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Power series in combinatorics

Fibonacci sequence

Fibonacci sequence

The Fibonacci sequence (fn)n∈N is defined by

f0 = 0, f1 = 1,

fn = fn−1 + fn−2 for n ≥ 2.

Example

f2 = 0 + 1 = 1,

f3 = 1 + 1 = 2,

f4 = 1 + 2 = 3,

f5 = 2 + 3 = 5,

f6 = 8, f7 = 13, f8 = 21.
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Power series in combinatorics

Formula for (fn)n∈N - discussion 1/4

Consider
∞∑
n=0

fnx
n = x +

∞∑
n=2

(fn−1 + fn−2)x
n

= x + x
∞∑
n=2

fn−1x
n−1 + x2

∞∑
n=2

fn−2x
n−2

= (x + x2)
∞∑
n=0

fnx
n + x .

Denoting F (x) =
∑∞

n=0 fnx
n we have

F (x) = x + F (x)(x + x2),

so
F (x) =

x

1− x − x2
.
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Power series in combinatorics

Formula for (fn)n∈N - discussion 2/4

Then
1− x − x2 = −(x + ϕ)(x + ψ),

where

ϕ =
1 +

√
5

2
, ψ =

1−
√
5

2
.

Then

F (x) = − x

(x + ϕ)(x + ψ)
=

A

x + ϕ
+

B

x + ψ
,

which is equivalent to

−x = A(x + ψ) + B(x + ϕ).

Hence

A =
−ϕ√
5
=

1 +
√
5

2
√
5
, B =

ψ√
5
=

1−
√
5

2
√
5
.
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Power series in combinatorics

Formula for (fn)n∈N - discussion 3/4

So

F (x) =
1√
5

(
ψ

x + ψ
− ϕ

x + ϕ

)
.

Recall that for |x | < 1 we have

1

1− x
=

∞∑
n=0

xn.

Therefore
ψ

x + ψ
=

1

1 + x
ψ

=
1

1− xϕ
=

∞∑
n=0

ϕnxn,

ϕ

x + ϕ
=

∞∑
n=0

ψnxn.
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Power series in combinatorics

Formula for (fn)n∈N - discussion 4/4

Finally, we have

∞∑
n=0

fnx
n= F (x)

=
x

1− x − x2
=

1√
5

(
ψ

x + ψ
− ϕ

x + ϕ

)
=

1√
5

( ∞∑
n=0

ϕnxn −
∞∑
n=0

ψnx2

)
=

∞∑
n=0

1√
5
(ϕn − ψn)xn.

Thus the formula for (fn)n∈N is given by

fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.
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Fundamental Theorem of Algebra

Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)

Suppose a0, a1, . . . , an ∈ C and an ̸= 0 with n ∈ N. Let

P(z) =
n∑

k=0

akz
k

then P(z) = 0 for some complex number z ∈ C.

Proof. Without loss of generality, we assume that an = 1 and let

µ = inf
z∈C

|P(z)|.

If |z | = R, then by the triangle inequality we have

|P(z)| ≥
∣∣|anzn| − |an−1z

n−1| − . . .− |a0|
∣∣

= Rn · (1− |an−1|R−1 − . . .− |a0|R−n).

The right-hand side tends to ∞ as R → ∞.
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Fundamental Theorem of Algebra

Proof

Hence, by the definition of divergence, there is R0 > 0 such that

|P(z)| > µ if |z | > R0.

Since |P| is continuous on the closed circle with center 0 and radius
R0, it attains its minimum value at some z0 ∈ C so that |z0| ≤ R0.

We claim that µ = 0. If not, set Q(z) = P(z+z0)
P(z0)

then Q is a

nonconstant polynomial with Q(0) = 1 and

|Q(z)| ≥ 1 for all z ∈ C.

There is a smallest integer 1 ≤ k ≤ n such that

Q(z) = 1 + bkz
k + . . .+ bnz

n, bk ̸= 0.

Then there is θ ∈ R such that

e ikθbk = −|bk |.
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Fundamental Theorem of Algebra

Proof

If r > 0 and rk |bk | < 1, then the equation above implies that

|1 + bk r
ke ikθ| = |1− rk |bk || = 1− rk |bk |,

so that

|Q(re iθ)| ≤ 1− rk{|bk | − r |bk+1| − . . .− rn−1|bn|}.

For sufficiently small r the expression above in braces is positive.
Hence

|Q(re iθ)| < 1.

Thus µ = 0 and P(z0) = 0.
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Stirling’s formula

Stirling’s formula

Theorem

For n ∈ N, we have

n! =
√
2πnn+1/2e−nern ,

where rn satisfies the double inequality

1

12n + 1
< rn <

1

12n
.

The usual textbook proofs replace the first inequality above by the weaker
inequality

rn > 0,

or

rn >
1

12n + 6
.
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Stirling’s formula

Proof

Proof. Let

Sn = log(n!) =
n−1∑
p=1

log(p + 1)

and write

log(p + 1) = Ap + bp − εp,

where

Ap =

∫ p+1

p
log x dx ,

bp = [log(p + 1)− log p]/2,

εp =

∫ p+1

p
log x dx − [log(p + 1) + log p]/2.
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Stirling’s formula

Proof

The partition of log(p + 1), regarded as the area of a rectangle with base
(p, p + 1) and height log(p + 1), into a curvilinear area, a triangle, and a
small sliver is suggested by the geometry of the curve y = log x . Then

Sn =
n−1∑
p=1

(Ap + bp − εp) =

∫ n

1
log x dx +

1

2
log n −

n−1∑
p=1

εp.

Since
∫
log x dx = x log x − x we can write

Sn = (n + 1/2) log n − n + 1−
n−1∑
p=1

εp,

where

εp =
2p + 1

2
log
(p + 1

p

)
− 1.
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Stirling’s formula

Proof

Using the well known series expansions

log
(1 + x

1− x

)
= 2

∞∑
k=0

x2k+1

2k + 1

valid for |x | < 1, and setting x = (2p + 1)−1, so that
(1 + x)/(1− x) = (p + 1)/p, we find that

εp =
∞∑
k=0

1

(2k + 3)(2p + 1)2k+2
.

We can therefore bound εp above:

εp <
1

3(2p + 1)2

∞∑
k=0

1

(2p + 1)2k
=

1

12

(1
p
− 1

p + 1

)
,
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Stirling’s formula

Proof

Similarly, we bound εp below:

εp >
1

3(2p + 1)2

∞∑
k=0

1

[3(2p + 1)2]k
=

1

3(2p + 1)2
1

1− 1
3(2p+1)2

>
1

12

( 1

p + 1/12
− 1

p + 1 + 1/12

)
.

Now define

B =
∞∑
p=1

εp, rn =
∞∑
p=n

εp,

where from the lower and upper bound for εp we have

1/13 < B < 1/12.
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Stirling’s formula

Then we can write

Sn = (n + 1/2) log n − n + 1−
n−1∑
p=1

εp

= (n + 1/2) log n − n + 1− B + rn,

or, setting C = e1−B , as

n! = Cnn+1/2e−nern ,

where rn satisfies
1/(12n + 1) < rn < 1/(12n).

The constant C , lies between e11/12 and e12/13, may be shown to have the
value

√
2π. This completes the proof.
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Equidistribution theory

Equidistributed sequences

Definition

A sequence (ak)k∈N∪{0} ⊆ [0, 1] is called equidistributed if for any real
numbers a, b with 0 ≤ a < b ≤ 1 one has

lim
N→∞

#{k ∈ [0,N) ∩ Z : ak ∈ [a, b]}
N

= b − a.
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Equidistribution theory

Weyl’s equidistribution theorem

Theorem

The following statements are equivalent:

(a) The sequence (ak)k∈N∪{0} ⊆ [0, 1] is equidistributed.

(b) For every m ∈ Z \ {0} we have

lim
N→∞

1

N

N−1∑
k=0

e2πimak = 0.

(c) For every continuous function f ∈ C ([0, 1],C) we have that

lim
N→∞

1

N

N−1∑
k=0

f (ak) =

∫ 1

0
f (x)dx .
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Equidistribution theory

Proof

We first prove the equivalence of (a) and (c). Assume that (c) holds, and
fix 0 ≤ a < b ≤ 1. Given a sufficiently small ε > 0, we define continuous
functions f −, f + : [0, 1] → [0, 1] that approximate the indicator function
1[a,b] by

f +(x) =


1 if a ≤ x ≤ b;

ε−1(x − (a− ε)) if max{0, a− ε} ≤ x < a;

ε−1((b + ε)− x) if b < x ≤ max{b + ε, 1};
0 otherwise,

and

f −(x) =


1 if a+ ε ≤ x ≤ b − ε;

ε−1(x − a) if a ≤ x < a+ ε;

ε−1(b − x) if b − ε < x ≤ b;

0 otherwise.
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Equidistribution theory

Proof

Notice that f −(x) ≤ 1[a,b](x) ≤ f +(x) for all x ∈ [0, 1], and∫ 1

0
(f +(x)− f −(x))dx ≤ 2ε.

It follows that

1

N

N−1∑
k=0

f −(ak) ≤
1

N

N−1∑
k=0

1[a,b](ak) ≤
1

N

N−1∑
k=0

f +(ak).

By (c) we have

b − a− 2ε ≤
∫ 1

0
f −(x)dx ≤ lim inf

N→∞

1

N

N−1∑
k=0

1[a,b](ak)

≤ lim sup
N→∞

1

N

N−1∑
k=0

1[a,b](ak) ≤
∫ 1

0
f +(x)dx ≤ b − a+ 2ε.
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Equidistribution theory

Proof

Thus (a) is proved, since

lim inf
N→∞

1

N

N−1∑
k=0

1[a,b](ak) = lim sup
N→∞

1

N

N−1∑
k=0

1[a,b](ak) = b − a.

Assume that (a) holds. Given a continuous function f on [0, 1] and given
ε > 0, we find a step function, i.e.

g =
m∑
j=1

cj1Ij ,

such that ∥f − g∥∞ < ε/3, where cj ∈ C and Ij ⊆ [0, 1] are intervals.
Since g is a finite linear combination of indicator functions, there is an
N0 ∈ N such that for N ≥ N0 we have∣∣∣ 1

N

N−1∑
k=0

g(ak)−
∫ 1

0
g(x)dx

∣∣∣ < ε/3.
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Equidistribution theory

Proof

Since ∣∣∣ ∫ 1

0
f (x)dx −

∫ 1

0
g(x)dx

∣∣∣ ≤ ∥f − g∥∞ < ε/3

and ∣∣∣ 1
N

N−1∑
k=0

g(ak)−
1

N

N−1∑
k=0

f (ak)
∣∣∣ ≤ ∥f − g∥∞ < ε/3,

it follows that for N ≥ N0 we have

∣∣∣ 1
N

N−1∑
k=0

f (ak)−
∫ 1

0
f (x)dx

∣∣∣ < ε,

thus (c) holds.
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Equidistribution theory

Proof

We now prove the equivalence of (b) and (c). In one direction this is
clear. To see that (b) implies (c) we fix a continuous function f on [0, 1].
Then for a given ε > 0 by Weierstrass theorem we pick a trigonometric
polynomial p such that ∥f − p∥∞ < ε/3. Since

p(x) =
M∑

m=−M

cme
2πimx

for some M ∈ N and cm ∈ C, then by (b) we have

lim
N→∞

1

N

N−1∑
k=0

p(ak) = c0 =

∫ 1

0
p(x)dx .

Hence a 3-epsilon argument completes the proof, as we have∣∣∣ 1
N

N−1∑
k=0

f (ak)−
∫ 1

0
f (x)dx

∣∣∣ < ε.
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Equidistribution theory

Example

Example

The sequence ({k
√
2})k∈N∪{0} is equidistributed on [0, 1].

We check this by verifying condition (b) of the previous theorem.
Indeed if m ∈ Z \ {0} then

lim
N→∞

1

N

N−1∑
k=0

e2πim(k
√
2−⌊k

√
2⌋) = lim

N→∞

1

N

e2πiNm
√
2 − 1

e2πim
√
2 − 1

= 0,

since m
√
2 ∈ R \Q thus the denominator never vanishes.

Naturally, the same conclusion is valid for any other irrational number
α ∈ R \Q in place of

√
2.
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Equidistribution theory

Gelfand’s problem

We will consider the sequence of the first digits of powers of 2. Namely,
for m ∈ N let

dm = first digit of 2m.

For instance we have d1 = 2, d2 = 4, d3 = 8, d4 = 1, d5 = 3, . . .. Here is
a list of the first 20 powers of 2:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,

16384, 32768, 65536, 131072, 262144, 524288, 1048576.

The sequence of the first digits of the first 40 powers of 2 is:

2, 4, 8, 1, 3, 6, 1, 2, 5, 1,

2, 4, 8, 1, 3, 6, 1, 2, 5, 1,

2, 4, 8, 1, 3, 6, 1, 2, 5, 1,

2, 4, 8, 1, 3, 6, 1, 2, 5, 1.
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Equidistribution theory

Gelfand’s problem

Gelfand’s problem

Do we ever see 7 or 9? Gelfand’s question asks: how often do we see
a power of 2 that starts with 7, and with what frequency?

Surprisingly, we will show here that there are infinitely many m ∈ N
such that 2m starts with 7 and we even find their frequency.

The existence of this frequency will follow from the uniform
distribution of multiples of an irrational number modulo 1.

The crucial observation is that the first digit of 2m is equal to k if and
only if there is a nonnegative integer s such that

k10s ≤ 2m < (k + 1)10s .
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Equidistribution theory

Gelfand’s problem

Taking logarithms with base 10 we obtain

s + log10 k ≤ m log10 2 < s + log10(k + 1),

but since 0 ≤ log10 k and log10(k + 1) ≤ 1, taking fractional parts we
obtain that

s = ⌊m log10 2⌋

and that

log10 k ≤ m log10 2− ⌊m log10 2⌋ < log10(k + 1). (∗)

Since the number log10 2 is irrational, it follows that the sequence
({m log10 2})m∈N is dense in [0, 1].

Therefore, there are infinitely many m ∈ N such that (*) holds.
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Equidistribution theory

Gelfand’s problem

We recall that for m ∈ N we consider

dm = first digit of 2m.

Fix an integer 1 ≤ k ≤ 9. We will find the frequency in which k
appears as a first digit of 2m, precisely, we would like to find

lim
N→∞

#{m ∈ {1, . . . ,N} : dm = k}
N

.

As we mentioned above it is essential that the first digit of 2m is
equal to k if and only if there is a nonnegative integer s such that

k10s ≤ 2m < (k + 1)10s .

Taking logarithms with base 10 we obtain

s + log10 k ≤ m log10 2 < s + log10(k + 1).
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Equidistribution theory

Gelfand’s problem

Since 0 ≤ log10 k and log10(k + 1) ≤ 1, taking fractional parts we
obtain that

s = ⌊m log10 2⌋
and that

log10 k ≤ m log10 2− ⌊m log10 2⌋ < log10(k + 1).

Since the number log10 2 is irrational, the sequence({
m log10 2

})
m∈N

is equidistributed in [0, 1]. Using (c) from the previous theorem with
[a, b] = [log10 k , log10(k + 1)] we obtain that

lim
N→∞

#{m ∈ {1, . . . ,N} : dm = k}
N

= log10(k + 1)− log10 k

= log10(1 + 1/k).
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Equidistribution theory

Gelfand’s problem

This gives the frequency in which k appears as first digit of 2m.
Notice that

9∑
k=1

log10(1 + 1/k) = 1,

as expected.

Moreover, the digit with the highest frequency that appears as the
first digit in the decimal expansion of the sequence (2m)m∈N is 1,
while the one with the lowest frequency is 9.
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Transcendence of the Euler’s number

Transcendence of the Euler’s number

Definition

A real number is called algebraic if it is a root of a polynomial with
integer coefficients. Otherwise a real number is called transcendental.

Remark

Squaring the circle is a problem proposed by ancient geometers. It was the
challenge of constructing a square with the same area as a given circle by
using only a finite number of steps with compass and straightedge. In
1882, the task was proven to be impossible, as a consequence of the
Lindemann–Weierstrass theorem which proves that π is a transcendental,
rather than an algebraic irrational number. It had been known for some
decades before then that the construction would be impossible if π were
transcendental, but π was not proven transcendental until 1882. A bit
simpler is to show that e is transcendental.
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Transcendence of the Euler’s number

Hermite’s theorem

Theorem (Hermite’s theorem)

The number

e =
∑
k≥0

1

k!

is transcendental.

Proof. If e were an algebraic number, then we could find a polynomial P
with rational coefficients such that

P(x) = anx
n + . . .+ a1x + a0

satisfying P(e) = 0. For every prime number p ∈ P satisfying p > n and
p > |a0| we define an auxiliary polynomial by setting

fp(x) =
xp−1

(p − 1)!

n∏
k=1

(k − x)p.
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Transcendence of the Euler’s number

Proof

We also set

Fp(x) = fp(x) +
M∑
j=1

f
(j)
p (x),

where M = (n + 1)p − 1 is the degree of the polynomial fp. Since

f
(M+1)
p (x) = 0 we obtain

Fp(x)− F ′
p(x) = fp(x),

and consequently(
e−xFp(x)

)′
= −e−xFp(x) + e−xF ′

p(x) = −e−x fp(x).

By the mean-value theorem we get

e−xFp(x)− Fp(0) = −xe−θxx fp(θxx)

for some θx ∈ [0, 1]. Thus

Fp(x)− exFp(0) = −xe(1−θx )x fp(θxx).
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Transcendence of the Euler’s number

Proof

If x is fixed and p → ∞, then

lim
p→∞

(
Fp(x)− exFp(0)

)
= 0,

since for every y ∈ R we have limn→∞
yn

n! = 0. We also obtain

lim
p→∞

n∑
k=0

akFp(k) = lim
p→∞

( n∑
k=0

akFp(k)− Fp(0)
n∑

k=0

ake
k

)
= 0. (∗)

Since j! divides all coefficients of j-th derivative of an arbitrary polynomial
we obtain for a suitable polynomials Pj with integer coefficients that

f
(j)
p (x) =

j!

(p − 1)!
Pj(x).

Hence we have

Fp(0) =
M∑

j=p−1

f
(j)
p (0) =

1

(p − 1)!

M∑
j=p−1

j!Pj(0) ≡ Pp−1(0)(modp),
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Transcendence of the Euler’s number

Proof

since fp(0) = f ′p(0) = . . . = f
(p−2)
p (0) = 0 and all 1

(p−1)!

∑M
j=p j!Pj(0) ∈ Z

and are divisible by p. Similarly, for f
(i)
p (k) = 0 for i ∈ {1, . . . , p − 1} and

k ∈ {1, . . . , n}, thus

Fp(k) =
M∑
j=p

f
(j)
p (k) =

1

(p − 1)!

M∑
j=p

j!Pj(k) ≡ 0(modp).

Finally,

n∑
k=0

akFp(k) ≡ a0Fp(0) ≡ a0Pp−1(0) ≡ a0(n!)
p ̸≡ 0(modp).

This contradicts with (*), since a sequence of integers that converges to 0
must be constant for all but finitely many terms. This completes the proof
of theorem.
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