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Uniform continuity

Uniformly continuous mappings

Uniformly continuous mappings

Let (X , ρX ) and (Y , ρY ) be two metric spaces and f : X → Y . We say
that f is uniformly continuous on X if for every ε > 0 there exists δ > 0
such that

ρY (f (x), f (y)) < ε

for all x , y ∈ X for which
ρX (x , y) < δ.

Remark

Uniform continuity is a property of a function on a set, whereas
continuity can be defined at a single point.
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Uniform continuity

Remarks

Remark 1

If f is continuous on X then for each ε > 0 and p ∈ X there is δ > 0
such that ρX (x , p) < δ implies ρY (f (x), f (p)) < ε.

Thus δ > 0 depends on p ∈ X and ε > 0.

Remark 2

If f is uniformly continuous on X then for each ε > 0 there is δ > 0
such that for all x , y ∈ X if ρX (x , y) < δ then ρX (f (x), f (p)) < ε.

Thus δ > 0 depends only on ε > 0, but is uniform for all x , y ∈ X .

Remark 3

Uniform continuity implies continuity.
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Uniform continuity

Continuity on compact spaces becomes uniform

Theorem

Let f be a continuous mapping of a compact metric space (X , ρX ) into a
metric space (Y , ρY ). Then f is uniformly continuous on X .

Proof. Let ε > 0 be given.

Since f is continuous we can associate to each point p ∈ X a positive
number δp > 0 such that if q ∈ B(p, δp), then ρY (f (p), f (q)) <

ε
2 .

Observe that

X ⊆
⋃
p∈X

B

(
p,

δp
2

)
.

Since X is compact there are p1, p2, . . . , pn ∈ X so that

X ⊆
n⋃

k=1

B

(
pk ,

δpk
2

)
.
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Uniform continuity

Proof

Set

δ =
1

2
min (δp1 , . . . , δpn) > 0.

Let p, q ∈ X be such that ρX (p, q) < δ, then there is 1 ≤ m ≤ n such

that p ∈ B
(
pm,

δpm
2

)
. Hence

ρX (q, pm) ≤ ρX (q, p) + ρX (pm, p) ≤ δ +
δpm
2

< δpm .

Thus we conclude

ρY (f (p), f (q)) ≤ ρY (f (p), f (pm)) + ρY (f (pm), f (q)) <
ε

2
+

ε

2
= ε.

This completes the proof.
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Uniform continuity

Example

Exercise

Let f (x) = 1√
x
. Determine if it is uniformly continuous on [1, 2].

Solution. The interval [1, 2] is compact and the function f is continuous
at every point of [1, 2]. Hence, by the previous theorem, it is uniformly
continuous.

Exercise

Let

f (x) =

{
1
x if x ̸= 0,

0 if x = 0.

Determine if it is uniformly continuous on [1, 2].

Solution. The interval [1, 2] is compact and the function f is continuous
at every point of [1, 2]. Hence, by the previous theorem, it is uniformly
continuous.
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Uniform continuity

Example

Exercise

Let

f (x) =

{
1
x if x ̸= 0,

0 if x = 0.

Determine if it is uniformly continuous on [0, 1].

Solution. Let us consider an = 1
n . Then limn→∞ an = 0, but

lim
n→∞

f (an) = lim
n→∞

n ̸= f (0) = 0,

so f is not continuous at the point 0, so it is not uniformly
continuous.
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Uniform continuity

Example

Exercise

Show that the function

f (x) =

{
1
x if x ̸= 0,

0 if x = 0,
is not uniformly continuous on (0, 1).

Solution. It can be checked that f is continuous on (0, 1).

Suppose that f is uniformly continuous, then for every ε > 0 there is
δ > 0 such that for every x , y ∈ (0, 1) if |x − y | < δ then

|f (x)− f (y)| < ε.

We will use this condition with ε = 1 and x = 1
n and y = 1

n+1 .

This leads to a contradiction, since if 1
n < δ, then we see that

|x−y | = 1

n(n + 1)
< δ implies 1 = |n−n + 1| = |f (x)− f (y)| < 1.

(MATH 411H, FALL 2025) Lecture 18 November 3, 2023 8 / 34



Banach contraction principle

Lipschitz mapping

Lipschitz mapping

Let (X , ρ) be a metric space. We say that ϕ : X → X is a Lipschitz
mapping of X into itself with the Lipschitz constant Cϕ > 0 if it
satisfies

ρ(ϕ(x), ϕ(y)) ≤ Cϕρ(x , y) for all x , y ∈ X .

Remark

Every Lipschitz mapping is uniformly continuous.

Example 1

Let X = R and ϕ(x) = ax + b, then ϕ is a Lipschitz map with Cϕ = |a|
since

|ϕ(x)− ϕ(y)| = |a||x − y | for all x , y ∈ R.
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Banach contraction principle

Lipschitz mappings - examples

Example 2

Let (X , ρ) be a metric space and ∅ ≠ E ⊆ X .

Define the distance from x ∈ X to E by setting

ρE (x) = inf{ρ(x , z) : z ∈ E}.

Sometimes we write ρE (x) = ρ(x ,E ).
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Banach contraction principle

Example

One can easily verify that ρ(x ,E ) = 0 iff x ∈ cl (E ).

Moreover,
|ρ(x ,E )− ρ(y ,E )| ≤ ρ(x , y),

thus X ∋ x → ρ(x ,E ) is Lipschitz with the Lipschitz constant 1.

Indeed, for any z ∈ E we have

ρ(x ,E ) ≤ ρ(x , z) ≤ ρ(x , y) + ρ(y ,E ),

so
ρ(x ,E )− ρ(y ,E ) ≤ ρ(x , y).

By symmetry ρ(y ,E )− ρ(x ,E ) ≤ ρ(x , y), and we are done.
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Banach contraction principle

Contraction

Contraction

Let (X , ρ) be a metric space. Suppose that ϕ : X → X and there is
c ∈ (0, 1) such that

ρ(ϕ(x), ϕ(y)) ≤ cρ(x , y) for all x , y ∈ X

then ϕ is said to be a contraction of X into X .

Remark

In other words, contractions ϕ : X → X are Lipschitz maps with the
Lipschitz constants

Lϕ < 1.

(MATH 411H, FALL 2025) Lecture 18 November 3, 2023 12 / 34



Banach contraction principle

The Banach contraction principle

The Banach contraction principle

If (X , ρ) is a complete metric space and if ϕ is a contraction of X into X ,
then there exists one and only one x ∈ X such that ϕ(x) = x
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Banach contraction principle

Idea of the proof
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Banach contraction principle

Proof: 1/2

Proof of the uniqueness. If there are x , y ∈ X so that x ̸= y and
ϕ(x) = x and ϕ(y) = y , then

0 < ρ(x , y) = ρ(ϕ(x), ϕ(y)) ≤ cρ(x , y) < ρ(x , y),

which is a contradiction. Thus we must have x = y .

Remark

The Banach contraction principle says that ϕ has a unique fixed point.

Proof of the existence. The existence of a fixed point of ϕ : X → X is
the essential part of the proof. The proof furnishes a construction
method for looking for the fixed point.

Pick x0 arbitrarily and consider

x1 = ϕ(x0), x2 = ϕ(x1) = ϕ2(x0), x3 = ϕ(x2) = ϕ3(x0), . . .

xn+1 = ϕ(xn) = ϕn+1(x0) for n ∈ N.
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Banach contraction principle

Proof: 2/2

Observe that ρ(xn+1, xn) = ρ(ϕ(xn), ϕ(xn−1)) ≤ cϕ(xn, xn−1).

Thus inductively we obtain ρ(xn+1, xn) ≤ cnρ(x1, x0) for n ∈ N.
If n < m it follows that

ρ(xn, xm) ≤
m∑

j=n+1

ρ(xj , xj+1) ≤
(
cn + cn+1 + . . .+ cm−1

)
ρ(x1, x0)

≤ cn(1 + c + c2 + . . .)ρ(x0, x1) =
cn

1− c
ρ(x0, x1) −−−→n→∞ 0.

Thus the sequence (xn)n∈N is a Cauchy sequence in X .

But X is complete metric space so there is x ∈ X such that

lim
n→∞

xn = x for some x ∈ X .

Since ϕ : X → X is continuous, thus

ϕ(x) = lim
n→∞

ϕ(xn) = lim
n→∞

xn+1 = x .

(MATH 411H, FALL 2025) Lecture 18 November 3, 2023 16 / 34



Banach contraction principle

Example

Exercise

Consider f : [1,∞) → [1,∞) defined by

f (x) =
x

4
+

1

4x
.

Prove that f has an unique fixed point.

Solution. Note that f is a contraction. We have

|f (x)− f (y)| =
∣∣∣∣x4 +

1

4x
− y

4
− 1

4y

∣∣∣∣ ≤ 1

4
|x − y |+ 1

4

∣∣∣∣1x − 1

y

∣∣∣∣ ≤ |x − y |
2

.

By the Banach contraction principle, f has a unique fixed point.
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Banach contraction principle

Example

Exercise

Prove that there is a unique x ≥ 0 such that

x =
√
2 + x .

Solution. Consider f : [0,∞) → [0,∞) defined by

f (x) =
√
x + 2.

By the Banach contraction principle, it suffices to prove that f is a
contraction. Indeed,∣∣∣√x + 2−

√
y + 2

∣∣∣ = |x − y |√
x + 2 +

√
2 + y

≤ 1

2
√
2
|x − y |.
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Banach contraction principle

Example

Exercise

Prove that the sequence

√
2,

√
2 +

√
2,

√
2 +

√
2 +

√
2,

√
2 +

√
2 +

√
2 +

√
2, . . .

converges.

Solution. As in the proof of the Banach contraction principle, the
sequence defined by

x0 =
√
2 and xn+1 =

√
xn + 2 for n ∈ N

converges to the unique solution of

x =
√
2 + x .

Since f (x) =
√
x + 2 is a contraction we are done.
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Discontinuities

Discontinuities

Discontinuities

If x is a point in the domain of a function f at which f is not continuous
we say that

f is discontinuous on X ,

or f has a discontinuity at x ∈ X .

Definition

Let f : (a, b) → R. Consider any x such that a < x < b.

We write f (x+) = q if f (tn) −−−→n→∞ q for all sequences (tn)n∈N in
(x , b) such that tn −−−→n→∞ x .

Similarly, f (x−) = q if f (tn) −−−→n→∞ q for all sequences (tn)n∈N in
(a, x) such that tn −−−→n→∞ x .

It is clear that for any x ∈ (a, b) limt→x f (t) exists iff
f (x+) = f (x−) = limt→x f (t).
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Discontinuities

f (x+) and f (x−) - picture
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Discontinuities

Discontinuity of first and second kind

Let f : (a, b) → R be given.

Discontinuity of the first kind

If f is discontinuous at a point x and if f (x+) and f (x−) exist, then f is
said to have discontinuity of the first kind or simple discontinuity at x .

Discontinuity of the second kind

Otherwise the discontinuity is said to be of the second type.

Remark

There are two ways in which a function can have a simple discontinuity:

either f (x+) ̸= f (x−),

or f (x+) = f (x−) ̸= f (x).
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Discontinuities

f (x+) ̸= f (x−)
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Discontinuities

f (x+) = f (x−) ̸= f (x)
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Discontinuities

Continuous from the left and from the right

Continuous from the left

If f (x−) = f (x) for all x ∈ (a, b) then we say that f is continuous from
the left.

Continuous from the right

If f (x+) = f (x) for all x ∈ (a, b) then we say that f is continuous from
the right.
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Discontinuities

Integer part

Integer part
⌊x⌋ = max{n ∈ Z : n ≤ x}

is continuous from the right.
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Discontinuities

Fractional part

Fractional part
{x} = x − ⌊x⌋

is also continuous from the right.
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Discontinuities

Examples involving characteristic function of Q

Characteristic function of Q
The function

f (x) =

{
1 if x ∈ Q,

0 if x ∈ R \Q.

has a discontinuity of the second kind at every point x since neither f (x+)
nor f (x−) exists.

Characteristic function of Q times linear function

Define

f (x) =

{
x if x ∈ Q,

0 if x ∈ R \Q.

Then f is continuous at x = 0, and f has a discontinuity of the second
kind at every other point x since neither f (x+) nor f (x−) exists.
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Discontinuities

Example

An example of a function with a simple discontinuity at x = 0 that is
continuous at every other point is given by the following formula

f (x) =


x + 2 if x < −2,

−x − 2 if x ∈ [−2, 0),

x + 2 if x ≥ 0.
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Discontinuities

Monotonically increasing and decreasing functions

Monotonically increasing (and decreasing) function

Let f : (a, b) → R, then f is said to be monotonically increasing on
(a, b) if a < x < y < b implies f (x) ≤ f (y). If f (x) ≥ f (y) we obtain the
definition of a monotonically decreasing function.

Theorem

Let f be a monotonically increasing on (a, b). Then f (x+) and f (x−)
exist at every point at x ∈ (a, b). More precisely,

sup
a<t<x

f (t) = f (x−) ≤ f (x) ≤ f (x+) ≤ inf
x<t<b

f (t).

Furthermore, if a < x < y < b then f (x+) ≤ f (y−). Analogous result
remains true for monotonically decreasing functions.
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Discontinuities

Proof: 1/2

The set
E = {f (t) : a < t < x}

is bounded by f (x) hence A = supE ∈ R and A ≤ f (x).

We have to show f (−x) = A.

Let ε > 0 be given. Since A = supE there is δ > 0 such that
a < x − δ < x and A− ε < f (x − δ) ≤ A. Since f is monotonic

f (x − δ) ≤ f (t) ≤ A for t ∈ (x − δ, x).

Thus A− ε < f (t) ≤ A, so

|f (x)− A| < ε for t ∈ (x − δ, x).

Thus A = f (x−). In a similar way we prove f (x+) = infx<t<b f (t).
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Discontinuities

Proof: 2/2

Next if a < x < y < b, then

f (x+) = inf
x<t<b

f (t) = inf
x<t<y

f (t).

Similarly
f (y−) = sup

a<t<y
f (t) = sup

x<t<y
f (t).

Thus

f (x+) = inf
x<t<y

f (t) ≤ sup
x<t<y

f (t) = f (y−).

Corollary

Monotonic functions have no discontinuities of the second kind.
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Discontinuities

Theorem

Theorem

Let f : (a, b) → R be monotonic. Then the set of points of (a, b) of which
f is discontinuous is at most countable.

Proof. Wlog we may assume that f is increasing.

Let E be the set of points at which f is discontinuous.

With every point x ∈ E we associate a rational number r(x) ∈ Q
such that

f (x−) < r(x) < f (x+),

so r : E → Q.

Since x1 < x2 implies f (x1+) ≤ f (x2−) we see that r(x1) ̸= r(x2) if
x1 ̸= x2.

We have established that the function r : E → Q is injective, thus

card (E ) ≤ card (Q) = card (N).
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Discontinuities

Proof - illustration
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