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Partitions

Partition

Let [a, b] be a given interval. By a partition P of [a, b] we mean a finite
set of points

a = x0 ≤ x1 ≤ . . . ≤ xn−1 ≤ xn = b.

Example 1

If [a, b] = [0, 1], then {0, 12 , 1} is a partition.

Example 2

If [a, b] = [0, 1], then {
k

n
: k = 0, 1, . . . , n

}
is a partition for every n ∈ N.

(MATH 411H FALL 2025) Lecture 22 November 17, 2025 2 / 39



Upper and lower Riemann sums

Suppose f : [a, b] → R is a bounded function. Corresponding to each
partition P of [a, b] we put

mi = inf
x∈[xi−1,xi ]

f (x), and Mi = sup
x∈[xi−1,xi ]

f (x),

∆xi = xi − xi−1.

Upper and lower Riemann sums

We define

U(P, f ) =
n∑

i=1

Mi∆xi ,

L(P, f ) =
n∑

i=1

mi∆xi .

We always have that L(P, f ) ≤ U(P, f ).
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Examples

Example 1

If f (x) = x and P = {0, 12 , 1}, then

U(P, f ) =
1

2
· 1
2
+ 1 · 1

2
=

3

4
, and L(f , L) = 0 · 1

2
+

1

2
· 1
2
=

1

4
.

Example 2

If f (x) = x2 and

P =

{
k

n
: k = 0, 1, . . . , n

}
,

then

U(P, f ) =
n∑

i=1

1

n

(
i

n

)2

, and L(P, f ) =
n∑

i=1

1

n

(
i − 1

n

)2

.
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Riemann sums - geometric interpretation
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Upper and lower Riemann integral

Upper and lower Riemann integral

We define the upper and lower Riemann integrals of f over [a, b] to be∫ b

a
f (x) dx = sup

P
L(P, f ), and

∫ b

a
f (x) dx = inf

P
U(P, f ),

where the inf and the sup are taken over all partitions P of [a, b].

Riemann integral of f over [a, b]

If the upper and lower integrals are equal, we say that f : [a, b] → R is
Riemann integrable on [a, b], we write f ∈ R([a, b]) and we denote the
common value (which is called Riemann integral of f over [a, b]) by∫ b

a
f (x) dx =

∫ b

a
f (x) dx =

∫ b

a
f (x) dx .
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Riemann integral is well-defined

Fact

The upper and lower integrals are defined for every bounded function.

Proof. Let

m = inf
x∈[a,b]

f (x),

M = sup
x∈[a,b]

f (x).

Then
m ≤ f (x) ≤ M for all x ∈ [a, b].

Therefore
m(b − a) ≤ L(P, f ) ≤ U(P, f ) ≤ M(b − a)

for every partition P.
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Question of the integrability of f

Example

There is a bounded function f which is not integrable.

Proof. Let us define f on [0, 1] to be

f (x) =

{
1 if x ∈ Q,

0 if x ̸∈ Q.

Let us recall

Fact (*)

In any interval [c , d ] such that c < d there is a rational and irrational
number.
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Proof

By the fact (∗), for every partition P of [0, 1], we have

U(P, f ) =
n∑

i=1

Mi∆xi =
n∑

i=1

1 ·∆xi = 1,

L(P, f ) =
n∑

i=1

mi∆xi =
n∑

i=1

0 ·∆xi = 0.

Therefore

∫ b

a
f (x) dx = sup

P
L(P, f ) = 0, and

∫ b

a
f (x) dx = inf

P
U(P, f ) = 1.

Hence
∫ b
a f (x) dx ̸=

∫ b
a f (x) dx and f is not integrable.
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Refinements

Refinement

We say that the partition P∗ is a refinement of P if P∗ ⊇ P.

Common refinement

Given two partitions, P1 and P2,we say that P∗ is their common
refinement if

P∗ = P1 ∪ P2.

Example

If [a, b] = [0, 2] and P1 = {0, 12 , 1, 2}, P2 = {0, 14 ,
1
2 ,

3
2 , 2} are partitions,

then their common refinement is

P∗ =

{
0,

1

4
,
1

2
, 1,

3

2
, 2

}
.
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Theorem

Theorem

If P∗ is a refinement of P, then

L(P, f ) ≤ L(P∗, f ),

U(P∗, f ) ≤ U(P, f ).

Proof. We prove the first statement.

Suppose first that P∗ contains just one point more than P. Let this
extra point be x∗, and suppose

xi−1 ≤ x∗ ≤ xi for some i ∈ {1, 2, . . . , n}.
Let

mi = inf
x∈[xi−1,xi ]

f (x),

w1 = inf
x∈[xi−1,x∗]

f (x), and w2 = inf
x∈[x∗,xi ]

f (x)
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Proof

Then w1 ≥ mi and w2 ≥ mi and consequently

L(P∗, f )− L(P, f ) = w1(x
∗ − xi−1) + w2(xi − x∗)−mi (xi − xi−1)

= (w1 −mi )(x
∗ − xi−1) + (w2 −mi )(xi − x∗) ≥ 0.

Finally, if P∗ contains k points more than P, we repeat this reasoning
k times. The proof of the second statement is analogous.

Claim (*)

For two partitions P1,P2 of an interval [a, b] one has

L(P1, f ) ≤ U(P2, f ).

Proof. Let P∗ = P1 ∪ P2 be the common refinement of two partitions P1

and P2. By the previous theorem

L(P1, f ) ≤ L(P∗, f ) ≤ U(P∗, f ) ≤ U(P2, f ).
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Theorem

Theorem

For any bounded function f : [a, b] → R we have∫ b

a
f (x)dx ≤

∫ b

a
f (x)dx .

Proof. By the Claim (*) for two partitions P1,P2 of an interval [a, b] one
has

L(P1, f ) ≤ U(P2, f ).

Then ∫ b

a
f (x) dx = sup

P1

L(P1, f ) ≤ inf
P2

U(P2, f ) =

∫ b

a
f (x) dx ,

This completes the proof of the theorem.
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Theorem

Theorem

A function f ∈ R([a, b]) if and only if the following condition (R) holds:

For every ε > 0 there is a partition P of [a, b] such that

U(P, f )− L(P, f ) < ε. (R)

Proof. By the previous theorem, for every partition P we have

L(P, f ) ≤
∫ b

a
f (x)dx ≤

∫ b

a
f (x)dx ≤ U(P, f ).

Thus the condition (R) implies

0 ≤
∫ b

a
f (x)dx −

∫ b

a
f (x)dx ≤ U(P, f )− L(P, f ) < ε.

Since ε > 0 is arbitrary
∫ b
a f (x)dx =

∫ b
a f (x)dx , hence f ∈ R(α).
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Proof

Conversely, suppose that f ∈ R(α). Then for every ε > 0 there are
partitions P1 and P2 such that∫ b

a
f (x)dx − L(P1, f ) <

ε

2
and U(P2, f )−

∫ b

a
f (x)dx <

ε

2
.

We choose P to be the common refinement of P1 and P2. Then

U(P, f ) ≤ U(P2, f )

≤
∫ b

a
f (x)dx +

ε

2
=

∫ b

a
f (x)dx +

ε

2
=

∫ b

a
f (x)dx +

ε

2

≤ L(P1, f ) + ε ≤ L(P, f ) + ε.

This proves condition (R) and completes the proof of the theorem.
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Theorem

Theorem (**)

If condition (R) holds for P = {x0, . . . , xn} and if si , ti are arbitrary points
in [xi−1, xi ], then

n∑
i=1

|f (si )− f (ti )|∆xi < ε.

Proof. Note that f (si ), f (ti ) lies in [mi ,Mi ], hence by the triangle
inequality

|f (ti )− f (si )| ≤ Mi −mi︸ ︷︷ ︸
length

.

Hence
n∑

i=1

|f (si )− f (ti )|∆xi ≤
n∑

i=1

(Mi −mi )∆xi =

∫ b

a
f (x)dx −

∫ b

a
f (x)dx < ε.

This completes the proof.
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Theorem

Theorem

If f ∈ R([a, b]) and the hypotheses of (∗∗) hold, then∣∣∣∣∣
n∑

i=1

f (ti )∆xi −
∫ b

a
f (x) dx

∣∣∣∣∣ < ε.

Proof. It is enough to note that

L(P, f ) ≤
n∑

i=1

f (ti )∆xi ≤ U(P, f ),

L(P, f ) ≤
∫ b

a
f (x) dx ≤ U(P, f ).
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Riemann integrability for continuous functions

Theorem

If f is continuous on [a, b] then f ∈ R([a, b]).

Proof. Let ε > 0 be given. Choose η > 0 such that η(b − a) < ε. Recall
that if f is continuous on [a, b], then it is also uniformly continuous.

Hence, there is δ > 0 such that |f (x)− f (t)| < η if |t − x | < δ.

In particular, that means that Mi −mi < η for every partition such
that ∆xi < δ.

Hence,

U(P, f )− L(P, f ) =
n∑

i=1

(Mi −mi )∆xi ≤ η
n∑

i=1

∆xi = η(b − a) < ε.

The proof is completed.
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Riemann integrability for monotonic functions

Theorem

If f : [a, b] → R is monotonic, then f ∈ R([a, b]).

Proof. Let ε > 0 be given. For n ∈ N choose a partition P such that
∆xi =

b−a
n . We suppose that f is monotonically increasing. Then

Mi −mi = f (xi )− f (xi−1).

Hence, if n is taken large enough, we obtain

U(P, f )− L(P, f ) =
n∑

i=1

(Mi −mi )∆xi

=
b − a

n

n∑
i=1

f (xi )− f (xi−1) =
b − a

n
(f (b)− f (a)) < ε,

and we are done, the proof is analogous in the other case.
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Example

Example 1

Let

f (x) =


x for x ∈ [0, 1],

x2 + 5 for x ∈ (1, 2],

x3 + 9 for x ∈ (3, 4].

Prove that f is Riemann integrable on [0, 4].

Solution. f is increasing, so f is Riemann integrable by the previous
theorem.
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Riemann integrability for discontinues functions

Theorem

Suppose f : [a, b] → R is bounded and has only finitely many points of
discontinuity on [a, b]. Then f ∈ R([a, b]).

Proof. Let ε > 0 be given. Put M = supx∈[a,b] |f (x)|, let E be the set of
points at which f is discontinuous.

Since E is finite, E can be covered by finitely many disjoint intervals
[ui , vi ] ⊆ [a, b] such that vi − ui < ε.

Furthermore, we can place these intervals in such a way that every
point of E ∩ (a, b) lies in the interior of some [ui , vi ].

Remove the segments (ui , vi ) from [a, b].

The remaining set K is compact. Hence f is uniformly continuous on
K , and there exists δ > 0 such that

|f (s)− f (t)| < ε if s, t ∈ K and |s − t| < δ.
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Proof - construction of a partition

Now form a partition P of [a, b] as follows:
1 Each ui occurs in P.

2 Each vi occurs in P.

3 No point of any segment (ui , vi ) occurs in P.

4 If xi−1 is not one of the uj , then ∆xi < δ.

Note that Mi −mi ≤ 2M for all i , and by the uniform continuity of f
we also have that Mi −mi ≤ ε unless xi−1 is one of the uj .

Hence

U(P, f )− L(P, f ) ≤ ε(b − a) + 2Mε.

Since ε > 0 is arbitrary, the proof is finished.
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Exercise

Exercise

Prove that the function given by

f (x) =


x2 if x ∈ [−3,−1],

2x if x ∈ (−1, 1],

−x2 + 2 if x ∈ (1, 3]

is Riemann integrable.
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Exercise - solution

The function is continuous except −1, 1. Hence, by the previous
theorem, it is Riemann integrable.
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Linearity of Riemann integrals

Linearity of Riemann integrals

If f1, f2 ∈ R([a, b]) and c ∈ R, then f1 + f2 ∈ R([a, b]) and∫ b

a
f1(x) + f2(x) dx =

∫ b

a
f1(x) dx +

∫ b

a
f2(x) dx ,

∫ b

a
cf1(x)(x) dx = c

∫ b

a
f1(x) dx .

Proof. We only prove the first statement. The proof of the second
statement is similar.

If f = f1 + f2, then for any partition P we have

L(P, f1) + L(P, f2) ≤ L(P, f ) ≤ U(P, f ) ≤ U(P, f1) + U(P, f2). (∗)

For a given ε > 0 there are partitions P1,P2 such that
U(Pj , fj)− L(Pj , fj) < ε for j = 1, 2.
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Proof

Let P be the common refinement of P1 and P2. Together with (∗)
this means that U(P, f )− L(P, f ) < 2ε, which proves f ∈ R([a, b]).

With the same P we have

U(P, fj) ≤
∫ b

a
fj(x) dx + ε

Hence (∗) implies∫ b

a
f (x) dx ≤ U(P, f ) ≤

∫ b

a
f1(x) dx +

∫ b

a
f2(x) dx + 2ε.

Since ε > 0 we arbitrary, we have∫ b

a
f (x) dα(x) ≤

∫ b

a
f1(x) dα(x) +

∫ b

a
f2(x) dα(x).

If we replace f1 and f2 with −f1 and −f2 respectively, the inequality
can be reversed, which proves the desired equality.
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Properties of Riemann integrals

Properties of Riemann–Stieltjes integral

Assume f1, f2 ∈ R([a, b]).

1 If f1 ≤ f2, then ∫ b

a
f1(x) dx ≤

∫ b

a
f2(x) dx .

2 If a < c < b and f1 ∈ R([a, c]) and f1 ∈ R([c , b]), then∫ b

a
f1(x) dx =

∫ c

a
f1(x) dx +

∫ b

c
f (x) dx .
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Composition and product of Riemann integrable functions

Theorem (*)

Suppose f ∈ R([a, b]), and m ≤ f ≤ M, and ϕ : [m,M] → R and

h(x) = ϕ(f (x)).

Then h ∈ R([a, b]). Prove it!

As a consequence of this theorem, we have the following facts:

Fact

Assume that f , g ∈ R([a, b]). Then

(a) fg ∈ R([a, b]),

(b)

∣∣∣∫ b
a f (x) dx

∣∣∣ ≤ ∫ b
a |f (x)| dx .
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Proof

For the proof of (a), it is enough to use the following identity

4fg = (f + g)2 − (f − g)2,

the fact that f + g , f − g are integrable and Theorem (∗) with
ϕ(t) = t2.

For the proof of (b), choose c ∈ R such that∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣ = c

∫ b

a
f (x) dx =

∫ b

a
cf (x) dx > 0.

then by Theorem (∗) with ϕ(t) = |t| we obtain∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣ = c

∫ b

a
f (x) dx =

∫ b

a
cf (x) dx ≤

∫ b

a
|f (x)| dx .
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Change of variable formula

Theorem (change of variable formula)

Suppose that ϕ is a strictly increasing continuous function that maps an
interval [A,B] onto [a, b] and ϕ′ ∈ R([A,B]). Suppose that f ∈ R([a, b]),
then f ◦ ϕ ∈ R([A,B]) and∫ b

a
f (x) dx =

∫ B

A
f (ϕ(x))ϕ′(x) dx .

Proof. To each partition Q = {y0, . . . , yn} of [a, b] corresponds a partition
P = {x0, . . . , xn} of [A,B], so that

yi = ϕ(xi ).

All partitions of [A,B] are obtained in this way.
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Proof 1/2

Let ε > 0. There is a partition P such that U(P, ϕ′)− L(P, ϕ′) < ε.
The mean-value theorem furnishes points ti ∈ (xi−1, xi ) such that

yi − yi−1 = ϕ(xi )− ϕ(xi−1) = ϕ′(ti )∆xi .

Let M = supx∈[a,b] |f (x)|. Then, if si ∈ [xi−1, xi ], we have

n∑
i=1

|ϕ′(si )− ϕ′(ti )|∆xi < ε.

Hence,
n∑

i=1

f (si )∆yi =
n∑

i=1

f (si )ϕ
′(ti )∆xi .∣∣∣∣∣

n∑
i=1

f (si )∆yi −
n∑

i=1

f (si )ϕ
′(si )∆xi

∣∣∣∣∣ < Mε.
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Proof 2/2

In particular,
n∑

i=1

f (si )∆yi ≤ U(P, f ϕ′) +Mε.

The last inequality holds for all choices of P (consequently Q), hence

U(Q, f ) ≤ U(P, f ϕ′) +Mε =⇒ |U(Q, f )− U(P, f ϕ′)| ≤ Mε.

Hence ∣∣∣∣∣
∫ b

a
f (x) dx −

∫ b

a
f (x)ϕ′(x) dx

∣∣∣∣∣ < Mε.

Since ε > 0 was arbitrary,∫ b

a
f (x) dx =

∫ b

a
f (x)ϕ′(x) dx

The equality for lower integral follows the same way.
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Example

Example

We note that ∫ 2

0
2x · e−x2 dx =

∫ 4

0
e−x dx .

Taking ϕ : [0, 2] → [0, 4] given by ϕ(x) = x2, and f (x) = e−x , we see that∫ 2

0
(2x)︸︷︷︸
ϕ′(x)

· e−x2︸︷︷︸
f (ϕ(x))

dx =

∫ 4

0
e−x dx .
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Integration and differentiation

Integration and differentiation

Let f ∈ R([a, b]) and

F (x) =

∫ x

a
f (y) dy for x ∈ [a, b],

then F is continuous on [a, b]. Furthermore, if f is continuous at
x0 ∈ [a, b], then F is differentiable at x0, and

F ′(x0) = f (x0).

Proof. Let ε > 0. Suppose that |f (x)| ≤ M. Then for all a ≤ x1 ≤ x2 ≤ b
we have

|F (x1)− F (x2)| ≤
∫ x2

x1

|f (y)| dy ≤ M(x2 − x1).

Therefore, |F (x1)− F (x2)| < ε if |x1 − x2| < ε
M . Hence F is continuous.
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Proof

Now suppose f is continuous at x0. Given ε > 0, choose δ > 0 such that

|f (x0)− f (t)| < ε if |x0 − t| < δ.

Hence, if
x0 − δ ≤ s ≤ x0 ≤ t ≤ x0 + δ,

then∣∣∣∣F (t)− F (s)

t − s
− f (x0)

∣∣∣∣ = ∣∣∣∣F (t)− F (s)

t − s
− 1

t − s

∫ t

s
f (x0) dy

∣∣∣∣
=

∣∣∣∣ 1

t − s

∫ t

s
(f (y)− f (x0)) dy

∣∣∣∣ ≤ t − s

t − s
ε = ε.

It follows that F ′(x0) = f (x0) and we are done.
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The fundamental theorem of calculus

The fundamental theorem of calculus

If f ∈ R([a, b]) and if there is a differentiable function F on [a, b] such
that F ′ = f , then ∫ b

a
f (x) dx = F (b)− F (a).

Proof. Let ε > 0. Choose a partition P such that U(P, f )− L(P, f ) < ε.
The mean value theorem furnishes points ti ∈ [xi−1, xi ] such that
F (xi )− F (xi−1) = f (ti )∆xi . Hence,

n∑
i=1

f (ti )∆xi =
n∑

i=1

(F (xi )− F (xi−1)) = F (b)− F (a).

This completes the proof, since∣∣∣∣F (b)− F (a)−
∫ b

a
f (y) dy

∣∣∣∣ < ε.
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Example

Example 1

Let

h(x) =

∫ x

0
e−y3

sin(5y) dy .

Calculate the derivative of h.

Solution. By the previous theorem we have

h′(x) = e−x3 sin(5x).
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Example

Example 2

Let

h(x) =

∫ x2

0

1

y2 + ey6 dy .

Calculate the derivative of h.

Solution. Let us denote

F (x) =

∫ x

0

1

y2 + ey6 dy .

By the previous theorem

F ′(x) = f (x) =
1

x2 + ex6
.

Note that h(x) = F (x2). Therefore,

h′(x) = 2xF ′(x) = 2xf (x) =
2x

x2 + ex6
.
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Theorem (integration by parts)

Theorem (integration by parts)

Suppose F and G are differentiable functions on [a, b], and
F ′ = f ∈ R([a, b]), and G ′ = g ∈ R([a, b]). Then∫ b

a
F (x)g(x) dx = F (b)G (b)− F (a)G (a)−

∫ b

a
f (x)G (x) dx .

Proof. Let
H(x) = F (x)G (x).

By the chain rule,

H ′(x) = F (x)g(x) + f (x)G (x).

Finally, we apply the previous theorem to H.
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