Lecture 21

Power series of trigonometric functions done right
Fundamental Theorem of Algebra
and Taylor expansions of other important functions and applications
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Power series

Power series

Power series

Given a sequence (cp)nen,, Where ¢, € R, the series

[e.9]
g cnx", x€eR
n=0

is called a power series.

@ The numbers ¢, are called the coefficients of the series.

Example 1

> o X"

Example 2

n

e = E‘Sio %
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Power series

Radius of convergence

Radius of convergence

Given the power series
o0
> e
n=0
set )
a=limsup+/|c,/, and R=—.
n—o00 «
If « =0, then R = +00.
@ The number R is called the radius of convergence of > ° , c,x".
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Theorem

Theorem
The series Y02 5 cpx”
@ converges if |x| < R, and

o diverges if [x| > R.

Proof. Consider a, = ¢,x" and apply the root test
limsup v/|an| = | x| limsup v/|cn| = M O
n—o00 n—o0 R

Example 1
Y on"x" has R=0

Example 2

00 xn _ . o n/ 1 _
Y meg ot has R = +o00, since a = limsup,,_,, {/7; = 0.
Locture 21 November 13, 2025 4/36




Power series

Examples

Example 3

Yoo x" has R =1. If |x| =1 the series > ) x" diverges. We also know

ad 1
Zx” = if  |x] <L
= 1—x

Example 4

S, % has R =1. If x =1 the series diverges since 37, 1 = +o0. If
x = —1 then the series converges since

00 _1)n
z_:l(n)

< Q.
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Trigonometric functions: sine and cosine

C and S functions
Recall that i2 = —1. Let us define

Clx) = % (E(ix) + E(=ix)), and

e We shall show that C(x) and S(x) coincide with the functions cos(x)
and sin(x), whose definition is usually based on geometric
considerations.

o It is easy to see that E(Z) = E(z), since

E(z)=Y %
n=0

@ Hence, we have C(x) = C(x) and S(x) = S(x), so C(x) and S(x)
are real for x € R. Recall that a number z € C is real if z=Z, and
the outputs of the functions C(x) and S(x) satisfy this relation.
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Trigonometric functions: sine and cosine

Euler’s formula
@ Also Euler’s formula holds
E(ix)=C(x)+iS(x) if xeR.
@ Moreover, |E(ix)| =1 for any x € R, since
|E(ix)|? = E(ix)E(ix) = E(ix)E(—ix) = 1.
@ Since
C(x) = S(E(x) + E(—ix)  and  S(x) = 5-(E(ix) — E(~ix)
we can read off that C(0) =1 and S(0) = 0 and also
C'(x)=-S(x) and S'(x)=C(x)
Since

C'(x) = %(iE(ix) _iE(—ix)) = é(E(ix) _ E(=ix)) = —S(x).

(MATH 411H, FALL 2025) Lecture 21 November 13, 2025 7/36



Trigonometric functions: sine and cosine

Zeroes of the function C and definition of 7

We assert that there exist positive numbers x such that C(x) = 0.

e If not, since C(0) =1, it follows that C(x) > 0 for all x > 0. If
C(x1) < 0 for some x; > 0, then by the intermediate value theorem,
since C is continuous, C(x2) = 0 for some 0 < x» < x1, contradiction!

@ Hence S'(x) > 0 since

S'(x) = C(x).
But $(0) = 0, thus S(x) is strictly increasing on (0, c0).
@ By the mean—value theorem
Cly)— C(x) = —(y —x) - S(bx,) forsome 6O, € (x,y)
thus
C(x) = Cly) = (¥ =x) - S(0xy) > (v = x)S(x)
and since |C(x)| <1 and |S(x)| <1 we conclude

(v —x)S(x) < C(x) — C(y) < 2.

@ But this is impossible if y is large since S(x) > 0.
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Trigonometric functions: sine and cosine

Zeroes of the function C and definition of 7

@ Let xg > 0 be the smallest number such that C(xp) = 0. This exists
since C(0) =1 and the set of zeroes is closed.
o We define the number 7 to be

T = 2Xp.
@ Then C(%) = 0 and since |E(ix)| = 1 we deduce
T

Since C(x) > 0in (0, %), S is increasing in (0, 5). Hence S(5) = 1.

»2
Thus we have ]
E <7;’> =i,
e Since E(z+ w) = E(z)E(w) thus we have
(mi)=—-1 and E(27i) =1,

hence E(z + 2xi) = E(z) for all z € C.
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Trigonometric functions: sine and cosine

Theorem

Theorem
(i) The exponential function E : C — C is periodic with period 2i.
(i) The functions S and C are periodic with period 2.
(i) If0 <t < 2m, then E(it) # 1.
(iv) Ifz € C and |z| = 1, there is a unique t € (0,27) such that E(it) = z

Proof. Item (i) easily follows since E(z + 2mi) = E(z) for all z € C. Since
C(x) = 3(E(ix) + E(—ix)) we see

Clx +2m) = %(E(i(x +21)) + E(—i(x +27)))

- %(E(ix) + E(=ix)) = C(x).

Similarly, S(x) = S(x + 27). Thus (ii) is proved.
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Trigonometric functions: sine and cosine

Proof

@ To prove (c) suppose 0 < t < 7 and
E(it)=x+1iy with x,y€R.

@ Our preceding discussion shows that 0 < x <land 0 <y < 1.
@ Now note that 0 < t < 5 <= 0 < 4t <2 and that

E(4it) = E(it)* = (x + iy)* = x* — 6x%y? + y* + 4ixy(x* — y?)

o If E(4it) € R, then it follows that x> — y? = 0. We are only
considering real E(4it) because if E(4it) is imaginary, then it clearly
is not equal to 1. Since

E(it)] = 1= x> +y?,

so we have x? = y? = 1. Hence E(4it) = —1 and we are done.
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Trigonometric functions: sine and cosine

Proof

@ To prove (iv), if 0 < t; < t < 27, then uniqueness follows, since
E(it2)E(ity) ™t = E(i(ta — t1)) # 1.
@ To prove the existence we fix z € C so that |z| = 1. Write z = x + iy

with x,y € R. Suppose first that x > 0 and y > 0.
@ ((t) decreases on [0, 5] from 1 to 0. Hence C(t) = x for some
t €[0,Z]. Since C>+S2=1and S >0on [0, %], then z = E(it).
o If x <0 and y > 0, the preceding conditions are satisfied by —iz.
Hence —iz = E(it) for some t € [0, 7].
o Since i = E (%) we obtain

s
=0 (+3))
z I\t+ 5
e If y <0, the preceding two cases show that z = E(it) for some

t € (0,m). Thus, z= —E(it) = E(i(t 4+ m)) since E(im) = —1. O
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Trigonometric functions: sine and cosine

sin and cos functions

y f(8)
f(@)=sin O

-

L I
Lol -
rals

B
S

o
=
B
o

L
[oxl
=
=

i

2n

Considerations of the triangle whose vertices are
z1 =0, z =7(0), z3 = C(0)
show that cos(f) = C(#) and sin(8) = S(0).
> (_1)kx2k+1 x (_1)kX2k

RkE1) and cosx:; (k)]

sinx =

k=0
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Trigonometric functions: sine and cosine

Graphs of sin(x) and cos(x)

Now we can sketch the graphs of sin(x) and cos(x):

"
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Trigonometric functions: sine and cosine

Remark

Remark

@ The curve y(t) = E(it), with (0 < t < 27, is a simple closed curve
whose range is the unit circle in the plane.

@ Since 7/(t) = iE(it), the length of « as we shall see soon is

27
/ I/ (£)|dt = 2.
0

@ This is of course the expected result of the circumference of a circle
of radius 1.

@ In the same way we see that the point (t) describes a circular arc
length tg as t increases from 0 to ty.
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Trigonometric functions: sine and cosine

sin(h)
h

Limit limp_g

Theorem
We have h
jim SN _ g
h—0 h
Proof. We have
. _sin(h) . sin(h) —sin(0)
| = |lim —F——~ = = =1. ]
hTo h hlno h sin’(0) = cos(0)
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Taylor’s theorem

Taylor's theorem

Taylor's theorem

Suppose f : [a,b] = R, n € N, f("=1) is continuous on [a, b], and f("(t)
exists for every t € (a, b). Let «, B € [a, b] be distinct and define

then there exists a point x € («, 3) such that

F(m)(x)
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Proof 1/3

Remark

For n =1 this is just the mean—value theorem. In general, the theorem
says that f can be approximated by a polynomial of degree n — 1 and that
(*) allows us to estimate the error term if we know bounds on |f("(x)|.

Proof. Let M be a number such that

F(B) = P(B) + M(5 — a)".

For a <t < b set

g(t) = £(t) — P(t) — M(t — )"

@ We have to show n!M = f(")(x) for some x € (a, ).
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Proof 2/3

@ Since

P(t) =

k=0
we have that P(")(t) = 0. Thus

gM) =) —nM  for te(a,p)

(since (x")(" = nl).
@ The proof will be completed if we show that g(")(x) = 0 for some
x € (a, B). Since P (a) = f(K)(a) for k = 0,1,2,...,n—1, hence
we have
gla)=g'(a) =...=gl"Y(a)=0.

Our choice of M shows that g(/7) = 0.
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Proof 3/3

@ Hence by the mean-value theorem
g'(x1)=0 forsome x € (a,p)

since 0 = g(a) — g(4) = (8 — a)g'(x)).
@ Using that g’(a) = 0 we continue and obtain

0=g'(x1)—g'(a) = (x1 —a)g’(x2) forsome «a<x;<x.

Thus g”(x2) = 0.

@ Repeating the previous arguments, after n steps we obtain
g(”)(x,,) =0 forsome a<x,<xp1<...<x3<§.
This completes the proof. O
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Taylor’s theorem

Theorem

Theorem (Taylor's expansion formula)

Suppose that £ : [a, b] — R is n-times continuously differentiable on [a, b]
and f("*1) exists in the open interval (a, b). For any x, xg € [a, b] and
p > 0 there exists 6 € (0,1) such that

~ ) (xo)
F(x) =D~ (x = x0) + ra(x),
k=0
where r,y(x) is the Schlomlich—-Roche remainder function defined by

(n+1) _
rn(x) _ f (XO ,:pg(x XO))(l _ 9)n+17P(X . Xo)n+1,
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Proof 1/3

e For x,xp € [a, b] set

" (k) (2
3(2) = )~ 3. D ()

k=0

e We have ¢(x0) = ra(x) and ¢(x) =0, and ¢’ exists in (xp, x) and

(n+1)(,
o) = - oy

n!
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Proof 2/3

@ Indeed, by the telescoping we obtain

k=0
_ UG e

n!

o Let ¥(z) = (x — z)P, then 1) is continuous on [xp, x] with
non-vanishing derivative on (x, x).
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s theoem
Proof 3/3

o By the mean-value theorem

6(x) — dlx0) _ 9/(c)
$(x) = 0(x0)  ¥(c)

@ Thus, setting ¢ = xo + 0(x — xp),

for some ¢ € (xo, x).

(g
rn(x) —@\({1% 3(62 (d)( ) d)( 0))¢,(C)
() n —(x—x)?
o n! (x=c) —p(x —c)p~t
_ F(n 1) (xg ;nlﬁ(x - ><o))(1 0)"1P(x — x)"L. O
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Taylor’s theorem

Corollary

Under the assumptions of the previous theorem.

Lagrange remainder
If p = n+ 1 we obtain the Taylor formula with the Lagrange remainder:

(1) (x X — X
g [0 =)

(n+1)! XO)n+1-

Cauchy remainder
If p =1 we obtain the Taylor formula with the Cauchy remainder:

F(r ) (x0 + 0(x — x0))
n!

ra(x) = (1-0)"(x— xo)"+1.
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Power series expansions

Power series expansion for the logarithm

Theorem

For |x| < 1 we have

k+1

log(1 + x) :i

k=1

Proof. Note that (log(x + 1))’ = 47 and

U%u+1wu:<:l)/:_(:l

+1 1+ x)?’

2
| 1 [/ —
(log(x +1) ( TTR) < T

C(14x)* T A+ x)*
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Proof 1/2

Inductively, we have
(log(1 + X)) = (1) —=

@ We use the Taylor expansion formula at xg = 0 then

n_ (k) n o k41
log(1+ x) = Z f kl(o)xk + rp(x) = Z ( 112 XK 4 (%),
k=0 ' k=0

since

F(0) = log(1) =0,
FU(0) = (1)< (k — 1)L,
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Power series expansions

Proof 2/2
@ If 0 < x < 1 we use Lagrange's reminder. Then for some 0 < 6 < 1,
F(n) () n+1 n! n+1
O =1 G | T mrDiaT et S arl o

o If —1 < x < 0 we use Cauchy’s remainder. Then for some 0 < 0 < 1,
F(D(x0 4 0(x — x0))

nl

[ra(x)| = (1-6)"(x = x)"**

nl
© a1+ Ox)n Tt
@ Since —1 < 0x <0, then —0 < 0x,s01 -6 <1+ 0x, hence

(1 . 9)” n+1

1-0)" o Q-0 g X"
\fn()|_m\| SWH =1_9m0
since |x|" 752 0 when |x| < 1. O
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Power series expansions

Newton's binomial formula

Theorem
If « € R\ N and |x| <1 then

-1) — 1
(1 + X -1 4 Z Oé (Oé n—+ ) Xn
This is called Newton’s binomial formula. )
Recall
For n € N we have
n\ n! ~n(n—=1)-...-(n—k+1)
k) k'(n—k) k! ‘
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Proof 1/4

Proof. Let let f(x) = (1 + x)® and note that
FN(x)=ala—1)-...- (@ —n+1)x*""

@ Suppose first that 0 < x < 1.
Using the Lagrange remainder formula we have

_a(a_l)""'(a_n) n+1 a—n+1
rn(x) = (" 1) x"(1 + x0) .
Claim
For |x| < 1 we have
im a(a—l)-...‘(a—n)xnﬂ _o.
n—00 (n+1)!
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Proof 2/4. Proof of the Claim.

@ To prove the claim it suffices to use the following fact:
Fact

dn+1
dp

[im
n—oo

=g<1l = lima,=0

n—oo

with a, = 2le=tclazn) yntl Thep

(n+1)!
ant1|  Ja(a—1)-...-(a—n—1)x""? (n+1)!
an | (n+2)! ala—1)-...-(a@—n+1)x"+1
a—n—1
i x| a5z x| < 1L

@ Thus ry(x) 7=z 0 if we show that (1 + 0x)* "1 is bounded.
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Proof 3/4

@ Indeed, assuming that 0 < x < 1 we see
(1+06x)"" <1,
@ For a > 0 we have
I<(1460x)" < (14 x)* <29,
o For a < 0 we have
2 <(1+x)*<(1+x0)* <1

a—n=1 55 desired.

Gathering all together we conclude that (1 + 6x)
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Proof 4/4

@ Now we assume that —1 < x < 0. Using the Cauchy remainder
formula we have
ala—1)-...- (o —
(n+1)!
As before we show that (1 — 0)(1 + 0x)*~"~! is bounded.
@ Since —1 < x < 0 then 14 6x > 1 — 6 and consequently

(1-6)"<(1—6)"(1+6x)""= ((11+_:X)) <1

ra(x) =

@ For a <1 we have
1<(14x0)21<(1+x)L
@ For o > 1 we have
I+x)* <@+t <1

and we are done.
Lecture 21 November 13, 2025
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Power series expansions

A function which does not have power series representation

Let

L
F(x) = e if x#0,
0 if x=0.

@ It is not difficult to see that f is infinitely many times differentiable
for any x € R.

@ Moreover,
F(N(0)=0 forany n>0
and f(x) # 0.
@ Thus we see

xk =0.

> £(k)
0470 # Y Y
k=0
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Applications of Calculus

Bernoulli's inequality: general form

Bernoulli's inequality: general form

For x > —1 and x # 0 we have

@ (1+x)*>1+axifa>lora<0,
Q@ (1+x)*<l+axif0<a<l.

Proof. Applying Taylor's formula with the Lagrange remainder for
f(x) = (1 + x)® we obtain

oo —1)(1 4 Ox)>2 2.

(I+x)*=14ax+ >
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Proof

@ For a > 1 or @ < 0 we have

afa —1)(1 + 6x)>2
2

> 0.

@ For 0 < a <1 we have
afa —1)(1 + 6x)>—2
2

o Consequently, for & > 1 or < 0 we obtain
ala —1)(1 + 0x)2

2

@ Similarly, for 0 < a < 1, we obtain
(@ —1)(1 + 6x)*2

2

< 0.

1+ax+ x2 > 1+ xa.

1—|—ax—|—a x2 > 1+ xa.

This completes the proof.
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