if

0<|x—p|<§,

then

f(x) — gl <e.
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Theorem

Theorem (Characterizations of Continuity)

Let (X, px). (Y, py) be metric spacesand EC X, f: X — Y, and pe X

be as in the previous definition. Then

Q limy,, f(x) = q iff

@ im0 f(pn) = g for every sequence (pn)nen in E such that p, # p
and lim, o p, = p.

Proof (A)=(B). Suppose that (A) holds. Choose (pn)nen like in
condition (B). Let € > 0 be given, then there exists § > 0 such that

py(f(x),q) <e if xe€E and 0<px(x,p) <.

Also there exists N € N such that n > N implies 0 < px(pn, p) < 0. Thus
we also have py(f(pn),q) < e for n > N showing that (B) holds. O
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Proof (B)=—=(A)
Proof (B)=—>(A). Conversely suppose (A) is false. Then there exists

some € > 0 such that for every 6 > 0 there exists a point x € E
(depending on §) for which

py(f(x),q) > but 0<px(x,p)<é.
Taking 0, = % for each n € N we thus find a sequence (pp)nen in E
satisfying lim,_, o, pp = p but
py(f(pn),q) = &
thus (B) is false as desired. O

Remark

It was possible to choose the sequence (pp)nen in E in one step thanks to
the Axiom of Choice. Without assuming the Axiom of Choice the previous
theorem is not provable.
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Theorem

Theorem

Suppose that (X, px) is a metric space, and E C X, and p is a limit point
of E. Let f,g : E — R be functions such that

lim f(x)=A and lim g(x)=B.
X—p

X—p

Then
@ limup(f+g)(x) = A+ B,

@ limy,p(f-g)(x)=A-B,

@ limep (é) (x) =4 if B#0and g(x) #0 for x € E.
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Continuous function

Continuous at the point p

Suppose that (X, px) and (Y, py) are metric spaces, E C X, p € E and
f: E — Y. The function f is said to be continuous at point p if for
every € > 0 there exists 6 > 0 such that

py(f(x),f(p)) <e

for all points x € E for which

px(x, p) < 6.

Continuous function

If the function f : E — Y is continuous at every point of E then f is said
to be continuous on E.
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Special case

If X =Y =R then

px(x,y) = py(x,y) =[x —y|

and the function f : E — R is said to be continuous at point p if for
every € > 0 there exists § > 0 such that

f(x)—f(p)l <e
for all points x € E for which

|x — p| <.
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Example

Example
Let us define f : R — R by

Flx) = 1if x € Q,
= Voifx ¢

Determine if f is continuous or not at the point 0.

v

Solution. Let us consider the sequence (a,)nen, where a, = v/2/n. Then
limp, o0 an=0and a, € Q, so f(a,) =0. Then

[lim f(an) = 0#1=£(0),

so f is not continuous at point 0. []
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Example

Example
Let us define f : R? — R by

Flx.y) = lifx+yeQ,
Y= 0ifx+y¢Q.

Determine if f is continuous or not at the point (0, 0).

Solution. Let us consider the sequence (an)nen, Where a, = (0,1/2/n).
Then lim, 500 a, = (0,0) and 0 ++/2/n € Q, so f(a,) = 0. Then

Ii_)m f(apn) =0+#1=1(0,0),
so f is not continuous at point (0,0). O
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Remark

Remark

If pis an isolated point of E then our definition implies that every function
f which has E as its domain is continuous at p. For, no matter which
g > 0 we choose, we can pick d > 0 so that the only point e € E for which

px(x,p) <0

is x = p, then
py(f(x),f(p)) =0<e.

Fact

In the situation of the definition of continuity assume also that p is a limit
point of E. Then f is continuous at p iff limy_,, f(x) = f(p).

Proof. It is obvious if we compare two previous definitions. Ol
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Theorem

Theorem

Suppose that (X, px), (Y, py), and (Z, pz) are metric spaces, let E C X
and f: E — Y and g : f[E] — Z be given and define h: E — Z by

h(x) = g(f(x)), xé€E.

If f is continuous at a point p € E and g is continuous at the point f(p),
then h is continuous at p. In other words

lim h(x) = lim g(f(x)) = g(f(p)) = h(p).

X—p X—p
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N
Proof

Let € > 0 be given.
@ Since g is continuous at f(p) there is 7 > 0 such that

pz(g(y). g(f(p)) <e if py(y,f(p))<n and yef[E]

@ Since f is continuous at p, there is 6 > 0 such that

py(f(x),f(p)) <n if px(x,p)<dé and x€E.

o If follows that

pz(h(x), h(p)) = pz(g(f(x)),&(f(p))) < ¢

if px(x,p) <6 and x € E. Thus h is continuous at p € E. O
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Example

Example

Assume that f : R? — (0, 00) is continuous for all (x,y) € R2. Prove that
h(x,y) = \/f(x,y) is continuous.

Solution. Let us note that the function g : (0,00) — (0, 00) defined by

is continuous. We have
h=gof,

so h is continuous by the previous theorem. O
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Theorem

Theorem

A mapping f of a metric space (X, px) into a metric space (Y, py) is
continuous on X iff f"1[V] is open in X for every open set V in Y.

Proof. Suppose that f is continuous on X and V C Y is open.

@ We have to show that f~1[V] is open in X. Let p € f~1[V]. Since V
is open B, (f(p),e) € V for some € > 0.

@ Since f is continuous at p € X there is § > 0 such that

py(f(x),f(p)) <e if px(x,p) <é.

Thus
By (p,0) C fHV]={xe€ X : f(x) € V}.
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N
Proof

Conversely, suppose f~[V] is open in X for any open V C Y.
@ Fix p e X and € > 0 and consider

V =B, (f(p),e)
which is open thus f1[V] is open, hence there is § > 0 so that
Bye(p,0) € FA[V],
e Thus if px(x,p) < 4, then x € f71[V], hence

F(x) €V =By (f(ple) <« py(f(x).F(p) <e. O

Corollary

A mapping f : X — Y between metric spaces (X, px) and (Y, py) is
continuous iff f1[C] is closed in X for any closed set C in Y.

Proof. A set is closed iff its complement is open. We are done by invoking
the previous theorem, since f1[E€] = (f"1[E])¢ for every open set
ECY. [
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Example

Example

Let f : R — R be continuous and a € R. Prove that the set
A={xeR : f(x) > a}

is open.

Solution: We have
{x€R : f(x)>a} = f*[(a,00)]

and (a,00) is open in R, so by the previous theorem, A is open. O
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Example

Example

Prove that the set

A={(x,y) R : V/x2+y?2<1}

is open in R? with the Euclidean metric.

Solution: Let us consider a continuous function f : R?2 — R defined by
f(xy) = V2 +y2
Moreover, by the previous theorem
A={(xy) €R : f(x,y) <1} = FI[B(0, 1]

is open since B(0,1) is an open unit ball in R?. O
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Theorem

Theorem

Let f,g : X — R be two continuous functions on a metric space (X, px).
Then f + g, f-g, and £ are continuous. In the last case we assume
g(x) # 0 for all x € X.

Example 1
Every polynomial

p(x) = apx" + a_1xX" 14+ aix+ ag

is a continuous function on R.

Example 2

The exponential function f(x) = e* is continuous as we have shown that
for any (ap)nen so that lim,_o @, = a one has lim,_, €% = €°.

v
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Examples

Example 3
f(x) = |x]| is continuous on R since |f(x) — f(y)| < |x — y|.

Example 4
f(x)=|x] =max{neZ : n<x}is NOT continuous at any x € Z.

Example b
f(x) = x for any @ € R is continuous on (0, c0).

Example 6

If f,g: X — R are continuous then max{f, g} and min{f, g} are
continuous as well. Indeed,

f+g2V—gh mmgg}_f+g;v—m. J
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Continuity and compactness

Continuity and compactness

Bounded function
A mapping f : E — R is said to be bounded if there is a number M > 0

such that
If(x)| <M forall xe€E.

Theorem (4.4.1)

Suppose that f is a continuous mapping of a compact metric space
(X, px) into a metric space (Y, py). Then f[X] is compact in Y.
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Continuity and compactness

Proof
Let (Vi )aca be an open cover of f[X], i.e.
FIX1C | Vo
acA

Since f is continuous then each set f~1[V,,] is open in X. Since X is
compact and

xc | Fval
acA
thus there are a3, an,...,a, € A so that

X C U FH Vil

j=1
Since f[f~1[E]] C E we have
FIXIC AU Vel € U Ve O
j=1 j=1
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Corollary

Corollary

If f: X — R is continuous on a compact metric space (X, px) then f[X]
is closed and bounded in R. Specifically, f is bounded.

Theorem

Suppose f : X — R is continuous on a compact metric space (X, px) and

M =supf(p) and m= inf f(p).
peX peX

Then there are p, g such that

f(p))=M and f(q)=m.

Proof. f[X] C R is closed and bounded. Thus M and m are members of
f[X] and we are done. O
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Theorem

Theorem

Suppose f is continuous injective mapping of a compact metric space X
onto a metric space Y. Then the inverse mapping f ! defined on Y by

Ff(x)=x, xeX

is a continuous mapping of Y onto X.

Proof. The inverse f~1: Y — X is well defined since f : X — Y is
one-to-one and onto. It suffices to prove that f[V] is open in Y for every
open set V in X. Fix V C X open, V€ is closed in X thus compact, hence
f[V€] is compact subset of Y and consequently f[V¢] is closed. Since

f : X = Y is one-to-one and onto, hence

FIV] = (FIVE])°

and, consequently, f[V] is open as desired. Ol
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Continuity and connectivity

Continuity and connectivity

Theorem

If f: X — Y is continuous mapping of a metric space X into a metric
space Y and if E is a connected subset of X then f[E] is connected in Y.

Proof. Assume for a contradiction that f[E] = AU B, where A and B are
nonempty separated sets in Y. Put

G=ENnf A and H=Enf}B].

Then E = G U H and neither G nor H is empty.

@ Since A C cl (A) we have G C f![cl (A)] and the latter set is closed
since f is continuous hence cl (G) C f~[cl (A)].

@ Hence
flcl (G)] C F[f el (A)]] C cl (A).
Lecture 17
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Proof

e Since f[H] C B and cl (A) N B = () we conclude that
fIHNcl (G)] C flcl (G)] N F[H] Ccl (A)N B =1,

so HNel (G) = 0.
@ The same argument shows that cl (H) N G = 0.

@ Thus G and H are separated sets, which is a contradiction since E
is connected. ]
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Darboux property

Darboux property (intermediate value theorem)

Let f be a continuous function on the interval [a, b]. If f(a) < f(b) and if
c is a number such that f(a) < ¢ < f(b), then there is a point x € (a, b)
such that

f(x)=rc.

A similar result holds if f(a) > f(b).

Proof. [a, b] is connected so f|[a, b]] is connected in R as well by the
previous theorem. Thus if f(a) < ¢ < f(b), then c € f|[a, b]], so there is
x € [a, b] so that f(x) = c. O

Remark

The theorem stated above is sometimes called Darboux property or the
intermediate value theorem.
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Example

Exercise
Prove that the equation
2= x>+2x4+3=0

has a solution xg such that —1 < xg < 0.

Solution. Consider a continuous function
f(x) = x> —x*>+2x+3.

We calculate
f(-1)=-1, and f(0)=3.

It follows by the Darboux property that there is ¢ € [—1, 0] such that
f(c) =0. Thus c is a solution of our equation as desired. O

(MATH 411H, FALL 2025) Lecture 17 October 30, 2025 28 /31



Continuity and conne 137

f(x) = x> — x? 4+ 2x + 3, xop ~ —0.8437

-1
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Continuity and connectivity

Example

Exercise

Prove that the equation
x3 =20+ /x

has solution xp.

Solution. Consider a continuous function
f(x) = x3 — v/x — 20.
We calculate
f(1)=-20<0, and f(4)=42>0.

It follows by the Darboux property that there is ¢ € [1, 4] such that
f(c) =0. Thus c is a solution of our equation as desired. O
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Continuity and conne 137

f(x) = x> —/x — 20, xo ~ 2, 7879

-80 -70 -60 -50 -40 -30 -20 -10 ) 10 20 30 40 50 60 70 80 %
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