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Partitions

Partition

Let [a, b] be a given interval. By a partition P of [a, b] we mean a finite
set of points
a=xp<x1<...<xp_1<x,=b.

Example 1
If [a, b] = [0, 1], then {0, 3,1} is a partition.

Example 2
If [a, b] = [0, 1], then

is a partition for every n € N.

v
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Upper and lower Riemann sums

Suppose f : [a, b] — R is a bounded function. Corresponding to each
partition P of [a, b] we put

m;= inf f(x), and M;= sup f(x),
XE[Xi—lle'] XE[X,‘_l,X,']

AX,‘ = Xj — Xj—1-

Upper and lower Riemann sums
We define

U(P, f) = ZMAX,,

n
== E m,'AX,'.
i=1

e We always have that L(P,f) < U(P,f).
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Examples

Example 1
If f(x) = x and P = {0, 3,1}, then

[y

1
Pfl=2>.= )
u(p.f) 2 2 2 4

Example 2
If f(x) = x? and

then

[y

=

n

,17<>2 and L(P,f)—Zi(i;

i=1

1)2.
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Riemann sums - geometric interpretation

f() f() f(@)

M { |—MII— A
a b a b a
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Upper and lower Riemann integral

Upper and lower Riemann integral

We define the upper and lower Riemann integrals of f over [a, b] to be

b b
/ f(x)dx =supL(P,f), and / f(x)dx =inf U(P,f),
Ja_ P a P

where the inf and the sup are taken over all partitions P of [a, b].

Riemann integral of f over [a, b]

If the upper and lower integrals are equal, we say that f : [a,b] = R is
Riemann integrable on [a, b], we write f € R([a, b]) and we denote the
common value (which is called Riemann integral of f over [a, b]) by

/a bf(x) dx = /b F(x) dx = / bf(x) dx.
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Riemann integral is well-defined

Fact

The upper and lower integrals are defined for every bounded function.

Proof. Let
= inf f
m x€”[13,b] (X),
M= sup f(x).
x€|a,b]
Then
m< f(x) <M forall xé€]la,b].

Therefore

m(b— ) < L(P,f) < U(P,f) < M(b— )
for every partition P.
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-
Question of the integrability of f

Example

There is a bounded function f which is not integrable.

Proof. Let us define f on [0, 1] to be

Fx) = 1if x € Q,
= Voifx 2.

Let us recall
Fact (*) ‘

In any interval [c, d] such that ¢ < d there is a rational and irrational
number.
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N
Proof

By the fact (x), for every partition P of [0, 1], we have

:iMiAX;:il-AX;:].,
i=1 i=1
L(P,f)= ZmAx, ZH:O-AX,-:O.
i=1

Therefore

b b
/ f(x)dx =supL(P,f)=0, and / f(x)dx =inf U(P,f) =
Ja P a P

Hence Ef(x) dx # Ef(x) dx and f is not integrable. O
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Refinements

Refinement

We say that the partition P* is a refinement of P if P* D P.

Common refinement

Given two partitions, P; and P,,we say that P* is their common
refinement if

P* =P, UP;.

Example

If [a, b] = [0,2] and P; = {0, 3 2 1,2}, P, =1{0,1 T 2, 272} are partitions,
then their common refinement is
3
,1,=,25.
) 2’ }

1
P =140,-
s
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Theorem

Theorem
If P* is a refinement of P, then

Proof. We prove the first statement.

@ Suppose first that P* contains just one point more than P. Let this

extra point be x*, and suppose

xi—1 <x*<x; forsome i€{l,2,...,n}.
o Let
m; = inf  f(x),
XG[X,‘,l,X,']
wi = inf  f(x), and wr= inf f(x)
X€E[xj_1,x*] X€[x*,xi]
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N
Proof

@ Then wy > m; and wy > m; and consequently
L(P*,f)— L(P,f) = wi(x" — xj—1) + wa(x; — x*) — mi(x; — xj—1)
= (w1 — m)(x* = xi—1) + (wo — m;)(x; — x*) > 0.

o Finally, if P* contains k points more than P, we repeat this reasoning
k times. The proof of the second statement is analogous. 0J

Claim (¥)

For two partitions Py, P, of an interval [a, b] one has

L(Py, ) < U(Pa2, f).

Proof. Let P* = P; U P, be the common refinement of two partitions P;
and P,. By the previous theorem

L(Py, f) < L(P*,f) < U(P*,f) < U(Pa, ).
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Theorem

Theorem

For any bounded function f : [a, b] — R we have

/a bf(x)dx < /abf(x)dx.

Proof. By the Claim (*) for two partitions Py, P, of an interval [a, b] one
has

L(Py,f) < U(Pa, f).

Then
b b
/ f(x)dX:supL(Pl,f)§infU(P2,f):/ f(x) dx,
a P1 P2 a
This completes the proof of the theorem. O
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Theorem

Theorem
A function f € R([a, b]) if and only if the following condition (R) holds:
@ For every ¢ > 0 there is a partition P of [a, b] such that

U(P,f) — L(P, f) < e. (R)

Proof. By the previous theorem, for every partition P we have

L(P,f) < / () < /bf(x)dx < U(P,f).

Thus the condition (R) implies

OS/bf(X)dx/bf(x)dxg U(P,f)—L(P,f) <e.

Since € > 0 is arbitrary fabf(x)dx = L:f(x)dx, hence f € R(«).
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Proof

Conversely, suppose that f € R(«). Then for every £ > 0 there are
partitions P; and P, such that

b b

/ F()dx — L(Py,f) < and  U(Ps,f) —/ Fx)dx < <.
Ja_ 2 a 2
We choose P to be the common refinement of P; and P,. Then

U(P,f) < U(Pa,f)

b € b € b €
< / f(x)dx + 5 :/ f(x)dx + 5 :/ f(x)dx + 5
< L(P1,f)+e < L(P,f)+e.
This proves condition (R) and completes the proof of the theorem.
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Theorem

Theorem (**)

If condition (R) holds for P = {xo, ..., xn} and if s;, t; are arbitrary points
in [xj_1, x|, then

Z|f si) — f(t)]|Ax; < e.

Proof. Note that f(s;), f(t;) lies in [m;, M;], hence by the triangle
inequality

f(t;) —f(s)] < M; —m;.

|£(ti) — £(si)]

length
Hence
b b
ny s) — (t)|Ax <Z ~ mi)Ax _/ f(x)dx—/ F(x)dx < .
a a
ThIS completes the proof. O
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Theorem

Theorem
If f € R([a, b]) and the hypotheses of () hold, then

n b
f(ti)Ax; — f(x)dx
x|

Proof. It is enough to note that

<e.

L(P,f) < z”: f(t)Ax; < U(P,f),
i=1

b
L(P,f)g/ f(x) dx < U(P,f). [
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Riemann integrability for continuous functions

Theorem
If f is continuous on [a, b] then f € R([a, b]).

Proof. Let € > 0 be given. Choose 1 > 0 such that (b — a) < e. Recall
that if f is continuous on [a, b], then it is also uniformly continuous.

@ Hence, there is 6 > 0 such that |f(x) — f(t)| < nif [t — x| < 4.

@ In particular, that means that M; — m; < 7 for every partition such
that Ax; < 9.

@ Hence,

U(P, f) — Z(I\/I m,Ax,<nZAx,—17(b—a) €.
i=1

The proof is completed. O
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-
Riemann integrability for monotonic functions

Theorem

If f:[a, b] — R is monotonic, then f € R(][a, b]).

Proof. Let £ > 0 be given. For n € N choose a partition P such that
Ax; = ?. We suppose that f is monotonically increasing. Then

M,' —m; = f(X,') — f(X,'_l).

Hence, if n is taken large enough, we obtain

U(P,f) — L(P,f) = i(Mf - mi)Ax
i—1
: ; : Z f(x;) — f(xi_1) = b; a(f(b) —f(a)) <e,
i—1

and we are done, the proof is analogous in the other case. O
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Example

Example 1
Let
X for x € [0, 1],
f(x)=<x2+5 forx e (1,2],
x3+9 forx € (3,4].
Prove that f is Riemann integrable on [0, 4].

Solution. f is increasing, so f is Riemann integrable by the previous
theorem.
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Riemann integrability for discontinues functions

Theorem

Suppose f : [a, b] — R is bounded and has only finitely many points of
discontinuity on [a, b]. Then f € R(][a, b]).

Proof. Let € > 0 be given. Put M = sup,[, 5 |f(x)|, let E be the set of

points at which f is discontinuous.

@ Since E is finite, E can be covered by finitely many disjoint intervals
[ui, vi] C [a, b] such that v; — u; < ¢.

@ Furthermore, we can place these intervals in such a way that every
point of E N (a, b) lies in the interior of some [u;, v;].

@ Remove the segments (u;, v;) from [a, b].

@ The remaining set K is compact. Hence f is uniformly continuous on
K, and there exists 6 > 0 such that

|f(s)—f(t))<e if s,teK and |[s—t|<d.
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Proof - construction of a partition

@ Now form a partition P of [a, b] as follows:
@ Each u; occurs in P.

@ Each v; occurs in P.
© No point of any segment (u;, v;) occurs in P.
Q If xj_1 is not one of the u;, then Ax; < §.

@ Note that M; — m; < 2M for all i, and by the uniform continuity of f
we also have that M; — m; < e unless x;_; is one of the u;.

@ Hence

U(P, ) — L(P,f) < e(b— a) + 2Me.

Since € > 0 is arbitrary, the proof is finished. O
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Exercise

Exercise

Prove that the function given by

2

X if x € [-3,—1],
f(x) =14 2x if x € (—1,1],
—x2+2 ifxe (1,3
is Riemann integrable.
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Exercise - solution

@ The function is continuous except —1, 1. Hence, by the previous
theorem, it is Riemann integrable.
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Linearity of Riemann integrals

Linearity of Riemann integrals
If 1,f € R([a, b]) and c € R, then f; + f, € R(][a, b]) and

[ 500+ 00 d= [ heo axt [ o ax

/abcfl(x)(x) dx = c/ab fi(x) dx.

Proof. We only prove the first statement. The proof of the second
statement is similar.

o If f = f1 + f», then for any partition P we have
L(P, )+ L(P,h) < L(P,f)<U(P,f) < U(P, )+ UP,f). ()

@ For a given € > 0 there are partitions Py, P> such that
U(P;j,f;) — L(Pj,fj) < e forj=1,2.
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|
Proof
@ Let P be the common refinement of P; and P,. Together with ()

this means that U(P, f) — L(P, ) < 2¢, which proves f € R(]a, b]).
@ With the same P we have

b
U(P,f,-)g/ filx)dx+¢

@ Hence (x) implies

/bf(x) dx < U(P,f) < /bfl(x) dx—l—/b fo(x) dx + 2¢.

@ Since € > 0 we arbitrary, we have

/ab f(x) da(x) < /ab fi(x) da(x) + /b f(x) da(x).

a

o If we replace fi and f, with —f; and —f, respectively, the inequality

can be reversed, which proves the desired equality. O
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Properties of Riemann integrals

Properties of Riemann—Stieltjes integral
Assume f1, f» € R(]a, b]).

Q If 1 <, then i
b
/ () d s/ f (x) dx.

Q@ Ifa<c<band fi € R([a,c]) and f; € R([c, b]), then

/abfl(x) dx = /:fl(x) dx—l—/cb f(x) dx.
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Composition and product of Riemann integrable functions

Theorem (*)
Suppose f € R([a, b]), and m < f < M, and ¢ : [m, M] — R and

Then h € R([a, b]). Prove it!

As a consequence of this theorem, we have the following facts:
Fact

Assume that f, g € R([a, b]). Then
@ fg e R([a, b)),

@ \ff f(x) dx\ < [P1£(x)| dx.
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Proof

@ For the proof of (a), it is enough to use the following identity
afg = (f +g)* — (f — g)?,
the fact that f + g, f — g are integrable and Theorem () with
()(t) = t2.

e For the proof of (b), choose ¢ € R such that

/abf(x)dx :c/abf(x)dx:/abcf(x)dx>0.

then by Theorem () with o(t) = |#| we obtain

/abf(x)dx :C/abf(x)dxz/abCf(X)dXS/ab!f(x)!dx. O

(MATH 411H FALL 2025)

Lecture 22 November 17, 2025 29/39



Change of variable formula

Theorem (change of variable formula)

Suppose that ¢ is a strictly increasing continuous function that maps an
interval [A, B] onto [a, b] and ¢’ € R([A, B]). Suppose that f € R([a, b]),
then f o ¢ € R([A, B]) and

/ab f(x)dx = /AB f(d(x))d'(x) dx.

v

Proof. To each partition Q = {yo,...,yn} of [a, b] corresponds a partition
P = {xo,...,xn} of [A, B], so that

yi = o(x;).

All partitions of [A, B] are obtained in this way.
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-
Proof 1/2

@ Let £ > 0. There is a partition P such that U(P,¢') — L(P,¢') < e.
The mean-value theorem furnishes points t; € (x;_1, x;) such that

Vi — Yi-1 = o(x;) — ¢(xi—1) = ¢'(ti)Ax;.

o Let M = sup,cpap |f(X)]- Then, if s; € [xi—1, x;], we have

qus si) — &' (t)|Ax; < e.

@ Hence,
S f(s)ayi = > f(s)6 () Ax;.
i=1 i=1
D f(s)Byi =Y f(s)d (s1)Ax| < Me.
i=1 i=1
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Proof 2/2

@ In particular,
n

> f(s)Ay; < U(P,f¢') + Me.
i=1
@ The last inequality holds for all choices of P (consequently @), hence

UQ,f) < UP,f¢)+ Me = |U(Q,f)— U(P,f¢')| < Me.

@ Hence

/abf(x) dx — / £ (x) dx

a

< Me.

Since € > 0 was arbitrary,

/a bf(x) dx = /abf(x)qb’(x) dx

@ The equality for lower integral follows the same way. O
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N
Example

Example
We note that

2 ) 4
/ 2x-e X dx = / e *dx.
0 0

Taking ¢ : [0,2] — [0, 4] given by ¢(x) = x2, and f(x) = e, we see that

2 4
/ (2x)- e dx:/ e~ dx.
® 50 @) °
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-
Integration and differentiation

Integration and differentiation
Let f € R([a, b]) and

F(x) = /X f(y)dy for x€|a,b],

then F is continuous on [a, b]. Furthermore, if f is continuous at
xo € [a, b], then F is differentiable at xp, and

F/(Xo) = f(Xo).

Proof. Let ¢ > 0. Suppose that |[f(x)| < M. Then forall a<x; <xp < b
we have

X2

Fl) = Fla) < [ 1)l dy < MOa — x),
x1

Therefore, |F(x1) — F(x2)| < € if [x1 — x2| < §5. Hence F is continuous.
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N
Proof

Now suppose f is continuous at xg. Given £ > 0, choose § > 0 such that

|f(X0) — f(t)‘ <e |if |X0 — t‘ < 4.

Hence, if
x0—0<s<xp<t<xg+6,
then
F(t) — F(s) F(t) — F(s) 1 t
—f = — f(xo) d
t—s (xo) t—s t—s/S (xo0) dy
1 t t—s
= fly)—f dy| < =e.
5 [0 - ey < 2=
It follows that F'(xg) = f(xo) and we are done. O
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]
The fundamental theorem of calculus

The fundamental theorem of calculus

If f € R([a, b]) and if there is a differentiable function F on [a, b] such
that F’ = f, then

b
/ f(x) dx = F(b) — F(a).

Proof. Let ¢ > 0. Choose a partition P such that U(P,f) — L(P,f) < e.
The mean value theorem furnishes points t; € [x;_1, x;] such that
F(x;) — F(xi—1) = f(t;)Ax;. Hence,

n

D f(t)Ax =) (F(x) — F(xi-1)) = F(b) — F(a).
i=1

i=1
This completes the proof, since

F(b)F(a)/abf(y)dy'<s. O
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Example

Example 1
Let

h(x) = /OX e’ sin(5y) dy.

Calculate the derivative of h.

Solution. By the previous theorem we have

H(x) = e sin(5x).
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N
Example

Example 2

Let
2

x 1
h(x) = ——dy.
(X) A y2+ey6 y

Calculate the derivative of h.

Solution. Let us denote

<1
F(x)= [ ———5dy.
(x) /Oy2+ey6 y

By the previous theorem

1
F'(x) = f(x) = ——.
()= () = =
Note that h(x) = F(x?). Therefore,
2
H(x) = 2xF/(x) = 2xf(x) = — .
X< + eX
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N
Theorem (integration by parts)

Theorem (integration by parts)

Suppose F and G are differentiable functions on [a, b], and
F'=f e R([a, b]), and G' = g € R([a, b]). Then

b b
/a F(x)g(x) dx = F(b)G(b) — F(a)G(a) — / F()G(x) dx.

Proof. Let

By the chain rule,
H'(x) = F(x)g(x) + f(x)G(x).
Finally, we apply the previous theorem to H. []
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