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Pointwise and uniform convergence

Pointwise convergence

Pointwise convergence

For each n ∈ N let fn : A → R, where A ⊆ X . The sequence (fn)n∈N of
functions converges pointwise on A to a function f if, for all x ∈ A, the
sequence of real numbers (fn(x))n∈N converges to f (x). We write

lim
n→∞

fn(x) = f (x) or fn −−−→n→∞ f .

Example 1

Let gn(x) = xn for x ∈ [0, 1], then

lim
n→∞

gn(x) =

{
0 if x ∈ [0, 1),

1 if x = 1.
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Pointwise and uniform convergence

Graphs of g2, g4, g8, g16, g32, g64, g128
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Pointwise and uniform convergence

Examples

Example 2

Let fn(x) =
x2

(1+x2)n
. Consider sN(x) =

∑N
n=0 fn(x), then

sN(x) −−−−→
N→∞ f (x),

where

f (x) =

{
0 if x = 0,

1 + x2 if x ̸= 0

since if x ̸= 0 one has

lim
N→∞

sN(x) =
∞∑
n=0

x2

(1 + x2)n
=

x2

1− 1
1+x2

= 1 + x2.
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Pointwise and uniform convergence

Graphs of s1, s2, s3, s4, s5, s6, s7
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Pointwise and uniform convergence

Examples

Example 3

Let fn(x) =
sin(nx)√

n
, then f (x) = limn→∞ fn(x) = 0. Also we see that

f ′(x) = 0, but
f ′n(x) =

√
n cos(nx)

does not converge to f ′(x) since

f ′(0) =
√
n −−−→n→∞ +∞.
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Uniform convergence

Uniform convergence

Uniform convergence

We say that a sequence of functions (fn)n∈N converges uniformly on E
to a function f is for every ε > 0 there is N ∈ N such that n ≥ N implies
|fn(x)− f (x)| ≤ ε for all x ∈ N. We shall write fn ⇒

n→∞
f if (fn)n∈N

converges uniformly to f .

Remark

Clearly every uniformly convergent sequence is pointwise convergent.
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Uniform convergence

Uniform convergence - picture
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Uniform convergence

Theorem

Theorem

The sequence of functions (fn)n∈N defined on E converges uniformly on E
iff for every ε > 0 there exists N ∈ N such that m, n ≥ N implies

|fn(x)− fm(x)| ≤ ε for all x ∈ E .

Proof (=⇒). Suppose (fn)n∈N converges uniformly on E and let f be the
limit function. Then there is N ∈ N such that n ≥ N implies

|fn(x)− f (x)| ≤ ε

2
for all x ∈ E .

Thus

|fn(x)− fm(x)| ≤ |fn(x)− f (x)|+ |f (x)− fm(x)| ≤
ε

2
+

ε

2
= ε

if n,m ≥ N and x ∈ E .
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Uniform convergence

Proof

Proof (⇐=). Conversely, suppose that Cauchy criterion holds.

Then (fn(x))n∈N converges for every x ∈ E to a limit, which we will
call f (x).

Thus fn −−−→n→∞ f pointwise.

We will show that the convergence is uniform.

Let ε > 0 be given and choose N ∈ N so that n,m ≥ N implies

|fm(x)− fn(x)| ≤ ε for all n ∈ E .

Fix n and let m → ∞. Thus

|fn(x)− f (x)| ≤ ε

for all n ≥ N and x ∈ E , and we are done.
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Uniform convergence

Uniform convergence of a series

Theorem

fn ⇒
n→∞

f on E ⇐⇒ Mn = sup
x∈E

|fn(x)− f (x)| −−−→n→∞ 0.

Proof. It is an immediate consequence of the definition.

Uniform convergence of a series

We say that the series
∞∑
n=0

fn(x)

converges uniformly on E if the sequence

sn(x) =
n∑

k=0

fk(x) converges uniformly on E .
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Uniform convergence

Theorem

Theorem

Suppose that fn : E → R and |fn(x)| ≤ Mn for all n ∈ N and x ∈ E . Then∑∞
n=0 fn(x) converges uniformly on E if

∞∑
n=0

Mn < ∞.

Proof. Let ε > 0 and
∑m

k=n+1Mk ≤ ε if m, n ≥ N for some N ∈ N. Then

|sm(x)− sn(x)| =

∣∣∣∣∣
m∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

Mk ≤ ε

for all x ∈ E and m, n ≥ N.
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Uniform convergence

Interchange limit theorem

Theorem

Suppose that fn ⇒
n→∞

f on E . Let x be a limit point of E and suppose

that limt→x fn(t) = An. Then (An)n∈N converges and

lim
t→x

f (t) = lim
n→∞

An.

In other words, we may write

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

Proof. Let ε > 0 be given. Since fn ⇒
n→∞

f there is N ∈ N such that

m, n ≥ N implies

|fm(t)− fn(t)| ≤ ε for all t ∈ E . (∗)
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Uniform convergence

Proof

Letting t → x in (*) we see for all n,m ≥ N that

|An − Am| ≤ ε.

Thus (An)n∈N is Cauchy. Hence An −−−→n→∞ A for some A ∈ R. Next

|f (t)− A| ≤ |f (t)− fn(t)|+ |fn(t)− An|+ |An − A|.

We first choose n ∈ N so that |f (t)− fn(t)| ≤ ε
3 for all t ∈ E , and

|An − A| ≤ ε
3 .

For this n ∈ N, we choose an open set V containing x such that

|fn(t)− An| ≤
ε

3

if t ∈ V ∩ E and t ̸= x . Hence

|f (t)− A| ≤ ε

provided that t ∈ V ∩ E and t ̸= x .
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Uniform convergence

Important theorems

Theorem

If fn : E → R is continuous and fn ⇒
n→∞

f on E then f is continuous on E .

Proof. It follows from the previous theorem.

Remark

The converse in the theorem above is not true.

Theorem

Suppose that (fn)n∈N is a sequence of functions differentiable on [a, b] and
such that (fn(x0))n∈N converges for some point x0 ∈ [a, b]. If (f ′n)n∈N
converges uniformly on [a, b] then (fn)n∈N converges uniformly on [a, b] to
a function f and

f ′(x) = lim
n→∞

f ′n(x) for x ∈ [a, b].
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Uniform convergence

Proof 1/2

Proof. Let ε > 0 be given. Choose N ∈ N so that n,m ≥ N implies

|fn(x0)−fm(x0)| <
ε

2
and |f ′n(t)−f ′m(t)| <

ε

2(b − a)
for t ∈ [a, b].

By the mean-value theorem applied to fn − fm we have

|fn(x)− fm(x)− fn(t) + fm(t)| ≤
|x − t|ε
2(b − a)

≤ ε

2
(∗)

for any x , t ∈ [a, b] if m, n ≥ N.
The inequality

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− fn(x0) + fm(x0)|+ |fn(x0)− fm(x0)|

implies that |fn(x)− fm(x)| < ε for all m, n ≥ N and x ∈ [a, b], so
(fn)n∈N converges uniformly on [a, b].
Let

f (x) = lim
n→∞

fn(x), a ≤ x ≤ b.
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Uniform convergence

Proof 2/2

Fix a point x ∈ [a, b] and define

ϕn(t) =
fn(t)− fn(x)

t − x
, ϕ(t) =

f (t)− f (x)

t − x
, t ∈ [a, b], t ̸= x

Then limt→x ϕn(t) = f ′n(x) for all n ∈ N. Inequality (*) also shows

|ϕn(t)− ϕm(t)| ≤
ε

2(b − a)
if n,m ≥ N.

Thus (ϕn)n∈N converges uniformly for x ̸= t. Since fn ⇒
n→∞

f thus

lim
n→∞

ϕn(t) = ϕ(t) for a ≤ x ≤ b, t ̸= x .

By the previous theorem

lim
n→∞

f ′n(x) = lim
n→∞

lim
t→x

ϕn(t) = lim
t→x

lim
n→∞

ϕn(t) = lim
t→x

ϕ(t) = f ′(x).
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Uniform convergence

Continuous nowhere differentiable function

Theorem

There exists a continuous function f : R → R which is nowhere
differentiable.

Proof. Let ϕ(x) = |x | on [−1, 1] and extend the definition of ϕ(x) to all
x ∈ R by setting

ϕ(x) = ϕ(x + 2)

for all x ∈ R. Then

|ϕ(s)− ϕ(t)| ≤ |s − t| for all s, t ∈ R.
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Uniform convergence

Graph of ϕ
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Uniform convergence

Proof 1/2

Define

f (x) =
∞∑
n=0

(
3

4

)n

ϕ(4nx).

Since 0 ≤ ϕ(x) ≤ 1 then the series converges uniformly on R and f is
continuous.

Now fix x ∈ R and m ∈ N and put

δm = ±1

2
4−m,

where the sign is chosen that no integer lies between 4mx and
4m(x + δm). This can be done since 4m|δm| = 1

2 .

Define

γn =
ϕ(4n(x + δm))− ϕ(4nx)

δm
.
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Uniform convergence

Proof 2/2

When n > m then 4nδm is an integer so that γn = 0.

When 0 ≤ n ≤ m, then |γn| ≤ 4n. Since |γm| = 4m we conclude

∣∣∣∣ f (x + δm)− f (x)

δm

∣∣∣∣ =
∣∣∣∣∣

m∑
n=0

(
3

4

)n

γn

∣∣∣∣∣
≥ 3m −

m−1∑
n=0

3n =
1

2
(3m − 1) −−−−→m→∞ ∞

and δm −−−−→m→∞ 0 thus f ′(x) does not exists.
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Uniform convergence

Weierstrass theorem

Weierstrass theorem

Let −∞ < a < b < ∞. Every continuous f : [a, b] → R can be uniformly
approximated by polynomials. In other words, for every continuous
f : [a, b] → R there is a sequence of polynomials (pn(f ))n∈N so that

sup
x∈[a,b]

|pn(f )(x)− f (x)| −−−→n→∞ 0.

Proof. Using a linear transformation

[a, b] ∋ t → s − a

s − b

we can assume that [a, b] = [0, 1]. Fix a continuous f : [0, 1] → R, and set

pn(f )(t) =
n∑

k=0

(
n

k

)
f

(
k

n

)
tk(1− t)n−k for t ∈ [0, 1].
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Uniform convergence

Proof 1/3

We show that pn(f ) ⇒
n→∞

f . Let ε > 0 be given. Since f is uniformly

continuous on [0, 1] so there is δ > 0 so that

|f (t)− f (s)| < ε if |s − t| < δ.

Note that
n∑

k=0

(
n

k

)
tk(1− t)n−k = 1.

Hence

|f (t)− pn(f )(t)| ≤
n∑

k=0

(
n

k

)∣∣∣∣f (t)− f

(
k

n

)∣∣∣∣tk(1− t)n−k .
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Uniform convergence

Proof 2/3

Let M = supx∈[0,1] |f (x)|, and note that

|f (t)− pn(f )(t)| ≤ ε

n∑
k=0

|t−k/n|<δ

(
n

k

)
tk(1− t)n−k

+ 2M
n∑

k=0
|t−k/n|≥δ

(
n

k

)
tk(1− t)n−k

≤ ε+ 2Mδ−2
n∑

k=0

(
n

k

)
(t − k/n)2tk(1− t)n−k .
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Uniform convergence

Proof 3/3

So we have to estimate

2Mδ−2
n∑

k=0

(
n

k

)
(t − k/n)2tk(1− t)n−k .

Then, using the identity

n∑
k=0

(
n

k

)
(t − k/n)2tk(1− t)n−k =

t(1− t)

n

we obtain

2Mδ−2
n∑

k=0

(
n

k

)
(t − k/n)2tk(1− t)n−k ≤ 2Mδ−2

n

and we are done.
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More about power series

Analytic functions

Analytic functions

Functions which can be represented as power series

∞∑
n=0

cnx
n, x ∈ R, (∗)

or more generally
∞∑
n=0

cn(x − a)n, x , a ∈ R, (∗∗)

are called analytic functions.

Remark

If (**) converges for |x − a| < R for some R ∈ (0,∞], f is said to be
expanded in a power series about the point x = a.

As a matter of convenience, we shall often take a = 0 without any
loss of generality and work with (*).
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More about power series

Differentiability of power series

Theorem

Suppose that the series

f (x) =
∞∑
n=0

cnx
n

converges for |x | < R, then it converges uniformly on [−R + ε,R − ε], no
matter which ε > 0 is chosen. Moreover, the function f is continuous and
differentiable in (−R,R), and

f ′(x) =
∞∑
n=1

ncnx
n−1, for |x | < R.

Proof. Let ε > 0 be given. For |x | ≤ R − ε, by the root test, we have
∞∑
n=0

|cnxn| ≤
∞∑
n=0

|cn(R − ε)n| < ∞,
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More about power series

Proof

Thus the sequence

fN(x) =
N∑

n=0

cnx
n

converges absolutely to f (x) on [−R + ε,R − ε].
Note that (fN)N∈N is a sequence of differentiable functions on
(−R,R) that converges to f (x) for any x ∈ (−R,R).
Moreover, (f ′N)N∈N converges uniformly on [−R + ε,R − ε], since∑∞

n=0 cnx
n and

∑∞
n=1 ncnx

n−1 have the same intervals of
convergence as

lim sup
n→∞

n
√

n|cn| = lim sup
n→∞

n
√
|cn|.

Thus

f ′(x) = lim
N→∞

f ′N(x) =
∞∑
n=1

ncnx
n−1

and clearly f is continuous as a differentiable function.
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More about power series

Power series are differentiable infinitaley many times

Corollary

Under the assumption of the previous theorem

f (x) =
∞∑
n=0

cnx
n, for |x | < R

has derivatives of all orders in (−R,R), which are given by

f (k)(x) =
∞∑
n=k

n(n − 1) · . . . · (n − k + 1)cnx
n−k , for |x | < R.

In particular, we have
f (k)(0) = k!ck .

Here f (0) = f and f (k) is the k-th derivative of f for k ∈ N.
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More about power series

Convergence at the endpoint

Theorem
Suppose that the series

s =
∞∑
n=0

cn

converges, and set

f (x) =
∞∑
n=0

cnx
n, for |x | < 1.

Then
lim
x→1

f (x) =
∞∑
n=0

cn.

Proof. We will use the Abel summation formula. Let s−1 = 0 and

sn =
n∑

k=0

ck for n ∈ N ∪ {0}, and s = lim
n→∞

sn.
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More about power series

Proof
Note that

m∑
n=0

cnx
n =

m∑
n=0

(sn − sn−1)x
n = (1− x)

m−1∑
n=0

snx
n + smx

m.

For |x | < 1 if we take m → ∞ we obtain

f (x) = (1− x)
∞∑
n=0

snx
n.

Given ε > 0 we choose N ∈ N such that n > N implies |sn − s| < ε
2 .

Since (1− x)
∑∞

n=0 x
n = 1 we may write

|f (x)− 1| =
∣∣∣(1− x)

∞∑
n=0

(sn − s)xn
∣∣∣ ≤ (1− x)

N∑
n=0

|sn − s||x |n + ε

2
.

If x > 1− δ for a suitably chosen δ > 0 we have

(1− x)
N∑

n=0

|sn − s||x |n <
ε

2
.
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More about power series

Product of converging series

Remark

If
∑∞

n=0 an converges absolutely,
∑∞

n=0 an = A, and
∑∞

n=0 bn = B, and

cn =
n∑

k=0

akbn−k , for n = 0, 1, 2, . . . .

Then
∑∞

k=0 ck = AB.

By the previous theorem this result can be extended as follows:

Theorem

If the series
∑∞

n=0 an = A,
∑∞

n=0 bn = B, and
∑∞

n=0 cn = C , converge and

cn =
n∑

k=0

akbn−k , for n = 0, 1, 2, . . . .

Then AB = C.
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More about power series

Proof

Proof. For 0 ≤ x ≤ 1 we let

f (x) =
∞∑
n=0

anx
n, g(x) =

∞∑
n=0

bnx
n, h(x) =

∞∑
n=0

cnx
n.

If 0 ≤ x < 1 these series converge absolutely, thus by the previous
remark we obtain

f (x) · g(x) = h(x), for 0 ≤ x < 1.

By the previous theorem we may conclude that

lim
x→1

f (x) = A, lim
x→1

g(x) = B, lim
x→1

h(x) = C .

Hence we obtain AB = C .
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More about power series

Uniqueness of the power series expansions

Theorem

Suppose that the series
∑∞

n=0 anx
n and

∑∞
n=0 bnx

n converge in the
segment S = (−R,R). Let

E =
{
x ∈ S :

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n
}
.

If E as a limit point in S, then an = bn for all n ∈ N ∪ {0}, and E = S.

Proof. Put cn = an − bn and let

f (x) =
∞∑
n=0

cnx
n, for x ∈ S .

Then f (x) = 0 on E . We prove that f (x) = 0 on S .
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More about power series

Proof

Let A be the set of all limit points of E in S , and let B consist of all
other points of S . It is clear from the definition of “limit point” that
B is open. Suppose we can prove that A is open.

Then A and B are disjoint open sets. Hence they are separated. Since
S = A ∪ B, and S is connected, one of A and B must be empty. By
hypothesis, A is not empty. Hence B is empty, and A = S . Since f is
continuous in S , A ⊆ E .

Thus E = S , and ck = f (k)(0)
k! = 0 for k ∈ N ∪ {0} which is the

desired conclusion.

Now we have to prove that A is open. If x0 ∈ A, then it is easy to
show that

f (x) =
∞∑
n=0

dn(x − x0)
n, for |x − x0| < R − |x0|.
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More about power series

Proof

We claim that dn = 0 for all n ∈ N ∪ {0}. Otherwise, let k ∈ N ∪ {0}
be the smallest integer such that dk ̸= 0. Then

f (x) = (x − x0)
kg(x), for |x − x0| < R − |x0|, (∗)

where

g(x) =
∞∑

m=0

dn+m(x − x0)
m.

Since g is continuous at x0 and g(x0) = dk ̸= 0, there exists a δ > 0
such that g(x) ̸= 0 if |x − x0| < δ.

It follows from (*) that f (x) ̸= 0 for 0 < |x − x0| < δ. But this
contradicts the fact that x0 ∈ A is a limit point of E , which ensures
by continuity of f that f (x0) = 0.

Thus we have proved that dn = 0 for all n ∈ N ∪ {0}, so f (x) = 0 on
a neighborhood of x0 ∈ A. This show that A is open as desired.
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