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Limits

Limits

Let (X , ρX ), (Y , ρY ) be metric spaces. Suppose E ⊆ X and f : E → Y
and p is a limit point of E . We write

f (x) −−→x→p q or lim
x→p

f (x) = q.

if there is a point q ∈ X satisfying the following ε-δ condition:

For every ε > 0 there exists δ > 0 such that

ρY (f (x), q) < ε

for all points x ∈ E for which 0 < ρX (x , p) < δ.
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Special case

If X = Y = R then

ρX (x , y) = ρY (x , y) = |x − y |

and the condition reads as follows:

Limit

For every ε > 0 there exists δ > 0 such that for all x ∈ E if

0 < |x − p| < δ,

then
|f (x)− q| < ε.
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Theorem

Theorem (Characterizations of Continuity)

Let (X , ρX ), (Y , ρY ) be metric spaces and E ⊆ X , f : X → Y , and p ∈ X
be as in the previous definition. Then

(A) limx→p f (x) = q iff

(B) limn→∞ f (pn) = q for every sequence (pn)n∈N in E such that pn ̸= p
and limn→∞ pn = p.

Proof (A)=⇒(B). Suppose that (A) holds. Choose (pn)n∈N like in
condition (B). Let ε > 0 be given, then there exists δ > 0 such that

ρY (f (x), q) < ε if x ∈ E and 0 < ρX (x , p) < δ.

Also there exists N ∈ N such that n ≥ N implies 0 < ρX (pn, p) < δ. Thus
we also have ρY (f (pn), q) < ε for n ≥ N showing that (B) holds.
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Proof (B)=⇒(A)

Proof (B)=⇒(A). Conversely suppose (A) is false. Then there exists
some ε > 0 such that for every δ > 0 there exists a point x ∈ E
(depending on δ) for which

ρY (f (x), q) ≥ ε but 0 < ρX (x , p) < δ.

Taking δn = 1
n for each n ∈ N we thus find a sequence (pn)n∈N in E

satisfying limn→∞ pn = p but

ρY (f (pn), q) ≥ ε.

thus (B) is false as desired.

Remark

It was possible to choose the sequence (pn)n∈N in E in one step thanks to
the Axiom of Choice. Without assuming the Axiom of Choice the previous
theorem is not provable.
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Theorem

Theorem

Suppose that (X , ρX ) is a metric space, and E ⊆ X , and p is a limit point
of E . Let f , g : E → R be functions such that

lim
x→p

f (x) = A and lim
x→p

g(x) = B.

Then

(a) limx→p(f + g)(x) = A+ B,

(b) limx→p(f · g)(x) = A · B,

(c) limx→p

(
f
g

)
(x) = A

B if B ̸= 0 and g(x) ̸= 0 for x ∈ E .
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Continuous function

Continuous at the point p

Suppose that (X , ρx) and (Y , ρY ) are metric spaces, E ⊆ X , p ∈ E and
f : E → Y . The function f is said to be continuous at point p if for
every ε > 0 there exists δ > 0 such that

ρY (f (x), f (p)) < ε

for all points x ∈ E for which

ρX (x , p) < δ.

Continuous function

If the function f : E → Y is continuous at every point of E then f is said
to be continuous on E .
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Special case

If X = Y = R then

ρX (x , y) = ρY (x , y) = |x − y |

and the function f : E → R is said to be continuous at point p if for
every ε > 0 there exists δ > 0 such that

|f (x)− f (p)| < ε

for all points x ∈ E for which

|x − p| < δ.
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Example

Example

Let us define f : R → R by

f (x) =

{
1 if x ∈ Q,

0 if x ̸∈ Q.

Determine if f is continuous or not at the point 0.

Solution. Let us consider the sequence (an)n∈N, where an =
√
2/n. Then

limn→∞ an = 0 and an ̸∈ Q, so f (an) = 0. Then

lim
n→∞

f (an) = 0 ̸= 1 = f (0),

so f is not continuous at point 0.
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Example

Example

Let us define f : R2 → R by

f (x , y) =

{
1 if x + y ∈ Q,

0 if x + y ̸∈ Q.

Determine if f is continuous or not at the point (0, 0).

Solution. Let us consider the sequence (an)n∈N, where an = (0,
√
2/n).

Then limn→∞ an = (0, 0) and 0 +
√
2/n ̸∈ Q, so f (an) = 0. Then

lim
n→∞

f (an) = 0 ̸= 1 = f (0, 0),

so f is not continuous at point (0, 0).
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Remark

Remark

If p is an isolated point of E then our definition implies that every function
f which has E as its domain is continuous at p. For, no matter which
ε > 0 we choose, we can pick δ > 0 so that the only point e ∈ E for which

ρX (x , p) < δ

is x = p, then
ρY (f (x), f (p)) = 0 < ε.

Fact

In the situation of the definition of continuity assume also that p is a limit
point of E . Then f is continuous at p iff limx→p f (x) = f (p).

Proof. It is obvious if we compare two previous definitions.
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Theorem

Theorem

Suppose that (X , ρX ), (Y , ρY ), and (Z , ρZ ) are metric spaces, let E ⊆ X
and f : E → Y and g : f [E ] → Z be given and define h : E → Z by

h(x) = g(f (x)), x ∈ E .

If f is continuous at a point p ∈ E and g is continuous at the point f (p),
then h is continuous at p. In other words

lim
x→p

h(x) = lim
x→p

g(f (x)) = g(f (p)) = h(p).
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Proof

Let ε > 0 be given.

Since g is continuous at f (p) there is η > 0 such that

ρZ (g(y), g(f (p))) < ε if ρY (y , f (p)) < η and y ∈ f [E ].

Since f is continuous at p, there is δ > 0 such that

ρY (f (x), f (p)) < η if ρX (x , p) < δ and x ∈ E .

If follows that

ρZ (h(x), h(p)) = ρZ (g(f (x)), g(f (p))) < ε

if ρX (x , p) < δ and x ∈ E . Thus h is continuous at p ∈ E .
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Example

Example

Assume that f : R2 → (0,∞) is continuous for all (x , y) ∈ R2. Prove that
h(x , y) =

√
f (x , y) is continuous.

Solution. Let us note that the function g : (0,∞) → (0,∞) defined by

g(x) =
√
x

is continuous. We have
h = g ◦ f ,

so h is continuous by the previous theorem.
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Theorem

Theorem

A mapping f of a metric space (X , ρX ) into a metric space (Y , ρY ) is
continuous on X iff f −1[V ] is open in X for every open set V in Y .

Proof. Suppose that f is continuous on X and V ⊆ Y is open.

We have to show that f −1[V ] is open in X . Let p ∈ f −1[V ]. Since V
is open BρY (f (p), ε) ⊆ V for some ε > 0.

Since f is continuous at p ∈ X there is δ > 0 such that

ρY (f (x), f (p)) < ε if ρX (x , p) < δ.

Thus
BρX (p, δ) ⊆ f −1[V ] = {x ∈ X : f (x) ∈ V }.
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Proof

Conversely, suppose f −1[V ] is open in X for any open V ⊆ Y .

Fix p ∈ X and ε > 0 and consider

V = BρY (f (p), ε)

which is open thus f −1[V ] is open, hence there is δ > 0 so that
BρX (p, δ) ⊆ f −1[V ].
Thus if ρX (x , p) < δ, then x ∈ f −1[V ], hence

f (x) ∈ V = BρY (f (p), ε) ⇐⇒ ρY (f (x), f (p)) < ε.

Corollary

A mapping f : X → Y between metric spaces (X , ρX ) and (Y , ρY ) is
continuous iff f −1[C ] is closed in X for any closed set C in Y .

Proof. A set is closed iff its complement is open. We are done by invoking
the previous theorem, since f −1[E c ] = (f −1[E ])c for every open set
E ⊆ Y .
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Example

Example

Let f : R → R be continuous and a ∈ R. Prove that the set

A = {x ∈ R : f (x) > a}

is open.

Solution: We have

{x ∈ R : f (x) > a} = f −1[(a,∞)]

and (a,∞) is open in R, so by the previous theorem, A is open.
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Example

Example

Prove that the set

A = {(x , y) ∈ R :
√
x2 + y2 < 1}

is open in R2 with the Euclidean metric.

Solution: Let us consider a continuous function f : R2 → R defined by

f (x , y) =
√
x2 + y2.

Moreover, by the previous theorem

A = {(x , y) ∈ R : f (x , y) < 1} = f −1[B(0, 1)]

is open since B(0, 1) is an open unit ball in R2.
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Theorem

Theorem

Let f , g : X → R be two continuous functions on a metric space (X , ρX ).
Then f + g , f · g , and f

g are continuous. In the last case we assume
g(x) ̸= 0 for all x ∈ X .

Example 1

Every polynomial

p(x) = anx
n + an−1x

n−1 + . . .+ a1x + a0

is a continuous function on R.

Example 2

The exponential function f (x) = ex is continuous as we have shown that
for any (an)n∈N so that limn→∞ an = a one has limn→∞ ean = ea.
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Examples

Example 3

f (x) = |x | is continuous on R since |f (x)− f (y)| ≤ |x − y |.

Example 4

f (x) = ⌊x⌋ = max{n ∈ Z : n ≤ x} is NOT continuous at any x ∈ Z.

Example 5

f (x) = xα for any α ∈ R is continuous on (0,∞).

Example 6

If f , g : X → R are continuous then max{f , g} and min{f , g} are
continuous as well. Indeed,

max{f , g} =
f + g + |f − g |

2
, min{f , g} =

f + g − |f − g |
2

.
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Continuity and compactness

Continuity and compactness

Bounded function

A mapping f : E → R is said to be bounded if there is a number M > 0
such that

|f (x)| ≤ M for all x ∈ E .

Theorem (4.4.1)

Suppose that f is a continuous mapping of a compact metric space
(X , ρX ) into a metric space (Y , ρY ). Then f [X ] is compact in Y .
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Continuity and compactness

Proof

Let (Vα)α∈A be an open cover of f [X ], i.e.

f [X ] ⊆
⋃
α∈A

Vα.

Since f is continuous then each set f −1[Vα] is open in X . Since X is
compact and

X ⊆
⋃
α∈A

f −1[Vα]

thus there are α1, α2, . . . , αn ∈ A so that

X ⊆
n⋃

j=1

f −1[Vαj ].

Since f [f −1[E ]] ⊆ E we have

f [X ] ⊆ f
[ n⋃
j=1

f −1[Vαj ]
]
⊆

n⋃
j=1

Vαj .
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Continuity and compactness

Corollary

Corollary

If f : X → R is continuous on a compact metric space (X , ρX ) then f [X ]
is closed and bounded in R. Specifically, f is bounded.

Theorem

Suppose f : X → R is continuous on a compact metric space (X , ρX ) and

M = sup
p∈X

f (p) and m = inf
p∈X

f (p).

Then there are p, q such that

f (p) = M and f (q) = m.

Proof. f [X ] ⊆ R is closed and bounded. Thus M and m are members of
f [X ] and we are done.
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Continuity and compactness

Theorem

Theorem

Suppose f is continuous injective mapping of a compact metric space X
onto a metric space Y . Then the inverse mapping f −1 defined on Y by

f −1(f (x)) = x , x ∈ X

is a continuous mapping of Y onto X .

Proof. The inverse f −1 : Y → X is well defined since f : X → Y is
one-to-one and onto. It suffices to prove that f [V ] is open in Y for every
open set V in X . Fix V ⊆ X open, V c is closed in X thus compact, hence
f [V c ] is compact subset of Y and consequently f [V c ] is closed. Since
f : X → Y is one-to-one and onto, hence

f [V ] = (f [V c ])c

and, consequently, f [V ] is open as desired.
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Continuity and connectivity

Continuity and connectivity

Theorem

If f : X → Y is continuous mapping of a metric space X into a metric
space Y and if E is a connected subset of X then f [E ] is connected in Y .

Proof. Assume for a contradiction that f [E ] = A ∪ B, where A and B are
nonempty separated sets in Y . Put

G = E ∩ f −1[A] and H = E ∩ f −1[B].

Then E = G ∪ H and neither G nor H is empty.

Since A ⊆ cl (A) we have G ⊆ f −1[cl (A)] and the latter set is closed
since f is continuous hence cl (G ) ⊆ f −1[cl (A)].

Hence
f [cl (G )] ⊆ f [f −1[cl (A)]] ⊆ cl (A).
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Continuity and connectivity

Proof

Since f [H] ⊆ B and cl (A) ∩ B = ∅ we conclude that

f [H ∩ cl (G )] ⊆ f [cl (G )] ∩ f [H] ⊆ cl (A) ∩ B = ∅,

so H ∩ cl (G ) = ∅.
The same argument shows that cl (H) ∩ G = ∅.
Thus G and H are separated sets, which is a contradiction since E
is connected.
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Continuity and connectivity

Darboux property

Darboux property (intermediate value theorem)

Let f be a continuous function on the interval [a, b]. If f (a) < f (b) and if
c is a number such that f (a) < c < f (b), then there is a point x ∈ (a, b)
such that

f (x) = c .

A similar result holds if f (a) > f (b).

Proof. [a, b] is connected so f
[
[a, b]

]
is connected in R as well by the

previous theorem. Thus if f (a) < c < f (b), then c ∈ f
[
[a, b]

]
, so there is

x ∈ [a, b] so that f (x) = c.

Remark

The theorem stated above is sometimes called Darboux property or the
intermediate value theorem.
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Continuity and connectivity

Example

Exercise

Prove that the equation

x3 − x2 + 2x + 3 = 0

has a solution x0 such that −1 ≤ x0 ≤ 0.

Solution. Consider a continuous function

f (x) = x3 − x2 + 2x + 3.

We calculate
f (−1) = −1, and f (0) = 3.

It follows by the Darboux property that there is c ∈ [−1, 0] such that
f (c) = 0. Thus c is a solution of our equation as desired.
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Continuity and connectivity

f (x) = x3 − x2 + 2x + 3, x0 ≈ −0.8437
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Continuity and connectivity

Example

Exercise

Prove that the equation
x3 = 20 +

√
x

has solution x0.

Solution. Consider a continuous function

f (x) = x3 −
√
x − 20.

We calculate

f (1) = −20 < 0, and f (4) = 42 > 0.

It follows by the Darboux property that there is c ∈ [1, 4] such that
f (c) = 0. Thus c is a solution of our equation as desired.
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Continuity and connectivity

f (x) = x3 −
√
x − 20, x0 ≈ 2, 7879
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