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Operations on sets

Number systems

N = Z+ = {1, 2, 3, . . .} - positive integers,
N0 = {0, 1, 2, 3, . . .} - non-negative integers,
Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .} - the set of integers,
Q = {m

n : m ∈ Z, n ∈ Z \ {0}} - the set of rationals.

Let a, d ∈ Z and we say that d is a divisor of a, and write d | a, if
there exists an integer q ∈ Z such that a = dq.
An integer n ∈ Z is called prime if n > 1 and if the only positive
divisors of n are 1 and n. The set of all prime numbers will be
denoted by P.
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Operations on sets

Sets

The words family and collection will be used synonymously with ”set”.

Notation

∅ - empty set,
P(X ) - family of subsets of the set X , sometimes called power set of X .

Example 1

If X = {1}, then
P(X ) = {∅, {1}}.

Example 2

If X = {1, 2, 3}, then

P(X ) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
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Operations on sets

Inclusions 1/2

Definition (Inclusion in a weak sense)

We write A ⊆ B if any element of A is also the element of B.

We will write A ⊂ B if A ⊆ B and A ̸= B.

In practice, if one wants to prove that A = B, it suffices to show that
A ⊆ B and B ⊆ A hold simultaneously.
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Operations on sets

Inclusions 2/2

Example 1

We have P ⊂ N ⊂ N0 ⊂ Z ⊂ Q.

Example 2

If A = {1, 2} and B = {1, 2, 3}, then A ⊆ B and A ⊂ B.

Example 3

If A = {1, 2, 4} and B = {1, 2, 3}, then A ⊆ B does not hold, because 4
belongs to A, but it does not belong to B.
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Operations on sets

Union of sets 1/2

Union of sets

Let X be a set, Σ be a family of sets from P(X ). The union of the
members from Σ is the following subset of X :⋃

E∈Σ
E = {x ∈ X : x ∈ E for some E ∈ Σ} = {x ∈ X : ∃E∈Σx ∈ E}.

∃ ≡ there exists.
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Operations on sets

Union of sets 2/2

Example

If Σ = {A,B,C}, then
⋃

E∈Σ E = A ∪ B ∪ C
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Operations on sets

Intersection of sets 1/3

Intersection of sets

Let X be a set, Σ ̸= ∅ be a family of sets from P(X ). The intersection
of the members from Σ is the following subset of X :⋂

E∈Σ
E = {x ∈ X : x ∈ E for all E ∈ Σ} = {x ∈ X : ∀E∈Σx ∈ E}.

∀ ≡ for all.
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Operations on sets

Intersection of sets 2/3

Example 1

If Σ = {A,B,C}, then
⋂

E∈Σ E = A ∩ B ∩ C
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Operations on sets

Intersection of sets 3/3

Example 2

If Σ = {A,B,C} as in the picture, then
⋂

E∈Σ E = A ∩ B ∩ C = ∅.
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Operations on sets

Union and intersection of indexed family of sets

If Σ = {Eα : α ∈ A}, then the union and the intersection will be denoted
respectively by ⋃

α∈A
Eα and

⋂
α∈A

Eα.

Example 1

If A = {1, 2, 3}, then
⋃

α∈A Eα = E1 ∪ E2 ∪ E3.

Example 2

If A = N, then
⋃

α∈A Eα = E1 ∪ E2 ∪ E3 ∪ E4 ∪ . . ..
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Operations on sets

Disjointness

Definition (Disjointness)

If A ∩ B = ∅, then we say that A and B are disjoint.

Example

If A = {1, 2}, B = {3, 4}, C = {1, 2, 3}, then A and B are disjoint, but A
and C are not disjoint.
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Operations on sets

Difference of sets

Difference of sets

If A,B are two sets, then

A \ B = {x ∈ A : x ̸∈ B}.

Example 1

If A = {1, 2, 3} and B = {3}, then A \ B = {1, 2}.

Example 2

If A = {1, 2, 3} and B = {4}, then A \ B = {1, 2, 3}.
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Operations on sets

Symmetric difference of sets

Symmetric difference of sets

If A,B are two sets, then

A△B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

Example

If A = {1, 2, 3, 4} and B = {3, 4, 5, 6}, then A△B = {1, 2, 5, 6}.
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Operations on sets

Complement of sets

Complement of sets

If a set X is given, and A ⊆ X , then the complement of A in X is defined
by Ac = X \ A.
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Operations on sets

de Morgan’s laws

de Morgan’s laws (⋃
α∈A

Eα

)c

=
⋂
α∈A

E c
α

(⋂
α∈A

Eα

)c

=
⋃
α∈A

E c
α

Example

We have (A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc .
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Cartesian products, relations and functions

Ordered pairs

Ordered pairs

The ordered pair (x , y) is precisely the set {{x}, {x , y}}.

Theorem

(x , y) = (u, v) iff x = u and y = v .

Proof

If x = u and y = v , then (x , y) = {{x}, {x , y}} = {{u}, {u, v}} = (u, v).

Suppose that (x , y) = (u, v). This is equivalent to say that

(x , y) = {{x}, {x , y}} = {{u}, {u, v}} = (u, v).

This implies that {x} = {u} and {x , y} = {u, v}.
Hence x = u and y = v as desired.
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Cartesian products, relations and functions

Cartesian products

Cartesian products

If X and Y are sets, their Cartesian product X × Y is the set of all
ordered pairs (x , y) such that x ∈ X and y ∈ Y .

X × Y = {(x , y) : x ∈ X , y ∈ Y }
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Cartesian products, relations and functions

Cartesian products - examples

Example 1

If X = {1, 2, 3},Y = {4, 5}, then

X × Y = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)}.

Example 2

If X = {1, 2},Y = {1, 2}, then

X × Y = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Example 3

If X ̸= ∅ and Y = ∅, then X × Y = ∅.
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Cartesian products, relations and functions

Relations

Relations

A relation from X to Y is a subset R of X × Y , i.e. R ⊆ X × Y .

If X = Y we speak about relations on X .

If R is a relation from X to Y we shall sometimes write xRy to mean that
(x , y) ∈ R ⊆ X × Y .
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Cartesian products, relations and functions

Relations - examples

Example 1

If X = Y and we set
xRy ⇐⇒ x = y

This relation corresponds to the diagonal ∆ in X × X :

∆ = {(x , x) : x ∈ X} ⊆ X × X .

Now we present more examples of relations.
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Cartesian products, relations and functions

More examples: functions and sequences

Functions

A function f : X → Y is a relation R from X to Y with the property
that for every x ∈ X there is a unique element y ∈ Y such that xRy in
which case we write

y = f (x).

Sequences

A sequence in X is a function from the natural numbers N into the set X .
That is, it is an assignment of elements from X to natural numbers.

We usually denote such a function by N ∋ n 7→ xn ∈ X , so the terms
in the sequence are written (x1, x2, x3, . . .).

To refer to the whole sequence, we will write (xn)
∞
n=1, or (xn)n∈N or

for the sake of brevity simply (xn).
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Equivalence relations

Equivalence relations

Equivalence relations

An equivalence relation is a relation on X such that:

1 xRx for all x ∈ X , (reflexivity).

2 xRy iff yRx for all x , y ∈ X , (symmetry).

3 if xRy and yRz , then xRz for all x , y , z ∈ R. (transitivity).

Equivalence classes

An equivalence class of an element x ∈ X is the set [x ] = {y ∈ X : xRy}.

Observe that [x ] ̸= ∅ for every x ∈ X , since R is reflexive.
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Equivalence relations

Properties of equivalence relations

Theorem

Let X be a set, with an equivalence relation R on X . Then either [x ] = [y ]
or [x ] ∩ [y ] = ∅ for any x , y ∈ X .

Proof

Let x , y ∈ X and assume that there is some element z ∈ [x ] ∩ [y ]; in other
words, xRz and yRz . Now, let u ∈ [x ]. Since xRu and xRz then uRz by
symmetry and transitivity. But yRz , so again by symmetry and transitivity
yRu, which means that u ∈ [y ]. We have proved that [x ] ⊆ [y ]. Similarly
we obtain the other inclusion [y ] ⊆ [x ]. Hence, [x ] = [y ] if [x ] ∩ [y ] ̸= ∅ .

As an easy consequence we obtain the following important result.

Theorem

X is the disjoint union of the equivalence classes.
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Equivalence relations

Equivalence relations - examples 1/2

Example

Let X = Z. Consider

xRy ⇐⇒ x ≡ y mod 5 ⇐⇒ 5|(x − y).

the equivalence classes corresponding to the relation R are the sets:

E0 = [0] = {y ∈ Z : 5|(0− y)} = {5k : k ∈ Z},
E1 = [1] = {y ∈ Z : 5|(1− y)} = {5k + 1 : k ∈ Z},
E2 = [2] = {y ∈ Z : 5|(2− y)} = {5k + 2 : k ∈ Z},
E3 = [3] = {y ∈ Z : 5|(3− y)} = {5k + 3 : k ∈ Z},
E4 = [4] = {y ∈ Z : 5|(4− y)} = {5k + 4 : k ∈ Z}.
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Equivalence relations

Equivalence relations - examples 2/2

We have
Z = E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4.
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Partially ordered sets

Partially ordered sets

Partial ordering

A partial ordering on a nonempty set X is a relation R on X with the
following properties:

(a) xRx for all x ∈ X , (reflexivity).

(b) If xRy and yRx , then x = y , (antisymmetry).

(c) If xRy and yRz , then xRz , (transitivity).

Linear ordering

If R additionally satisfies that for all x , y ∈ X either xRy or yRx , then R is
called linear or total ordering on X .

Example

The set of rational numbers Q with the natural order ≤ is totally ordered
set. We say that r ≤ s for r , s ∈ Q iff s − r ≥ 0.
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Partially ordered sets

Examples of partial ordering

Example

If X is any set then P(X ) is partially ordered by inclusion, i.e.

ARB ⇐⇒ A ⊆ B.

Consider X = {1, 2, 3} and we have its Hasse diagram
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Partially ordered sets

Poset ≡ partially ordered set

Poset

We say that (X ,≤) is a poset if the relation “≤” is a partial ordering on X or
(X ,≤) is partially ordered by “≤”.

We will write x < y in a poset (X ,≤) iff x ≤ y and x ̸= y .

Upper (lower) bound

Let (X ,≤) be a poset and A ⊆ X . An element x ∈ X is an upper bound of A
(resp. lower bound of A) if a ≤ x for all a ∈ A (resp. x ≤ a for all a ∈ A). An
upper (lower) bound x ∈ X need not belong to A.

Maximal (minimal) element

Let (X ,≤) be a poset. A maximal (resp. minimal) element of X is an element
x ∈ X such that if y ∈ X and x ≤ y (resp. x ≥ y) then x = y .

Greatest (least) element

Let (X ,≤) be a poset. A greatest (resp. least) element of X is an element
x ∈ X such that y ≤ x for all y ∈ X (resp. x ≤ y for all y ∈ X ).
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Partially ordered sets

Remark

Remark

In linearly (totally) ordered sets in contrast to general partially ordered sets

the greatest and maximal elements are the same,

the least and minimal elements are the same.

There may be many maximal and minimal elements in general partially
ordered sets, and the maximal (minimal) elements are not comparable.

Example

In order to see this we consider X = P({1, 2, 3, 4}) \
{
{1, 2, 3, 4}

}
.

The element {1, 2, 3, 4} is an upper bound for X .

The set X does not have the greatest element, but the elements
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} are maximal.

The empty set ∅ is both the least and the minimal element for X .
The empty set ∅ is a lower bound for X .
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