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Uniform continuity

Uniformly continuous mappings

Uniformly continuous mappings
Let (X, px) and (Y, py) be two metric spaces and f : X — Y. We say
that f is uniformly continuous on X if for every ¢ > 0 there exists 6 > 0

such that
py(f(x),f(y)) <e

for all x,y € X for which

px(x,y) <.

Remark
@ Uniform continuity is a property of a function on a set, whereas
continuity can be defined at a single point.
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Remarks

Remark 1

o If f is continuous on X then for each ¢ > 0 and p € X thereis § > 0
such that px(x, p) < d implies py(f(x),f(p)) < e.
@ Thus § > 0 depends on p € X and ¢ > 0.

Remark 2

o If f is uniformly continuous on X then for each € > 0 there is 6 > 0
such that for all x,y € X if px(x,y) < 0 then px(f(x),f(p)) < e.

@ Thus 6 > 0 depends only on ¢ > 0, but is uniform for all x,y € X.

Remark 3

@ Uniform continuity implies continuity.
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Uniform continuity

Continuity on compact spaces becomes uniform

Theorem

Let f be a continuous mapping of a compact metric space (X, px) into a
metric space (Y, py). Then f is uniformly continuous on X.

Proof. Let € > 0 be given.

@ Since f is continuous we can associate to each point p € X a positive
number 6, > 0 such that if g € B(p,dp), then py(f(p),f(q)) < 5

@ Observe that 5
X C L.
clJB (p, 2)
peX

@ Since X is compact there are p1, p,..., pn € X so that

CU (pk, )
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Proof

@ Set

1
5:§min(5pl,...,5pn)>0.

@ Let p,q € X be such that px(p, q) < &, then there is 1 < m < n such
that p € B (pm, 5"7’") . Hence

m

1)
px(q, pm) < px(q,p) + px(Pm,p) <+ % < Opp-
@ Thus we conclude

pv(f(p), £(a)) < py(£(p), f(Pm)) + py(f(Pm). f(q)) < g + £

2

= E.

This completes the proof. O
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Uniform continuity

Example

Exercise

Let f(x) = —=. Determine if it is uniformly continuous on [1,2].

Solution. The interval [1,2] is compact and the function f is continuous
at every point of [1,2]. Hence, by the previous theorem, it is uniformly
continuous. O

Exercise
Let

l.
F(x) = X.n‘X;éO,
0if x=0.

Determine if it is uniformly continuous on [1,2].

Solution. The interval [1,2] is compact and the function f is continuous
at every point of [1,2]. Hence, by the previous theorem, it is uniformly
continuous. |
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Uniform continuity

Example
Exercise
Let
1 .
2 if 0
fp) = x TX70
0ifx=0.

Determine if it is uniformly continuous on [0, 1].

Solution. Let us consider a, = % Then lim,_« a, = 0, but
e lan) = g, n # £0) =0,

so f is not continuous at the point 0, so it is not uniformly
continuous. |
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Example
Exercise

Show that the function

Lifx #£0
f(x)=<~* _I x7#0, is not uniformly continuous on (0,1).
0if x=0,

Solution. It can be checked that f is continuous on (0, 1).
@ Suppose that f is uniformly continuous, then for every € > 0 there is
d > 0 such that for every x,y € (0,1) if [x — y| < 0 then
[f(x) = f(y)l <e.
@ We will use this condition with e =1 and x = % and y = -2

nfi
@ This leads to a contradiction, since if % < 6, then we see that

1 L
Ix—y| = FCE)) <0 implies 1=|n—n+1|=|f(x)—f(y) <1.
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Lipschitz mapping

Lipschitz mapping

Let (X, p) be a metric space. We say that ¢ : X — X is a Lipschitz
mapping of X into itself with the Lipschitz constant C; > 0 if it
satisfies

p(¢(x), d(y)) < Cop(x,y) forall  x,y € X.

Remark
Every Lipschitz mapping is uniformly continuous.

Example 1

Let X =R and ¢(x) = ax + b, then ¢ is a Lipschitz map with C; = |a|
since
|6(x) — d(y)l = lallx —y| forall x,y €R.
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Banach contraction principle

Lipschitz mappings - examples

Example 2
Let (X, p) be a metric space and () # E C X.
o Define the distance from x € X to E by setting

pe(x) =inf{p(x,z) : z€ E}.

E

@ Sometimes we write pg(x) = p(x, E).
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Example

@ One can easily verify that p(x, E) = 0 iff x € cl (E).
@ Moreover,
p(x, E) = ply, E) < p(x,y),
thus X © x — p(x, E) is Lipschitz with the Lipschitz constant 1.
@ Indeed, for any z € E we have

p(x, E) < p(x,2) < p(x,y) + p(y, E),

so
p(x, E) = p(y, E) < p(x,y).
By symmetry p(y, E) — p(x, E) < p(x,y), and we are done. O]
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Banach contraction principle

Contraction

Contraction

Let (X, p) be a metric space. Suppose that ¢ : X — X and there is
c € (0,1) such that

p(o(x), ¢(y)) < cp(x,y) forall  x,y€X

then ¢ is said to be a contraction of X into X.

Remark

In other words, contractions ¢ : X — X are Lipschitz maps with the
Lipschitz constants

Ly, <1.
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Banach contraction principle

The Banach contraction principle

The Banach contraction principle

If (X, p) is a complete metric space and if ¢ is a contraction of X into X,
then there exists one and only one x € X such that ¢(x) = x
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|dea of the proof
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Proof: 1/2
Proof of the uniqueness. If there are x,y € X so that x # y and
#(x) = x and ¢(y) =y, then

0 < p(x,y) = p(d(x), ¢(y)) < cp(x,y) < p(x,y),

which is a contradiction. Thus we must have x = y. O

Remark
The Banach contraction principle says that ¢ has a unique fixed point.

Proof of the existence. The existence of a fixed point of ¢ : X — X is
the essential part of the proof. The proof furnishes a construction
method for looking for the fixed point.

@ Pick xp arbitrarily and consider

x1 = ¢(x0), x = ¢(x1) = ¢*(x0), x3 = ¢(x2) = ¢*(x0), - .-

Xpi1 = &(xp) = 0" H(xg) for neN.
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Banach contraction principle

Proof: 2/2

@ Observe that p(xpt1, Xn) = p(P(Xn), P(xn—1)) < cp(Xn, Xn—1)-
@ Thus inductively we obtain p(xp+1,x,) < ¢"p(x1,Xo) for n € N.
e If n < m it follows that

p(xnXm) < Y p(xjx41) < ("4 44 <) p(xa, x0)

j=n+1
Cn
<c"(14c+ 4. )p(xo,x1) = T Cp(xo,xl) == 0.

Thus the sequence (x,)nen is a Cauchy sequence in X.
But X is complete metric space so there is x € X such that

lim x, =x forsome xe¢& X.
n—oo

Since ¢ : X — X is continuous, thus

o(x) = nli_}m d(xn) = nIi_)m Xnt1 = X. O
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Example

Exercise
Consider f : [1,00) — [1,00) defined by

Prove that f has an unique fixed point.

Solution. Note that f is a contraction. We have

x 1 'y 1)1 |x — y|
f(x)—f =|-4+-——=— - < )
)= Ffl= |3+ 2~ 4y'_4’ I+ 705 y‘_ 2
By the Banach contraction principle, f has a unique fixed point. O
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Example

Exercise

Prove that there is a unique x > 0 such that

X =vV2+x.

Solution. Consider f : [0,00) — [0, 00) defined by
f(x)=vx+2.

By the Banach contraction principle, it suffices to prove that f is a
contraction. Indeed,

— 1
N +2): =yl oy
‘ \/y \/x—|—2+\/2+y 2\ﬁ| y|
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Example

Exercise

Prove that the sequence

V2, 24+ V2, A2+ /2 + V2, \/2+\/2+\/2+\/§,...

converges.

Solution. As in the proof of the Banach contraction principle, the
sequence defined by

xozﬂ and  Xpp1=vVx,+2 forneN

converges to the unique solution of

X =v2+x.
Since f(x) = v/x + 2 is a contraction we are done. O
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Discontinuities

Discontinuities

If x is a point in the domain of a function f at which f is not continuous

we say that
o f is discontinuous on X,

o or f has a discontinuity at x € X.

Definition
Let f : (a,b) — R. Consider any x such that a < x < b.

o We write f(x+) = q if f(tn) 7==2 q for all sequences (t;)nen in
(x, b) such that t, s== x.

e Similarly, f(x—) = q if f(t,) 7= q for all sequences (t,)nen in
(a,x) such that t, ;== x.

o It is clear that for any x € (a, b) lim_, f(t) exists iff
f(x+) = f(x—) = lime F(2).
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f(x+) and f(x—) - picture
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Discontinuity of first and second kind

Let f : (a, b) — R be given.

Discontinuity of the first kind

If f is discontinuous at a point x and if f(x+) and f(x—) exist, then f is
said to have discontinuity of the first kind or simple discontinuity at x.

Discontinuity of the second kind
Otherwise the discontinuity is said to be of the second type.

Remark
There are two ways in which a function can have a simple discontinuity:

e either f(x+) # f(x—),
e or f(x+) = f(x—) # f(x).
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Discontinuities

F(x+) # F(x=)
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f(x+) = f(x=) # f(x)

A
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Continuous from the left and from the right

Continuous from the left

If f(x—) = f(x) for all x € (a, b) then we say that f is continuous from
the left.

Continuous from the right

If f(x+) = f(x) for all x € (a, b) then we say that f is continuous from
the right.
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Integer part

Integer part

x| =max{ne€Z:n<x}

is continuous from the right.
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Discontinuities

Fractional part

Fractional part

) =x— x]

is also continuous from the right.

2

L
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Examples involving characteristic function of Q

Characteristic function of Q

Flx) = 1if x €Q,
T 0ifxeR\ Q.

The function

has a discontinuity of the second kind at every point x since neither f(x+)
nor f(x—) exists.

v

Characteristic function of Q times linear function
Define
if
) ={ e
0if xe R\ Q.

Then f is continuous at x = 0, and f has a discontinuity of the second
kind at every other point x since neither f(x+) nor f(x—) exists.

v

(MATH 411H, FALL 2025) Lecture 18 November 3, 2023 28/34



Example

An example of a function with a simple discontinuity at x = 0 that is
continuous at every other point is given by the following formula
x4+ 2 if x < =2,
f(x)=<—x—-2 ifxe[-2,0),
X+ 2 if x > 0.
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Monotonically increasing and decreasing functions

Monotonically increasing (and decreasing) function

Let f : (a,b) — R, then f is said to be monotonically increasing on
(a,b) if a< x <y < bimplies f(x) < f(y). If f(x) > f(y) we obtain the
definition of a monotonically decreasing function.

Theorem
Let £ be a monotonically increasing on (a, b). Then f(x+) and f(x—)
exist at every point at x € (a, b). More precisely,

sup F(t) = f(x—) < f(x) < f(x+) < inf F(t).

a<t<x x<t<b

Furthermore, if a < x < y < b then f(x+) < f(y—). Analogous result
remains true for monotonically decreasing functions.
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Proof: 1/2

@ The set
E={f(t) : a<t<x}
is bounded by f(x) hence A=supE € R and A < f(x).
@ We have to show f(—x) = A.

@ Let € > 0 be given. Since A =sup E there is § > 0 such that
a<x—0<xand A—e < f(x—0)<A. Since f is monotonic

f(x—=090)<f(t) <A for te(x—0dx).
@ Thus A—e < f(t) <A, so
If(x) —Al<e for te(x—0,x).

@ Thus A= f(x—). In a similar way we prove f(x+) = infy<t<p F(t).
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Proof: 2/2

@ Next if a < x <y < b, then

f(x+)= inf f(t)= inf f(t).

x<t<b X<ty
e Similarly
f(y—)= sup f(t)= sup f(t).
a<lt<y x<t<y
@ Thus
f(x+)= inf f(t) < sup f(t)="~(y—). O
x<t<y x<t<y
Corollary

Monotonic functions have no discontinuities of the second kind.
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___Discontinuities |
Theorem

Theorem

Let f: (a,b) — R be monotonic. Then the set of points of (a, b) of which
f is discontinuous is at most countable.

Proof. Wlog we may assume that f is increasing.
@ Let E be the set of points at which f is discontinuous.

e With every point x € E we associate a rational number r(x) € Q
such that

f(x=) <r(x) < f(x+),

sor: E— Q.
@ Since x; < x2 implies f(x1+) < f(x2o—) we see that r(x1) # r(x2) if
X1 75 X2.
@ We have established that the function r : E — Q is injective, thus
card (E) < card (Q) = card (N). O
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Proof - illustration
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