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Operations on sets

Number systems

o N=7Z, =1{1,2,3,...} - positive integers,

e Np ={0,1,2,3,...} - non-negative integers,

e Z={...,-2,-1,0,1,2,3,...} - the set of integers,
e Q={": meZ,necZ\{0}} - the set of rationals.

@ Let a,d € Z and we say that d is a divisor of a, and write d | a, if
there exists an integer g € Z such that a = dgq.

@ An integer n € Z is called prime if n > 1 and if the only positive
divisors of n are 1 and n. The set of all prime numbers will be

denoted by P.
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Sets

The words family and collection will be used synonymously with "set”. J

Notation
(0 - empty set,
P(X) - family of subsets of the set X, sometimes called power set of X.

v

Example 1
If X = {1}, then
P(X) ={0,{1}}.

Example 2
If X ={1,2,3}, then

P(X) = {0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
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Operations on sets

Inclusions 1/2

Definition (Inclusion in a weak sense)

We write A C B if any element of A is also the element of B.

o We will write AC Bif AC Band A+# B.

@ In practice, if one wants to prove that A = B, it suffices to show that
A C B and B C A hold simultaneously.

(MATH 411H, FALL 2025) Lecture 1 September 4, 2025 4/30



Inclusions 2/2

Example 1
Wehave PCNC Ny CZ CQ.

Example 2
If A={1,2} and B={1,2,3}, then AC B and AC B.

Example 3

If A={1,2,4} and B = {1,2,3}, then A C B does not hold, because 4
belongs to A, but it does not belong to B.
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Operations on sets

Union of sets 1/2

Union of sets
Let X be a set, ¥ be a family of sets from P(X). The union of the
members from X is the following subset of X:

UE:{XEX : x € Eforsome E€ X} ={xe€X : Jgexx € E}.
Ecx

J = there exists.

(MATH 411H, FALL 2025) Lecture 1 September 4, 2025 6/30




Union of sets 2/2

Example
If ¥ = {A,B,C}, then Uy E=AUBUC

o
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Operations on sets

Intersection of sets 1/3

Intersection of sets
Let X be a set, & # () be a family of sets from P(X). The intersection
of the members from X is the following subset of X:

[JE={xeX : xcEforal E€Y}={x€X : Veesx € E}.
Eecx

YV = for all.

(MATH 411H, FALL 2025) Lecture 1 September 4, 2025 8/30




Operations on sets

Intersection of sets 2/3

Example 1
If L ={A,B,C}, then ey E=ANBNC
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Operations on sets

Intersection of sets 3/3

Example 2
If ¥ = {A, B, C} as in the picture, then gy E=ANBNC =0.

o
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Operations on sets

Union and intersection of indexed family of sets

If ¥ = {E,: a € A}, then the union and the intersection will be denoted
respectively by

U E,, and ﬂ E,.

acA acA

Example 1

If A={1,2,3}, then |J,cp Ea = E1UE2 U Es.

Example 2
If A=N, then JcpnEa = EIUEBUEUELU. ...
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Disjointness

Definition (Disjointness)

If AN B = (), then we say that A and B are disjoint.

Example

If A={1,2}, B={3,4}, C ={1,2,3}, then A and B are disjoint, but A
and C are not disjoint.
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Operations on sets

Difference of sets

Difference of sets
If A, B are two sets, then

A\B={xe A : x¢B}.

Example 1
If A={1,2,3} and B = {3}, then A\ B = {1,2}.

v
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Operations on sets

Symmetric difference of sets

Symmetric difference of sets
If A, B are two sets, then

AAB = (A\ B)U(B\ A)=(AUB)\ (AN B).

Example
If A={1,2,3,4} and B ={3,4,5,6}, then AAB = {1,2,5,6}.
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Operations on sets

Complement of sets

Complement of sets

If a set X is given, and A C X, then the complement of A in X is defined
by A= X\ A.
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Operations on sets

de Morgan's laws

de Morgan's laws

ue) -0

acA acA
c
(ne) -us
acA acA

Example
We have (AU B)¢ = AN B€ and (AN B) = A°U B°“.
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Cartesian products, relations and functions

Ordered pairs

Ordered pairs
The ordered pair (x, y) is precisely the set {{x}, {x,y}}.

Theorem
(x,y)=(u,v)iffx=wuand y = v.

Proof

o If x=uand y =v, then (x,y) = {{x}, {x,y}} = {{u},{u,v}} = (u, v).
@ Suppose that (x,y) = (u, v). This is equivalent to say that

(6y) = {{xh Doyt = {uh {us vy = (o, v).

e This implies that {x} = {u} and {x,y} = {u, v}.
@ Hence x = u and y = v as desired.

O

v
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Cartesian products, relations and functions

Cartesian products

Cartesian products

If X and Y are sets, their Cartesian product X x Y is the set of all
ordered pairs (x,y) such that x € X and y € Y.

XxY={(x,y) : xeX,yeY}
AY

(x,y)
y

X
X >
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Cartesian products, relations and functions

Cartesian products - examples

Example 1
If X ={1,2,3}, Y = {4,5}, then

X x Y ={(1,4),(2,4),(3,4),(1,5), (2,5),(3,5)}.

Example 2
If X ={1,2},Y ={1,2}, then

X xY=4{(1,1),(1,2),(2,1),(2,2)}.

Example 3
If X £ 0 and Y =0, then X x Y = 0.
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Cartesian products, relations and functions

Relations

Relations

A relation from X to Y is asubset Rof X x Y,ie. RC X x Y.

If X =Y we speak about relations on X.

J

If R is a relation from X to Y we shall sometimes write xRy to mean that

(x,y) ERC X x Y.
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Cartesian products, relations and functions

Relations - examples

Example 1
If X =Y and we set

xRy <= x=y

This relation corresponds to the diagonal A in X x X:
A={(x,x) : xe X} T X xX.

\Y

Now we present more examples of relations.
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Cartesian products, relations and functions

More examples: functions and sequences

Functions

A function f: X — Y is a relation R from X to Y with the property
that for every x € X there is a unique element y € Y such that xRy in
which case we write

y = f(x).

Sequences
A sequence in X is a function from the natural numbers N into the set X.
That is, it is an assignment of elements from X to natural numbers.
@ We usually denote such a function by N 3 n+— x, € X, so the terms
in the sequence are written (xi, x2, x3, . . .).
@ To refer to the whole sequence, we will write (x,)%° 4, or (xp)nen OF
for the sake of brevity simply (x,).
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Equivalence relations

Equivalence relations

Equivalence relations

An equivalence relation is a relation on X such that:

O xRx for all x € X, (reflexivity).
@ xRy iff yRx for all x,y € X, (symmetry).
@ if xRy and yRz, then xRz for all x,y,z € R. (transitivity).

Equivalence classes

An equivalence class of an element x € X is the set [x] = {y € X : xRy}.

Observe that [x] # () for every x € X, since R is reflexive.
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Equivalence relations

Properties of equivalence relations

Theorem

Let X be a set, with an equivalence relation R on X. Then either [x] = [y]
or [x] N[y] =0 for any x,y € X.

Proof

Let x,y € X and assume that there is some element z € [x] N [y]; in other
words, xRz and yRz. Now, let u € [x]. Since xRu and xRz then uRz by
symmetry and transitivity. But yRz, so again by symmetry and transitivity
yRu, which means that u € [y]. We have proved that [x] C [y]. Similarly
we obtain the other inclusion [y] C [x]. Hence, [x] = [y] if [x] N [y] # 0 .

As an easy consequence we obtain the following important result.

Theorem

X is the disjoint union of the equivalence classes.
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Equivalence relations - examples 1/2

Example
Let X = Z. Consider

xRy <= x=y mod5 <= 5|(x—y).

the equivalence classes corresponding to the relation R are the sets:

Eo=[0]={y €Z:5[(0-y)} ={5k : keZ},

Ei=[]={yeZ:5|(1—y)={5k+1: keZl},
E=[2={yeZ:5|(2—y)={5k+2 : keZl,
Es=[Bl={yeZ:5((3-y)}={5k+3 : keZ}
Es=[4={ycZ:5/(4—y)={5k+4 : keZ}.

(MATH 411H, FALL 2025) Lecture 1 September 4, 2025 25/30



Equivalence relations

Equivalence relations - examples 2/2

We have

Z = EyUE UE UE3UE,.

Eo

Es

E

E4
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Partially ordered sets

Partially ordered sets

Partial ordering

A partial ordering on a nonempty set X is a relation R on X with the
following properties:

@ xRx for all x € X, (reflexivity).
@ If xRy and yRx, then x = y, (antisymmetry).
@ If xRy and yRz, then xRz, (transitivity).

Linear ordering

If R additionally satisfies that for all x,y € X either xRy or yRx, then R is
called linear or total ordering on X.

v

Example

The set of rational numbers Q with the natural order < is totally ordered
set. We say that r < s forr,s € Qiffs—r > 0.
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Partially ordered sets

Examples of partial ordering
Example

If X is any set then P(X) is partially ordered by inclusion, i.e.

ARB <— ACB.

Consider X = {1,2,3} and we have its Hasse diagram
{1,2,3}

(1,2} {1,3} {2,3}
{1} {2} {3}

0
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Poset = partially ordered set

Poset

We say that (X, <) is a poset if the relation “<" is a partial ordering on X or
(X, <) is partially ordered by “<".

@ We will write x < y in a poset (X, <) iff x <y and x £ y.
Upper (lower) bound

Let (X, <) be a poset and A C X. An element x € X is an upper bound of A
(resp. lower bound of A) if a < x for all a € A (resp. x < a for all a € A). An
upper (lower) bound x € X need not belong to A.

Maximal (minimal) element

Let (X, <) be a poset. A maximal (resp. minimal) element of X is an element
x € X such that if y € X and x < y (resp. x > y) then x = y.

Greatest (least) element

Let (X, <) be a poset. A greatest (resp. least) element of X is an element
x € X such that y < x for all y € X (resp. x <y for all y € X).
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Partially ordered sets

Remark

Remark

In linearly (totally) ordered sets in contrast to general partially ordered sets
@ the greatest and maximal elements are the same,
@ the least and minimal elements are the same.

There may be many maximal and minimal elements in general partially
ordered sets, and the maximal (minimal) elements are not comparable.

Example
o In order to see this we consider X = P({1,2,3,4})\ {{1,2,3,4}}.
The element {1,2,3,4} is an upper bound for X.
@ The set X does not have the greatest element, but the elements
{1,2,3},{1,2,4},{1,3,4},{2,3,4} are maximal.
@ The empty set () is both the least and the minimal element for X.
The empty set ) is a lower bound for X.
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