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Power series

Power series

Power series

Given a sequence (cn)n∈N0 , where cn ∈ R, the series

∞∑
n=0

cnx
n, x ∈ R

is called a power series.

The numbers cn are called the coefficients of the series.

Example 1∑∞
n=0 x

n.

Example 2

ex =
∑∞

n=0
xn

n! .
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Power series

Radius of convergence

Radius of convergence

Given the power series
∞∑
n=0

cnx
n

set

α = lim sup
n→∞

n
√
|cn|, and R =

1

α
.

If α = 0, then R = +∞.

The number R is called the radius of convergence of
∑∞

n=0 cnx
n.
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Power series

Theorem

Theorem

The series
∑∞

n=0 cnx
n

converges if |x | < R, and

diverges if |x | > R.

Proof. Consider an = cnx
n and apply the root test

lim sup
n→∞

n
√
|an| = |x | lim sup

n→∞
n
√

|cn| =
|x |
R
.

Example 1∑∞
n=0 n

nxn has R = 0

Example 2∑∞
n=0

xn

n! has R = +∞, since α = lim supn→∞
n

√
1
n! = 0.
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Power series

Examples

Example 3∑∞
n=0 x

n has R = 1. If |x | = 1 the series
∑∞

n=0 x
n diverges. We also know

∞∑
n=0

xn =
1

1− x
if |x | < 1.

Example 4∑∞
n=1

xn

n has R = 1. If x = 1 the series diverges since
∑∞

n=1
1
n = +∞. If

x = −1 then the series converges since∣∣∣∣ ∞∑
n=1

(−1)n

n

∣∣∣∣ <∞.
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Trigonometric functions: sine and cosine

C and S functions

Recall that i2 = −1. Let us define

C (x) =
1

2
· (E (ix) + E (−ix)), and

S(x) =
1

2i
· (E (ix)− E (−ix))

We shall show that C (x) and S(x) coincide with the functions cos(x)
and sin(x), whose definition is usually based on geometric
considerations.
It is easy to see that E (z) = E (z), since

E (z) =
∞∑
n=0

zn

n!
.

Hence, we have C (x) = C (x) and S(x) = S(x), so C (x) and S(x)
are real for x ∈ R. Recall that a number z ∈ C is real if z = z , and
the outputs of the functions C (x) and S(x) satisfy this relation.
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Trigonometric functions: sine and cosine

Euler’s formula

Also Euler’s formula holds

E (ix) = C (x) + iS(x) if x ∈ R.

Moreover, |E (ix)| = 1 for any x ∈ R, since

|E (ix)|2 = E (ix)E (ix) = E (ix)E (−ix) = 1.

Since

C (x) =
1

2
(E (ix) + E (−ix)) and S(x) =

1

2i
(E (ix)− E (−ix))

we can read off that C (0) = 1 and S(0) = 0 and also

C ′(x) = −S(x) and S ′(x) = C (x)

Since

C ′(x) =
1

2
(iE (ix)− iE (−ix)) =

i

2
(E (ix)− E (−ix)) = −S(x).
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Trigonometric functions: sine and cosine

Zeroes of the function C and definition of π

We assert that there exist positive numbers x such that C (x) = 0.

If not, since C (0) = 1, it follows that C (x) > 0 for all x > 0. If
C (x1) < 0 for some x1 > 0, then by the intermediate value theorem,
since C is continuous, C (x2) = 0 for some 0 < x2 < x1, contradiction!
Hence S ′(x) > 0 since

S ′(x) = C (x).

But S(0) = 0, thus S(x) is strictly increasing on (0,∞).
By the mean–value theorem

C (y)− C (x) = −(y − x) · S(θx ,y ) for some θx ,y ∈ (x , y)

thus
C (x)− C (y) = (y − x) · S(θx ,y ) > (y − x)S(x)

and since |C (x)| ≤ 1 and |S(x)| ≤ 1 we conclude

(y − x)S(x) ≤ C (x)− C (y) ≤ 2.

But this is impossible if y is large since S(x) > 0.
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Trigonometric functions: sine and cosine

Zeroes of the function C and definition of π

Let x0 > 0 be the smallest number such that C (x0) = 0. This exists
since C (0) = 1 and the set of zeroes is closed.
We define the number π to be

π = 2x0.

Then C (π2 ) = 0 and since |E (ix)| = 1 we deduce

S
(π
2

)
= ±1.

Since C (x) > 0 in (0, π2 ), S is increasing in (0, π2 ). Hence S(π2 ) = 1.
Thus we have

E

(
πi

2

)
= i .

Since E (z + w) = E (z)E (w) thus we have

E (πi) = −1 and E (2πi) = 1,

hence E (z + 2πi) = E (z) for all z ∈ C.
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Trigonometric functions: sine and cosine

Theorem

Theorem

(i) The exponential function E : C → C is periodic with period 2πi .

(ii) The functions S and C are periodic with period 2π.

(iii) If 0 < t < 2π, then E (it) ̸= 1.

(iv) If z ∈ C and |z | = 1, there is a unique t ∈ (0, 2π) such that E (it) = z

Proof. Item (i) easily follows since E (z + 2πi) = E (z) for all z ∈ C. Since
C (x) = 1

2(E (ix) + E (−ix)) we see

C (x + 2π) =
1

2
(E (i(x + 2π)) + E (−i(x + 2π)))

=
1

2
(E (ix) + E (−ix)) = C (x).

Similarly, S(x) = S(x + 2π). Thus (ii) is proved.
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Trigonometric functions: sine and cosine

Proof

To prove (c) suppose 0 < t < π
2 and

E (it) = x + iy with x , y ∈ R.

Our preceding discussion shows that 0 < x < 1 and 0 < y < 1.

Now note that 0 < t < π
2 ⇐⇒ 0 < 4t < 2π and that

E (4it) = E (it)4 = (x + iy)4 = x4 − 6x2y2 + y4 + 4ixy(x2 − y2)

If E (4it) ∈ R, then it follows that x2 − y2 = 0. We are only
considering real E (4it) because if E (4it) is imaginary, then it clearly
is not equal to 1. Since

|E (it)| = 1 = x2 + y2,

so we have x2 = y2 = 1
2 . Hence E (4it) = −1 and we are done.
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Trigonometric functions: sine and cosine

Proof

To prove (iv), if 0 ≤ t1 < t2 < 2π, then uniqueness follows, since

E (it2)E (it1)
−1 = E (i(t2 − t1)) ̸= 1.

To prove the existence we fix z ∈ C so that |z | = 1. Write z = x + iy
with x , y ∈ R. Suppose first that x ≥ 0 and y ≥ 0.

C (t) decreases on [0, π2 ] from 1 to 0. Hence C (t) = x for some
t ∈ [0, π2 ]. Since C 2 + S2 = 1 and S ≥ 0 on [0, π2 ], then z = E (it).

If x < 0 and y ≥ 0, the preceding conditions are satisfied by −iz .
Hence −iz = E (it) for some t ∈ [0, π2 ].

Since i = E
(
πi
2

)
we obtain

z = E
(
i
(
t +

π

2

))
.

If y < 0, the preceding two cases show that z = E (it) for some
t ∈ (0, π). Thus, z = −E (it) = E (i(t + π)) since E (iπ) = −1.
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Trigonometric functions: sine and cosine

sin and cos functions

Considerations of the triangle whose vertices are

z1 = 0, z2 = γ(θ), z3 = C (θ)

show that cos(θ) = C (θ) and sin(θ) = S(θ).

sin x =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
, and cos x =

∞∑
k=0

(−1)kx2k

(2k)!
.
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Trigonometric functions: sine and cosine

Graphs of sin(x) and cos(x)

Now we can sketch the graphs of sin(x) and cos(x):
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Trigonometric functions: sine and cosine

Remark

Remark

The curve γ(t) = E (it), with (0 ≤ t ≤ 2π, is a simple closed curve
whose range is the unit circle in the plane.

Since γ′(t) = iE (it), the length of γ as we shall see soon is∫ 2π

0
|γ′(t)|dt = 2π.

This is of course the expected result of the circumference of a circle
of radius 1.

In the same way we see that the point γ(t) describes a circular arc
length t0 as t increases from 0 to t0.
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Trigonometric functions: sine and cosine

Limit limh→0
sin(h)
h

Theorem

We have

lim
h→0

sin(h)

h
= 1.

Proof. We have

lim
h→0

sin(h)

h
= lim

h→0

sin(h)− sin(0)

h
= sin′(0) = cos(0) = 1.
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Taylor’s theorem

Taylor’s theorem

Taylor’s theorem

Suppose f : [a, b] → R, n ∈ N, f (n−1) is continuous on [a, b], and f (n)(t)
exists for every t ∈ (a, b). Let α, β ∈ [a, b] be distinct and define

P(t) =
n−1∑
k=0

f (k)(α)

k!
(t − α)k .

then there exists a point x ∈ (α, β) such that

f (β) = P(β) +
f (n)(x)

n!
(β − α)n (∗)
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Taylor’s theorem

Proof 1/3

Remark

For n = 1 this is just the mean–value theorem. In general, the theorem
says that f can be approximated by a polynomial of degree n − 1 and that
(*) allows us to estimate the error term if we know bounds on |f (n)(x)|.

Proof. Let M be a number such that

f (β) = P(β) +M(β − α)n.

For a ≤ t ≤ b set

g(t) = f (t)− P(t)−M(t − α)n.

We have to show n!M = f (n)(x) for some x ∈ (α, β).
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Taylor’s theorem

Proof 2/3

Since

P(t) =
n−1∑
k=0

f (k)(α)

k!
(t − α)k

we have that P(n)(t) = 0. Thus

g (n)(t) = f (n)(t)− n!M for t ∈ (α, β)

(since (xn)(n) = n!).

The proof will be completed if we show that g (n)(x) = 0 for some
x ∈ (α, β). Since P(k)(α) = f (k)(α) for k = 0, 1, 2, . . . , n − 1, hence
we have

g(α) = g ′(α) = . . . = g (n−1)(α) = 0.

Our choice of M shows that g(β) = 0.
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Taylor’s theorem

Proof 3/3

Hence by the mean-value theorem

g ′(x1) = 0 for some x1 ∈ (α, β)

since 0 = g(α)− g(β) = (β − α)g ′(x1).

Using that g ′(α) = 0 we continue and obtain

0 = g ′(x1)− g ′(α) = (x1 − α)g ′′(x2) for some α < x2 < x1.

Thus g ′′(x2) = 0.

Repeating the previous arguments, after n steps we obtain

g (n)(xn) = 0 for some α < xn < xn−1 < . . . < x1 < β.

This completes the proof.
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Taylor’s theorem

Theorem

Theorem (Taylor’s expansion formula)

Suppose that f : [a, b] → R is n-times continuously differentiable on [a, b]
and f (n+1) exists in the open interval (a, b). For any x , x0 ∈ [a, b] and
p > 0 there exists θ ∈ (0, 1) such that

f (x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)

k + rn(x),

where rn(x) is the Schlömlich–Roche remainder function defined by

rn(x) =
f (n+1)(x0 + θ(x − x0))

n!p
(1− θ)n+1−p(x − x0)

n+1.
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Taylor’s theorem

Proof 1/3

For x , x0 ∈ [a, b] set

rn(x) = f (x)−
n∑

k=0

f (k)(x0)

k!
(x − x0)

k .

Wlog we may assume that x > x0. For z ∈ [x0, x ] define

ϕ(z) = f (x)−
n∑

k=0

f (k)(z)

k!
(x − z)k .

We have ϕ(x0) = rn(x) and ϕ(x) = 0, and ϕ′ exists in (x0, x) and

ϕ′(z) = − f (n+1)(z)

n!
(x − z)n.
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Taylor’s theorem

Proof 2/3

Indeed, by the telescoping we obtain

ϕ′(z) = −

(
n∑

k=0

f (k)(z)

k!
(x − z)k

)′

= −
n∑

k=0

(
f (k+1)(z)

k!
(x − z)k − f (k)(z)

k!
k(x − z)k−1

)

=
n∑

k=1

f (k)(z)

(k − 1)!
(x − z)k−1 −

n∑
k=0

f (k+1)(z)

k!
(x − z)k

= − f (n+1)(z)

n!
(x − z)n.

Let ψ(z) = (x − z)p, then ψ is continuous on [x0, x ] with
non-vanishing derivative on (x0, x).
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Taylor’s theorem

Proof 3/3

By the mean-value theorem

ϕ(x)− ϕ(x0)

ψ(x)− ψ(x0)
=
ϕ′(c)

ψ′(c)
for some c ∈ (x0, x).

Thus, setting c = x0 + θ(x − x0),

rn(x) = ϕ(x0)︸ ︷︷ ︸
=rn(x)

−ϕ(x)︸︷︷︸
=0

= −(ψ(x)− ψ(x0))
ϕ′(c)

ψ′(c)

=
f (n+1)(c)

n!
(x − c)n

−(x − x0)
p

−p(x − c)p−1
=

=
f (n+1)(x0 + θ(x − x0))

pn!
(1− θ)n+1−p(x − x0)

n+1.
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Taylor’s theorem

Corollary

Under the assumptions of the previous theorem.

Lagrange remainder

If p = n + 1 we obtain the Taylor formula with the Lagrange remainder:

rn(x) =
f (n+1)(x0 + θ(x − x0))

(n + 1)!
(x − x0)

n+1.

Cauchy remainder

If p = 1 we obtain the Taylor formula with the Cauchy remainder:

rn(x) =
f (n+1)(x0 + θ(x − x0))

n!
(1− θ)n(x − x0)

n+1.
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Power series expansions

Power series expansion for the logarithm

Theorem

For |x | < 1 we have

log(1 + x) =
∞∑
k=1

(−1)k+1

k
xk .

Proof. Note that (log(x + 1))′ = 1
x+1 and

(log(x + 1))′′ =

(
1

x + 1

)′
= − 1

(1 + x)2
,

(log(x + 1))′′′ =

(
= − 1

(1 + x)2

)
=

2

(1 + x)3
,

(log(x + 1))(4) =

(
2

(1 + x)3

)′
= − 6

(1 + x)4
= − 3!

(1 + x)4
.
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Power series expansions

Proof 1/2

Inductively, we have

(log(1 + x))(n) = (−1)n+1 (n − 1)!

(x + 1)n
.

We use the Taylor expansion formula at x0 = 0 then

log(1 + x) =
n∑

k=0

f (k)(0)

k!
xk + rn(x) =

n∑
k=0

(−1)k+1

k
xk + rn(x),

since

f (0)(0) = log(1) = 0,

f (k)(0) = (−1)k+1(k − 1)!.
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Power series expansions

Proof 2/2

If 0 ≤ x < 1 we use Lagrange’s reminder. Then for some 0 < θ < 1,

|rn(x)| =

∣∣∣∣∣ f (n)(θx)(n + 1)!
xn+1

∣∣∣∣∣ = n!

(n + 1)!(1 + θx)n
xn+1 ≤ 1

n + 1
−−−→n→∞ 0.

If −1 < x < 0 we use Cauchy’s remainder. Then for some 0 < θ < 1,

|rn(x)| =

∣∣∣∣∣ f (n+1)(x0 + θ(x − x0))

n!
(1− θ)n(x − x0)

n+1

∣∣∣∣∣
=

∣∣∣∣ n!

n!(1 + θx)n+1
(1− θ)nxn+1

∣∣∣∣ .
Since −1 < θx < 0, then −θ < θx , so 1− θ < 1 + θx , hence

|rn(x)| ≤
(1− θ)n

(1 + θx)n+1
|x |n+1 ≤ (1− θ)n

(1− θ)n+1
|x |n+1 =

|x |n+1

1− θ
−−−→n→∞ 0

since |x |n −−−→n→∞ 0 when |x | < 1.

(MATH 411H, FALL 2025) Lecture 21 November 13, 2025 28 / 36



Power series expansions

Newton’s binomial formula

Theorem

If α ∈ R \ N and |x | < 1 then

(1 + x)α = 1 +
∞∑
n=1

α(α− 1) · . . . · (α− n + 1)

n!︸ ︷︷ ︸
(αn)

xn.

This is called Newton’s binomial formula.

Recall

For n ∈ N we have(
n

k

)
=

n!

k!(n − k)!
=

n(n − 1) · . . . · (n − k + 1)

k!
.
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Power series expansions

Proof 1/4

Proof. Let let f (x) = (1 + x)α and note that

f (n)(x) = α(α− 1) · . . . · (α− n + 1)xα−n.

Suppose first that 0 < x < 1.
Using the Lagrange remainder formula we have

rn(x) =
α(α− 1) · . . . · (α− n)

(n + 1)!
xn+1(1 + xθ)α−n+1.

Claim

For |x | < 1 we have

lim
n→∞

α(α− 1) · . . . · (α− n)

(n + 1)!
xn+1 = 0.
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Power series expansions

Proof 2/4. Proof of the Claim.

To prove the claim it suffices to use the following fact:

Fact

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = q < 1 =⇒ lim
n→∞

an = 0

with an = α(α−1)·...·(α−n)
(n+1)! xn+1. Then∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣α(α− 1) · . . . · (α− n − 1)xn+2

(n + 2)!

(n + 1)!

α(α− 1) · . . . · (α− n + 1)xn+1

∣∣∣∣
=

∣∣∣∣α− n − 1

n + 2
x

∣∣∣∣ −−−→n→∞ |x | < 1.

Thus rn(x) −−−→n→∞ 0 if we show that (1 + θx)α−n−1 is bounded.
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Power series expansions

Proof 3/4

Indeed, assuming that 0 < x < 1 we see

(1 + θx)−n ≤ 1,

For α ≥ 0 we have

1 ≤ (1 + θx)α ≤ (1 + x)α ≤ 2α,

For α < 0 we have

2α ≤ (1 + x)α ≤ (1 + xθ)α ≤ 1

Gathering all together we conclude that (1 + θx)α−n−1 as desired.
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Power series expansions

Proof 4/4

Now we assume that −1 < x < 0. Using the Cauchy remainder
formula we have

rn(x) =
α(α− 1) · . . . · (α− n)

(n + 1)!
xn+1(1− θ)n(1 + θx)α−n−1.

As before we show that (1− θ)(1 + θx)α−n−1 is bounded.

Since −1 < x < 0 then 1 + θx > 1− θ and consequently

(1− θ)n ≤ (1− θ)n(1 + θx)−n =
(1− θ)n

(1 + θx)n
< 1.

For α ≤ 1 we have

1 ≤ (1 + xθ)α−1 ≤ (1 + x)α−1.

For α ≥ 1 we have

(1 + x)α−1 ≤ (1 + θx)α−1 ≤ 1

and we are done.
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Power series expansions

A function which does not have power series representation

Let

f (x) =

{
e−

1
x2 if x ̸= 0,

0 if x = 0.

It is not difficult to see that f is infinitely many times differentiable
for any x ∈ R.
Moreover,

f (n)(0) = 0 for any n ≥ 0

and f (x) ̸= 0.

Thus we see

0 ̸= f (x) ̸=
∞∑
k=0

f (k)(0)

k!
xk = 0.
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Applications of Calculus

Bernoulli’s inequality: general form

Bernoulli’s inequality: general form

For x > −1 and x ̸= 0 we have

(a) (1 + x)α > 1 + αx if α > 1 or α < 0,

(b) (1 + x)α < 1 + αx if 0 < α < 1.

Proof. Applying Taylor’s formula with the Lagrange remainder for
f (x) = (1 + x)α we obtain

(1 + x)α = 1 + αx +
α(α− 1)(1 + θx)α−2

2
x2.

(MATH 411H, FALL 2025) Lecture 21 November 13, 2025 35 / 36



Applications of Calculus

Proof

For α > 1 or α < 0 we have

α(α− 1)(1 + θx)α−2

2
> 0.

For 0 < α < 1 we have

α(α− 1)(1 + θx)α−2

2
< 0.

Consequently, for α > 1 or α < 0 we obtain

1 + αx +
α(α− 1)(1 + θx)α−2

2
x2 > 1 + xα.

Similarly, for 0 < α < 1, we obtain

1 + αx +
α(α− 1)(1 + θx)α−2

2
x2 > 1 + xα.

This completes the proof.
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