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The exponential function

The exponential function

The exponential function

We define

E (z) =
∞∑
n=0

zn

n!
, for z ∈ C.

Observe that |E (z)| ≤
∑∞

n=0
|z|n
n! < ∞. The ratio test shows that the

series converges absolutely for any z ∈ C and E (z) is well defined.

Recall

If
∑∞

n=0 an converges absolutely,
∑∞

n=0 an = A, and
∑∞

n=0 bn = B, and

cn =
n∑

k=0

akbn−k , for n = 0, 1, 2, . . . .

Then
∑∞

k=0 ck = AB.
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The exponential function

Properties of the exponential function 1/4

Applying this result to absolutely convergent series E (z), E (w) we obtain

(*)

E (z)E (w) = E (z + w) for z ,w ∈ C.

Proof of (*). Indeed,

E (z)E (w) =

( ∞∑
n=0

zn

n!

)( ∞∑
m=0

wm

m!

)
=︸︷︷︸

Recall

∞∑
n=0

n∑
k=0

zkwn−k

k!(n − k)!

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k =

∞∑
n=0

(z + w)n

n!
= E (z + w).

In the last line we have used the Binomial theorem.
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The exponential function

Properties of the exponential function 2/4

As the consequence we obtain

(**)

E (z)E (−z) = E (z − z) = E (0) = 1.

This shows that E (z) ̸= 0 for all z ∈ C.
We have E (x) > 0 if x > 0, giving E (x) > 0 for all x ∈ R by (**).

It is easy to see that

lim
x→∞

E (x) = +∞ since E (x) =
∞∑
n=0

xn

n!
.

Consequently by (**) we obtain

lim
x→∞

E (−x) = 0 since E (−x) =
1

E (x)
.
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The exponential function

Properties of the exponential function 3/4

If 0 < x < y then

E (x) =
∞∑
n=0

xn

n!
<

∞∑
n=0

yn

n!
= E (y).

Since E (x)E (−x) = 1 thus

E (−y) < E (−x),

hence E is strictly increasing on R.
If x ∈ R then

E ′(x) = lim
h→0

E (x + h)− E (x)

h
= E (x) lim

h→0

E (h)− 1

h︸ ︷︷ ︸
=1

= E (x).
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The exponential function

Properties of the exponential function 4/4

Indeed,
E (h)− 1

h
=

1

h

∞∑
n=1

hn

n!
=

∞∑
n=1

hn−1

n!
,

hence ∣∣∣∣1h (E (h)− 1)− 1

∣∣∣∣ ≤ ∞∑
n=2

|h|n−1

n!
= |h|

∞∑
n=2

|h|n−2

n!

≤ |h|E (|h|) ≤︸︷︷︸
|h|≤1

|h|e −−→
h→0

0.

We have proved that E ′(x) = E (x) for all x ∈ R.
In particular, E is continuous on R.

In the next theorem we summarize what we have proved.
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The exponential function

Theorem

Theorem

The function

E (x) =
∞∑
n=0

xn

n!

is called the exponential function and is usually denoted by ex = E (x).
The exponential function R ∋ x 7→ ex satisfies the following properties:

(a) ex is continuous and differentiable for all x ∈ R,
(b) (ex)′ = ex ,

(c) ex is strictly increasing on R and ex > 0 for all x ∈ R,
(d) exey = ex+y for all x , y ∈ R,
(e) limx→+∞ ex = +∞ and limx→−∞ ex = 0,

(f) limx→+∞ xne−x = 0 for all n ∈ N.

Proof. We have proved (a)-(e). We only prove (f).
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The exponential function

Graph of f (x) = ex
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The exponential function

Proof of (f)

Note that

ex =
∞∑
k=0

xk

k!
>

xn+1

(n + 1)!
,

so that

xne−x <
(n + 1)!

x
−−−→x→∞ 0,

which gives the desired claim.

Remark

Item (f) says that ex tends to +∞ faster that any polynomial.

If P(x) =
∑n

k=0 ckx
k , where c1, . . . , cn ∈ R, then

0 ≤
∣∣∣∣P(X )

ex

∣∣∣∣ ≤ ∑n
k=0 |ck |xk

ex
−−−→x→∞ 0.
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The logarithm function

The logarithm function 1/4

Since the exponential function E (x) = ex is strictly increasing and
differentiable on R it has an inverse function L, which is also strictly
increasing and differentiable and whose domain is E [R] = (0,∞).

L is defined by
E (L(y)) = y for all y > 0

or, equivalently, L(E (x)) = x for all x ∈ R.
Differentiating the latter equation

1 = (x)′ = (L(E (x)))′ = L′(E (x))E ′(x) = L′(E (x))E (x).

Thus L′(E (x)) = 1
E(x) , hence

L′(y) =
1

y
for all y > 0.
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The logarithm function

The logarithm function 2/4

Writing u = E (x) and v = E (y) note that

L(uv) = L(E (x)E (y)) = L(E (x + y))

= x + y = L(u) + L(v) for u, v > 0.

From now on we will write log(x) = L(x).

Since limx→+∞ ex = +∞ and limx→−∞ ex = 0, we conclude

lim
x→∞

log(x) = +∞, and lim
x→0

log(x) = ∞.

Observe also that limn→∞
(
1 + x

n )
n = ex . By L’Hôpital’s rule we have

lim
n→∞

log
(
1 + x

n )
1
n

= lim
y→0

log
(
1 + xy)

y
= lim

y→0

x

1 + xy
= x .
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The logarithm function

The logarithm function 3/4. Definition of xα

Since x = E (L(x)), it is easily seen that

xn = E (nL(x)) and x1/m = E

(
1

m
L(x)

)
for n,m ∈ N.

Thus
xα = E (αL(x)) if α ∈ Q.

It also makes sense to define

xα = E (αL(x)) for α ∈ R and x > 0.

The continuity and monotonicity of E and L show that everything
makes sense and this definition coincides with

xα = sup{xp : p < α, p ∈ Q} if α ∈ R and x > 1.
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The logarithm function

The logarithm function 4/4

If we differentiate
xα = E (αL(x)),

then
(xα)′ = E ′(αL(x))

α

x
= αxα−1.

Finally note that

lim
x→∞

x−α log(x) = 0 for every α > 0.

That is, log(x) tends to +∞ slower that any power of x .

Indeed, since xα −−−→x→∞ +∞, by L’Hôpital’s rule

lim
x→∞

log(x)

xα
=︸︷︷︸

L′Hopital

lim
x→∞

1
x

αxα−1
= lim

x→∞

1

αxα
= 0.
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Applications

Euler–Mascheroni constant

Divergence of harmonic series

∞∑
n=1

1

n
= +∞.

Theorem

The sequences

an =
n−1∑
k=1

1

k
− log(n) and bn =

n∑
k=1

1

k
− log(n)

are increasing and decreasing respectively and bounded, and

lim
n→∞

an = lim
n→∞

bn = γ.

where γ is known as the Euler (or Euler–Mascheroni) constant.
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Applications

Proof: 1/2

Remark

It is not even known whether γ is irrational.

γ is called Euler-Mascheroni constant, and γ ≃ 0, 5772 . . ..

Proof. We know (
1 +

1

n

)n

< e <

(
1 +

1

n

)n+1

thus

n log

(
1 +

1

n

)
< 1 < (n + 1) log

(
1 +

1

n

)
,

and consequently

log

(
n + 1

n

)
<

1

n
,

log

(
n + 1

n

)
>

1

n + 1
.
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Applications

Proof: 2/2

Thus

an+1 − an =
n∑

k=1

1

k
− log(n + 1)−

n−1∑
k=1

1

k
+ log(n) =

1

n
− log

(
n + 1

n

)
> 0.

Hence (an)n∈N is increasing. Similarly,

bn+1 − bn =
1

n + 1
− log

(
n + 1

n

)
< 0,

thus (bn)n∈N is decreasing. Also it is clear

a1 ≤ an ≤ bn ≤ b1.

Thus by the (MCT) the limits exist

lim
n→∞

an = lim
n→∞

bn = γ,

since bn = an +
1
n .
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Applications

Proposition

Proposition

For x > 0 one has

x

x + 1
<

2x

x + 2
≤ log(x + 1) < x .

Proof. Let f (x) = x − log(1 + x), then

f (0) = 0,

f ′(0) = 1− 1

x + 1
> 0 ⇐⇒ x > 0

thus f is increasing for x > 0. Hence f (x) > f (0) for x > 0, so

log(1 + x) < x .
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Applications

Proof

We now consider

h(x) = log(1 + x)− 2x

x + 1
for x > 0.

Note that h(0) = 0 and

h′(x) =
x2

(x + 1)(x + 2)2
> 0 for x > 0.

Thus h is increasing for x > 0 and

h(x) > h(0) = 0.

Consequently

log(1 + x) >
2x

x + 2
>

x

x + 1

for x > 0 as desired.
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Applications

Graph of the function log(x + 1)− 2x
x+2
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Applications

Application

Application

lim
n→∞

(
1

n
+

1

n + 1
+ . . .+

1

2n

)
= log 2.

Proof. Note that

1

n + 1
< log

(
1 +

1

n

)
<

1

n
for n > 1

upon taking x = 1
n in x

x+1 < log(1 + x) < x . Consequently

log

(
2n + 1

n

)
<

1

n
+

1

n + 1
+ . . .+

1

2n
< log

(
2n

n − 1

)
.

Thus

lim
n→∞

(
1

n
+

1

n + 1
+ . . .+

1

2n

)
= log 2.
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Applications

Inequalities between weighted means

Theorem

If x1, . . . , xk > 0 and α1, . . . , αk > 0 and
∑k

j=1 αj = 1, then

xα1
1 · . . . · xαk

k ≤ α1x1 + . . .+ αkxk .

Proof. Let f (x) = log(x) and note that

f ′(x) =
1

x
and f ′′(x) =

−1

x2
< 0.

Thus f ′′(x) < 0 for all x > 0 which means that f is concave. In other
words, for all x1, . . . , xk > 0 and α1, . . . , αk > 0 obeying condition
α1 + . . .+ αk = 1, we have

f (α1x1 + . . .+ αkxk) ≥ α1f (x1) + . . .+ αk f (xk).
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Applications

Proof

Consequently, we have

log(xα1
1 · . . . · xαk

k ) =
k∑

j=1

αj log(xj) ≤ log

 k∑
j=1

αjxj


if and only if

xα1
1 · . . . · xαk

k ≤
k∑

j=1

αjxj .
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Applications

Corollary

Corollary

If p, q > 0 satisfy 1
p + 1

q = 1 and x , y > 0, then

xy ≤ 1

p
xp +

1

q
yq.

Proof. If suffices to apply the previous result with α1 =
1
p , α2 =

1
q and

x1 = xp, x2 = yq, then we obtain

xy = x
1/p
1 x

1/q
2 ≤ 1

p
x1 +

1

q
x2 =

1

p
xp +

1

q
yq.

Remark

The inequality above is the key in the proof of Hölder’s inequality.
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