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Differentiation

Derivative

Derivative
Let f: [a, b] — R. For any x € [a, b] form the quotient function

gb(t) — f(t) — f(X)

" , a<t<b, t#x and define
— X

f(x) = lim (1)

provided the limit exists. We thus associate with the function f a function
f" whose domain is the set of points x for which the limit lim;_,, ¢(t)
exists. The function f’ is called the derivative of f.

Differentable function

o If ' is defined at point x, we say that f is differentiable at x.

o If f" is defined at every point of a set E C [a, b] we say that f is
differentiable on E.
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Differentiation

Remarks — endpoints

Right-hand and left-hand limits
@ It is possible to consider right-hand and left-hand limits of ¢(t).
@ This leads to the definition of right-hand and left-hand derivatives.

@ In particular, at the endpoints a, b the derivative exists if exists a
right-hand and left-hand derivative respectively.

Endpoints
o If f is defined on a segment (a, b) and if a < x < b, then f'(x) is

defined by ] ]
()~ ()
t—x t—Xx

but f'(a) and f'(b) are not defined in this case.

9

(MATH 411H, FALL 2025) Lecture 19 November 6, 2025 3/43



Differentiation

Example

Exercise 1

Using the definition, calculate the derivative of f(x) = x? at a point x. J

Solution. We have
2 =X
lim ——— = lim x + t = 2x. O

t—x t—X t—rx

Exercise 2

Using the definition, calculate the derivative of f(x) = x3 at a point x. J

Solution. Using the formula x> — y® = (x — y)(x? + xy + y?) we have

13— x3

. X .
lim —— = lim x® + xt + t° = 3x°. L]
t—>x t—X t—x
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Differentiation

Example

Exercise 3

Using the definition, calculate the derivative of f(x) = y/x at a point x. J

Solution. Using the formula

x—y=(x=Vy)(Vx+ ),

we obtain
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Differentiation

Theorem

Theorem
If f: [a, b] — R is differentiable at x € [a, b], then f is continuous at x.

Proof. Note that

f(t) - F(x) = "D =)

P (t—x) — f(x)-0=0. O

t—x

Remark 1
The converse of this theorem is not true.
@ Let f(x) = |x| but it is not differentiable at x = 0.

Remark 2

It is also possible to construct a continuous function on R which is not
differentiable at any point of R.
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Differentiation

Arithmetic theorem for derivatives

Theorem

Let f,g : [a, b] — R be differentiable at x € [a, b]. Then f + g, f - g, and
g are differentiable at x and we have

@ (f+g)(x)="f"(x)+g'(x)

@ (fg)'(x) = f'(x)g(x) + f(x)g'(x),

! "(x)g(x)—f(x)g’(x
@ (é) (x) = F( )g((g)(x)f)(2 )8' (<) " \yhenever g(x) #0.

Proof of (a). It is clear, since

(F+ 8/ = iy T8O 1) 809 _ 70~ 7(9
+ lim g(ti — f(x) = f(x) + &'(x). 0
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Proof of (b) and (c)
Proof of (b). Let h=f - g, then
h(t) — h(x) = f(t)(g(t) — £(x)) + FO)(F(t) — &(x))-

Thus
(f-8)(x) = h(x) = Jim h(ti - Z(X)
= tim #0580 i 00720
= f(x)g'(x) + g(x)f'(x). 0

Proof of (c). Let h = gf and observe

M) ) _ L (50 10200 _ )80,

t—x  g()e() \&

Letting t — x we obtain the desired claim. O
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Examples

Example 1
f(x) =c eR forall x € R, then f/(x) =0 for all x € R.

Example 2
f(x) = x", then f'(x) = nx"~%, n € N. Indeed,

X" — yn — (X o y) (Xn—l +Xn—2y 4. +Xyn—2 +yn—1) ,
thus

f(t) - f(x)

=" X" X o XL

t—x
Example 3
f _ 1 0. th f/ _ nx"~1 _ n
(x) = 57, x #0, then f'(x) = — %5~ = — 71
v
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Differentiation

Examples

Example 4
Every polynomial P(x) = Y_}_, axx¥ is differentiable.

Example 5

Every R(x) = g%);% where P, @ are polynomials, is differentiable for all

x € R such that Q(x) # 0.

Exercise
Calculate f'(x), where f(x) = {/x + 3x* + 5.

Solution. Using the previous theorem and the fact that
1
I

we obtain f/(x) = ﬁ +12x3. O
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__Differentiation |
Leibniz theorem

Theorem (Chain rule)

Suppose that f : [a, b] — R is continuous and f’(x) exists at some point
x € [a, b], g is defined on an interval | which contains the range of f and
g is differentiable at the point f(x). If

h(t) =g(f(t)), a<t<b,
then h is differentiable at x and
W (x) = g'(f(x))f'(x).

The latter identity is called the chain rule.
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Proof: 1/2

Let y = f(x). By the definition of the derivative we have
F(t) = £(x) = (t = x)(F'(x) + u(t)),

g(s) —gly) = (s —y)(g'(y) + v(s)),
where t € [a,b], s € I, and

lim u(t) =0 and lim v(s) = 0.

t—x s—y

Let s = f(t) and note that
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Proof: 2/2

If t # x, then
h(t) — h(x)

t—Xx

= (&'(y) + v()(F(x) + u(t)).
Letting t — x we see

s=1f(t) — f(x)=y

t—x

by the continuity of f. Thus
h(t) — h(x)

im — g (F () = g(FENF(x).
t—x t—
Lecture 19 November 6, 2025
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Differentiation

Example

Exercise

Calculate H'(x), where

h(X) _ (X5 +X3)100.

Solution. By the chain rule
h=fog, f(x)=x¥ gx)=x>+x3
so
f'(x) =100x%°, and g'(x) = 5x* + 3x°,
K (x) = 100(5x* + 3x?)(x° + x3)%°.
Remark

Newton's binomial formula could be also used to calculate h'(x), but the
solution seems to be longer.
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Local minimum and maximum

Local maximum and minimum

Let X CR and f: X — R. We say that f has a local maximum at the
point p € X if there exists § > 0 such that

f(q) <f(p) forall qe(p—3d,p+9),

Local minimum is defined likewise.

A

Local maximum

Local minimum

[_s P ’ -
—5 Ppyor—s " r+6
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Theorem

Theorem

If f:[a, b] — R has a local maximum at x € (a, b) and if f'(x) exists then
f’(x) = 0. An analogous statement is also true for local minima.

Proof. If x € (a, b) is a local maximum then there exists 6 > 0 such that
if |g — x| < 0, then f(q) < f(x).
We can assumethata< x—d <x<x+d < bif x—9 <t < x, then
() - -
t—Xx o
Letting t — x we see that '(x) > 0. If x < t < x + 4, then

f(t) - f(x)

t—Xx

<0.

Letting t — x then we obtain '(x) < 0, thus we conclude f'(x) =0. [
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Mean-value theorems

The mean-value theorem

The mean-value theorem

If f,g :[a,b] — R are continuous on [a, b] and differentiable in (a, b) then
there is a point x € (a, b) at which

(f(b) — f(a))g'(x) = ((b) — g(a))f'(x).

@ Note that differentiability is not required at the endpoints.

e If g(x) = x, we recover the Lagrange theorem.

Lagrange theorem
f(b) — f(a)

e f'(x) forsome x € (a,b).
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Mean-value theorems

Proof of the mean-value theorem: 1/2

@ For a <t < b consider

h(t) = (f(b) — f(a))g(t) — (g(b) — g(a))f(t).

@ Then h is continuous on [a, b] and h is differentiable in (a, b) and

h(a) = f(b)g(a) — f(a)g(b) = h(b).
@ To prove the theorem we have to show that

H(x)=0 forsome x € (a,b).

e If his constant, this holds for every x € (a, b).
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Mean-value theorems

Proof of the mean-value theorem: 2/2

Recall
A continuous function always attains its maximum and minimum on a
compact set.

o If h(t) > h(a) for some t € (a, b), let x be a point in [a, b] for which
h attains its maximum.

e Since h(a) = h(b) then x € (a, b).

o By the previous theorem h'(x) = 0, since h(x) = sup,cp, 5 h(y)-

e Similarly, if h(t) < h(a) for some t € (a, b) the same argument
applies, and we choose x € (a, b) where h attains its minimum.

This completes the proof of the theorem. O
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Example

Exercise

Assume that f is differentiable, moreover

Solution. By the mean-value theorem
f(3) = £(0) = (3-0)f'(c)
for some ¢ € (0, 3). Moreover, by our assumption,
1=2—-1=f(3)—f(0) =3f(c),
so f'(c) = 1. O
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Mean-value theorems

Theorem

Theorem
Suppose f is differentiable in (a, b).
@ If f/(x) >0 for all x € (a,b), then f is monotonically increasing.

@ If f/(x) =0 for all x € (a,b), then f is constant.

@ If f/(x) <0 forall x € (a,b), then f is monotonically decreasing.

Proof. By the mean-value theorem for each a < x; < x» < b we have
f(xx) — f(x1) = f/(x)(x2 — x1) for some x € (x1,x).

e If f/(x) >0, then f(x2) > f(x1).
e If f/(x) =0, then f(x2) = f(x1).
o If f/(x) <0, then f(x2) < f(x1). O
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Remark

Derivatives which exist at every point of an interval have an important
property in common with functions which are continuous on the intervals:

their intermediate values are attained. )

Theorem

Suppose that f : [a, b] — R is differentiable and suppose that
f'(a) < X < f'(b).

Then there is a point x € (a, b) such that f/(x) = A.

@ A similar result holds of course if f'(a) > f'(b).
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Proof

Set g(t) = f(t) — At.
@ Then g’(a) < 0 and g(t1) < g(a) for some t; € (a, b) since

v g(t)—g(a)
O>g(a)_a<|ltrﬂ>a t—a ’
——
>0

@ Similarly, since g’(b) > 0 we obtain g(t2) < g(b) for some t € (a, b).
@ Hence g attains its minimum on [a, b] at some point x € (a, b).

@ Hence we have g'(x) = 0, so f’(x) = A and we are done. O

Remark

If £ :[a, b] — R is differentiable then f’ cannot have any simple
discontinuity on [a, b]. But ' may have discontinuities of the second kind.
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L'Hopital's rule
L'Hopital’s rule
Suppose that f, g : (a, b) — R are differentiable in (a, b) and g’(x) # 0 for
all x € (a,b), where —oo < a < b < +00. Suppose that
f'(x)
=3 A *
gl(X) x—4 ( )

@ If f(x) x=3 0 and g(x) x=3 0, or
@ if g(x) =3 + oo, then

Remark

An analogous statement is true if x — b or if g(x) = —o0.

v
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Proof: 1/4

Proof. We first consider the case —c0 < A < +0.

@ Choose a real number g such that A < g and then choose r such that
A<r<aq.

e By (*) there is ¢ € (a, b) such that a < x < ¢ implies
f'(x)
g'(x)

<r.

o If a < x < y < c then the mean-value theorem shows that there is a
point t € (x,y) such that

(**)
fi) —fly) _ f'(t)
g(x)—gly) g'(t)

<r.
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L’Hopital’s rule

Proof: 2/4
o If f(x) x=3 0 and g(x) =3 0 then we see
f
M§r<q, whenever a<y <c.
g(y)

o If g(x) =3 + o0. Keeping y fixed in (**) we can choose a point
c1 € (a,y) such that g(x) > g(y) and g(x) > 0if a < x < ¢;1. Then

g(x) —g(y)
T 0.
Thus
f(x) = fly)  f(x)—f(y) g(x) — gly)
g(x) g(x)—gly) &(x)
c X —ely) &),
g(x) g(x)
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Proof: 3/4

@ Hence

f f
ﬂ<r—r@+g whenever a < x < ¢j.

g(x) g(x)  &x)’

o If we let x — a (since g(x) y=3 + o0) we find ¢ € (a, c1) such that

f(x)
—= < q, whenever a<x< .
g(x)
@ We conclude that for any g > A there is ¢ such that
e F(X)
a<x<c implies —=<aq.
g(x)
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Proof: 4/4

@ In the same manner if —oco < A < +00 and p is chosen so that p < A
we can find a point ¢3 such that

_ f(x)
a<x<c implies p<—=-.
g(x)

o lf —co< A< +oowetakee >0andsetp=A—¢,g=A+¢e.

@ Then there is ¢3 so that for a < x < ¢3 we have

f'
A—5<ﬁ<A—|—s.

g(x)

This completes the proof of the L'Hopital rule. O
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Theorem

Theorem

Let f : [a, b] — R be continuous and strictly increasing function. Then the
inverse function of f is continuous and also strictly increasing.

Proof. Since f is continuous from the intermediate value theorem we
know that the image of f is an interval, say [, 8] = f[[a, b]].

o Let g: [o, B] — [a, b] be the inverse function. It is clear that g is also
strictly increasing. We have to prove that g is continuous.

o Let v € [a, f]. Given € > 0 and v = f(x) consider the closed interval
[x1, x2], where

b otherwise

c—¢e¢ ifa<c-—e¢ ct+e ifc+e<b
X1 = ) X = .
a otherwise

Then f(x1) < f(x2).
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Proof

@ We assume a < b. We select

0 = min(f(x2) — f(c), f(c) — f(x1)).

@ Suppose that § > 0. If |y — | < §, then there is unique x such that
y = f(x) and x; < x < x2 and hence |g(x) — ¢| < e.

o If § =0, then either a= c or b = ¢, that is ¢ is an endpoint.
@ Say ¢ = a. In this case we disregard x; and let § = f(x2) — f(c).

@ The same argument works if ¢ = b (we let 6 = f(c) — f(x1)). O

(MATH 411H, FALL 2025) Lecture 19 November 6, 2025 30/43



Theorem

Theorem

Let f : [a, b] — R be continuous and a < b. Assume that f is
differentiable on (a, b) and f/(x) > 0 for x € (a, b). Then the inverse
function g of f defined on [, 3] = f|[a, b]] is differentiable on («, 3) and

! = L = L or «
eV 56y " ety TP

Proof. Let a < yp < f and yo = f(xp) and y = f(x). Then

s)—8w) _ _ x=x 1 1 _ 1
Y — Y0 f(x)—f(xo) fO=fla) Y79 f(x5)  f'(g(v0))
X—Xo
If y — yo then x — xg since g is continuous. O
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Derivatives of higher order

Second derivative

If f has a derivative f’ on an interval and if ' is itself differentiable, we
denote the derivative of f/ by f” and call f” the second derivative of f.

o Continuing this way, we obtain:

f f:/7 f-//7 f(3)’ N f(")

.y P

each of which is derivative of the proceeding one.
o (" is called the n-th derivative, or derivative of order n of f.

Remark

o In order for f("(x) to exists at point x, f("~1)(t) must exists in a
neighbourhood of x (or in a one-sided neighborhood, if x is an
endpoint of the interval on which f is defined) and f("=1) must be
differentiable at x.
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Derivatives of higher order

Examples

Example
Consider f(x) = x" for n € N. Then

f'(x) = nx"_l,

f(x) = n(n — 1)x"72,

f"(x) = n(n —1)(n — 2)x"73,

£ (x) = nl.
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Convex functions

Convex function

A function f : (a, b) — R is convex if for every x,y € (a, b) one has

f(ax + By) < af(x)+ Bf(y)

whenever o, 5 € [0,1] and a 4+ 5 = 1.

Observation 1
If f:(a,b) = Ris convex and if a < s < t < u < b, then

(6) = F(s) _ Flu) = F(s) _ () = (1)

t—Xx u—s u—t

Proof. Since s < t < u then we may write t = au + (s for some
a,f€[0,1] and a+ f =1.
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Proof
More precisely,
t—s u—t
t=au+ Bs = u+ s.
u—s u—s
SN—— SN——
=« B

Then by the convexity

f(t):f<t_su+ ”_ts) < L%y + X (s).

u—s u—s u—s u—s
Hence t—s u—t u—s
f(t)—f(s) < f f(s)— f
(1) = F(s) < —F(u) + o F(5) = S F(s)
> t—s t—s
f(t)—f(s) < f(u) — f(s).
(6) = F(s) <~ () — - (5)
Hence .
() =f(s) _ FW—F)
t—s u—=s
Lecture 19 November 6, 2025
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Observation 2

Observation 2
If f:(a,b) = R is convex then for any A1,..., A\, € [0, 1] satisfying

AMF+A+.. .+ =1,

we have
f()\lxl + ...+ )\,,X,,) < )\1f(X1) + ...+ )\nf(X,,).

Proof. For n = 2 if follows from definition of convexity. Suppose that the
statement is true for n > 2 and we show it also holds for n + 1. Let
M,y Ant1 € [0,1] so that Ay + ...+ Apy1 = 1. Note that

(*)

Ak 1—=Xpp1
> P Z)\k =1.

=1 n+1 n+1
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Proof

Then

f(/\lx + ...+ )\n—i—an—i-l)

=f (An+1xn+1 + (1 = Aps1) (Z (1_>\)I\()Xk>>

k=1

~ A
< Anaf (Xpa1) + (1= Apgr)f (Z (1—)/:n+1)Xk)

convexity k=1
n
Ak
< An lf(Xn 1)+(1_)\n 1) 77[()(/()
N, + + + ; (1 — )\n—f—l)

induction+(*)
n+1

= Mef(x). O
k=1
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Convexity and continuity

Theorem

If f:(a, b) — R is convex then f is continuous on (a, b).

Proof. Let a < s < u < v <t<b. ByObservation 1 one has

) < f(s) + =1

v—s )
and also
vy < £y + Ty
Thus

u—s

f(u)—f f(t)—f
)+ "= g < vy < pup + T 2Ty
Take v = v, for n € N. If v, == u converges to u we see that
limp—oo f(vn) = f(u) thus limy_, f(x) = f(u).

O
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Sign of the second derivative

@ The sign of the first derivative has been interpreted in terms of a
geometric property of the function whether it is decreasing or
increasing. We shall interpret the sign of the second derivative.

o Let f : [a, b] — R, then the equation of the line passing through
(a,f(a)) and (b, f(b)) is

y=r(a)+ =Ty

-
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Sign of the second derivative

@ The condition that every point on the curve y = f(x) lies below the
line segment between x = a and x = b is that

f(x) < f(a) + f(bgig(a)(x —a) for a<x<bh. (%)

@ Any point x between a and b can be written in the form
x =a+ t(b— a) with t € [0,1]. In fact, one sees that the map
t—>a+tlb—a)

is a strictly increasing bijection between [0, 1] and [a, b].
o If we substitute the value of x in terms of t in (*) we find an
equivalent inequality

f((1—t)a+th) < (1 —t)f(a) + tf(b),

which is convexity of the function f on (a, b).
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Second derivative test

Theorem

Let f : [a, b] — R be continuous. Assume that f” exists on (a, b) and
f"(x) > 0 on (a,b). Then f is strictly convex on the interval [a, b].

Proof. For a < x < b we define

f(b) — f(a)

g(x) = fla) + " x— a) — F(x).

By the mean-value theorem we obtain

g'(x) = W —f'(x) =f'(c) — f'(x) forsome a<c<b.

Using the mean-value theorem again for f’ we find g’(x) = " (d)(c — x)
for some d between ¢ and x.
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Proof
e If a< x < ¢, and using f”(d) > 0 we conclude that g is strictly

increasing on |[a, c].
e If ¢ < x < b we conclude that g is strictly decreasing on |[c, b].

e Since g(a) =0 and g(b) = 0 it follows g(x) > 0 when a < x < b,

thus
f(b) —f(a)

P (x — a). O

f(x) < f(a)+

Concave function
A function f : (a, b) — R is concave if for every x,y € (a, b) one has

flax+ By) = af (x) + Bf(y)

whenever o, 5 € [0,1] and a + § = 1.

o Analogues of all above-proved theorems hold for concave
functions in place of convex functions.
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Convex and concave functions

convex concave
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