Lecture 24

Applications of calculus: Fundamental theorem of algebra,
Stirling's formula, Equidistribution theorem of Weyl,
Transcendence of the Euler’'s number
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Fibonacci sequence

Fibonacci sequence

The Fibonacci sequence (f,),cn is defined by
fo=0, A=1,

fop=fo1+Ffo for n>2.

Example
h=0+1=1,
=1+1=2,
fp=1+2=3,
fs=2+3=05,

fo=8, f;=13, f3=21.
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Power series in combinatorics

Formula for (f,),en - discussion 1/4

o Consider

fo —x+Z 1+ fra)x
o0
=X+ x Z fro1x" 1 4 x? Z fr_ox"2
n=2 n=2

o0
= (X—G—XZ)Z fax" + x.
n=0

@ Denoting F(x) = >, fx" we have
Fx) = x+ F()(x+ %),

SO
X

F(x) =

1—x—x2°
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Power series in combinatorics

Formula for (f,),en - discussion 2/4

@ Then
1—x—x*=—(x+¢)(x +v),
where /B Y
1++5 1—-+5
b= Y=
@ Then
X A B

F(x)=—

which is equivalent to

+d)x+d) xto  xto

—x = A(x +¢) + B(x + ¢).

@ Hence
A_;¢_1+\/§ B_i_l_\/g
Ve 2v5 ] Vs 2vE
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Power series in combinatorics

Formula for (f,),en - discussion 3/4

e So

=5 (ci5 xve)

@ Recall that for |x| < 1 we have

1 =
l—x_;)x'
@ Therefore
1 1 >
/IIZ) e X: :Z(bnxnu
X+ 1+ 7 1—x¢ prd
R Y
x—l—cbnz:%wx'
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Power series in combinatorics

Formula for (f,),en - discussion 4/4

o Finally, we have

i fax"= F(x)
n=0

_ X _1< v 9 >
Cl-x—x2 5 \x+ +o

X

1 - n_n - n . 1 n n n
:\/§<n§_%¢x _§¢ X2>:Z5( —P7)x".

n=0

@ Thus the formula for (f,),en is given by

e <<1+2¢5>” (12@”)'
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Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)
Suppose ag, a1, ...,an € C and a, # 0 with n € N. Let

P(z) = Z azk
k=0

then P(z) = 0 for some complex number z € C.

Proof. Without loss of generality, we assume that a, = 1 and let
= inf |P(2)|.
p= inf [P(2)]

If |z| = R, then by the triangle inequality we have

IP(2)| 2 |lanz"] — lan-12"""| — ... — |aol|
=R"(1—lan1|R7*—...—|ao|]R™").
The right-hand side tends to oo as R — o0.
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Proof

@ Hence, by the definition of divergence, there is Ry > 0 such that
|P(z)] >p if |z| > Ro.

@ Since |P| is continuous on the closed circle with center 0 and radius
Ro, it attains its minimum value at some zy € C so that |z| < Ry.

e We claim that = 0. If not, set Q(z) = M then Q is a
nonconstant polynomial with Q(0) =1 and

|Q(z)| >1 forall zeC.
@ There is a smallest integer 1 < k < n such that
Q(z) =14 b z" + ... + byz", by # 0.
@ Then there is 6 € R such that
e by = —|by|.
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Proof

o If r > 0 and r¥|b,| < 1, then the equation above implies that

11+ berke®®| = |1 — r¥|by|| = 1 — r¥|by|,

so that
1Q(re™)| < 1= r*{Ibk| — rlbgsa| = ... = r"H|by[}.
@ For sufficiently small r the expression above in braces is positive.
Hence _
1Q(re’)| < 1.
Thus =0 and P(z) = 0. O
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Stirling’s formula

Stirling’s formula

Theorem

For n € N, we have

nl = \2rn"t1/2e= e

where r, satisfies the double inequality

1
on+1 - 12n

The usual textbook proofs replace the first inequality above by the weaker
inequality

rp, >0,
or

1
" Tont6
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Stirling’s formula

Proof
Proof. Let
S, = log(n!) ZIOgP+1
and write
log(p+1)=A,+ b, —¢p
where

p+1
Ap = / log x dx,
P

bp = [log(p + 1) — log p]/2,

p+1
/ log x dx — [log(p + 1) + log p]/2.
P
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Stirling’s formula

Proof

The partition of log(p + 1), regarded as the area of a rectangle with base
(p, p+ 1) and height log(p + 1), into a curvilinear area, a triangle, and a
small sliver is suggested by the geometry of the curve y = log x. Then

n—1 n o1
1
Sp = Zl(Ap-l-bp—Ep) 2/1 Iogxdx+§|ogn_ Elgp_
p= -

Since [ logx dx = xlogx — x we can write

n—1
Sp=(n+1/2)logn—n+1 —Zep,
p=1
where

2p+1 p+1
Ep: 5 |0g(7)—1

Lecture 24 November 24, 2025 12/34



Proof

Using the well known series expansions

s (173) =22 3¢

k=0

2k+1

valid for |x| < 1, and setting x = (2p + 1)1, so that
(14+x)/(1 —x)=(p+1)/p, we find that

o0

1

€p = (2k + 3)(2p + 1)2k+2°

k=0

We can therefore bound ¢, above:

_ 1 i 1 1 ( 11 )
P 3(2p41)2 — (2p+ 12k 12\p p+1/)’
Lecture 24 November 24, 2025

13/34



Proof

Similarly, we bound ¢, below:

- 1 i 1 1 1
E p—
PT32p 12 & BRp T 32p+ 1P 1 - ks
1 1 1
" \pr p+1+1/12)'

Now define

[e.e] o0
B = g €p, rm = E €p,
p=1 p=n

where from the lower and upper bound for ¢, we have

1/13 < B < 1/12.
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Stirling’s formula

Then we can write

n—1

Sn:(n—|—1/2)|ogn—n—|—1—25p
p=1

=(n+1/2)logn—n+1— B+ rp,
or, setting C = e~ B, as

nl = Cn"t/2e e,

where r, satisfies
1/(12n+1) < r, < 1/(12n).

The constant C, lies between e'1/12 and e'2/13, may be shown to have the
value v27. This completes the proof. O
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Equidistribution theory

Equidistributed sequences

Definition

A sequence (ax)kenugoy € [0,1] is called equidistributed if for any real
numbers a, b with 0 < a < b <1 one has

i #{k € [0,N)NZ: ax € [a, b]} _

b—a.
N—o0 N
<
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Equidistribution theory

Weyl's equidistribution theorem

Theorem
The following statements are equivalent:

(a) The sequence (ak)kenuio} < [0, 1] is equidistributed.
(b) For every m € Z\ {0} we have

=

lim = 3 e2rimak
N—oo N
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Proof

We first prove the equivalence of (a) and (¢). Assume that (c) holds, and
fix 0 < a < b < 1. Given a sufficiently small £ > 0, we define continuous
functions £, f* : [0,1] — [0, 1] that approximate the indicator function
L(a,p) by

1 if a<x<p;
FH(x) = el x—(a—¢)) if max{0,a—e}<x<a;
e Y (b+e)—x) if b<x<max{b+e,1};
0 otherwise,
and
fate<x<b-eg
F(x) = “x—a) ifa<x<a+tg

1

€

el (b—x) ifb—e<x<b;
0 otherwise.
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Proof

Notice that f~(x) < 1y, 5(x) < f(x) for all x € [0,1], and

/1(f+(x) — 7 (x))dx < 2¢.
0

It follows that

Zf (ak)<7z]l[ab] ak SNZ +(ak).

k=0

Z

By (c) we have

1
b—a—25§/ f(x )dx<I|m|nf—Z]l[ab] ak)
0

N—oo

N-1
1
< limsup N Z 1p,pp(ak) < /0 fr(x)dx < b—a+2e.
k=0

N—oo
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Proof

Thus (a) is proved since

lim mf— Z 1, p)(ak) = I|msup— Z 1psp(ak) = b—a.

N—oo

Assume that (a) hoIds. Given a continuous functlon f on [0,1] and given
g > 0, we find a step function, i.e.

g = ZCJ]IM

such that ||f — g|loc < €/3, where ¢j € C and /; C [0, 1] are intervals.
Since g is a finite linear combination of indicator functions, there is an
No € N such that for N > Ny we have

1

‘Ib,:z_:lg(ak)—/o g(x)dx‘ <¢/3.
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Equidistribution theory

Proof
Since
1 1
[ o= [ ea < I - gl < /3
0 0
and
1 N—-1 1 N-1
5 el@) =5 - @] < IIf — gl < /3,
k=0 k=0

it follows that for N > Ny we have

1 N-1 1
BT )—/ F)dx| < e,
‘N kz_% S A ‘

thus (¢) holds.
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Proof

We now prove the equivalence of (b) and (¢). In one direction this is
clear. To see that (b) implies (c¢) we fix a continuous function f on [0, 1].
Then for a given € > 0 by Weierstrass theorem we pick a trigonometric
polynomial p such that ||f — p|lo < &/3. Since

M .
p(X) _ Z Cme27r/mx
m=—M

for some M € N and ¢, € C, then by (b) we have
N—-1

1
tim 3 p(a) = co = /0 p(x) .

k=0
Hence a 3-epsilon argument completes the proof, as we have

1 N-1 1
— f - f(x)d .
‘N ; (ak) /0 (x) X’ <e O
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Equidistribution theory

Example

Example

@ The sequence ({k\@})keNu{o} is equidistributed on [0, 1].

@ We check this by verifying condition (b) of the previous theorem.

Indeed if m € Z \ {0} then

=2

-1 ' 2miNmv2
1 e27r/m(kﬁ—Lk\/§J) = |lim leil = O’

[im
‘ N—oo N g2rimv2 _ 1

N—oo N

x>
I

since my/2 € R\ Q thus the denominator never vanishes.

o Naturally, the same conclusion is valid for any other irrational number

aceR\Qin placeofﬂ.
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Gelfand's problem

We will consider the sequence of the first digits of powers of 2. Namely,
for m € N let

dm = first digit of 2.
For instance we have di =2, do =4, d3 =8, dy =1, ds =3,.... Hereis
a list of the first 20 powers of 2:
2,4,8,16,32,64,128,256,512,1024, 2048, 4096, 8192,
16384,32768, 65536, 131072, 262144, 524288, 1048576.

The sequence of the first digits of the first 40 powers of 2 is:

2,4,8,1,3,6,1,2,5 1,
2,4,8,1,3,6,1,2,5,1,
2,4,8,1,3,6,1,2,51,
2,4,8,1,3,6,1,2,5 1.

(MATH 411H, FALL 2025) Lecture 24 November 24, 2025 24 /34



Gelfand's problem

Gelfand's problem
@ Do we ever see 7 or 97 Gelfand’s question asks: how often do we see
a power of 2 that starts with 7, and with what frequency?
@ Surprisingly, we will show here that there are infinitely many m € N
such that 2" starts with 7 and we even find their frequency.

@ The existence of this frequency will follow from the uniform
distribution of multiples of an irrational number modulo 1.

@ The crucial observation is that the first digit of 2™ is equal to k if and
only if there is a nonnegative integer s such that

k10° < 2™ < (k + 1)10°.
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Gelfand's problem

@ Taking logarithms with base 10 we obtain
s+ logyg k < mlogyg2 < s+ logyo(k + 1),

but since 0 < log;q k and logq(k + 1) < 1, taking fractional parts we
obtain that
s = |mlogyg 2]

and that
logyg k < mlogyp2 — [mlogyo 2| < logio(k+1). (%)

@ Since the number log;o 2 is irrational, it follows that the sequence
({mlogyg2})men is dense in [0, 1].
@ Therefore, there are infinitely many m € N such that (*) holds.
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Gelfand's problem

@ We recall that for m € N we consider
dm = first digit of 2.

o Fix an integer 1 < k < 9. We will find the frequency in which k
appears as a first digit of 2™, precisely, we would like to find

im #{mG{l,...,N}:dm:k}.
N—oco N

@ As we mentioned above it is essential that the first digit of 2™ is
equal to k if and only if there is a nonnegative integer s such that

k10° < 2™ < (k 4+ 1)10°.
o Taking logarithms with base 10 we obtain
s+ logigk < mlog;p2 < s+ logyg(k + 1).
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Gelfand's problem

@ Since 0 < logyq k and log;o(k + 1) < 1, taking fractional parts we
obtain that

s = [mlogyg 2]
and that
logig k < mlogig2 — [mlogyp2] < logio(k + 1).

@ Since the number logq 2 is irrational, the sequence

({m logyg 2})mEN

is equidistributed in [0,1]. Using (c) from the previous theorem with
[a, b] = [logyg k, log1(k + 1)] we obtain that

i #{me{l,...,N}:dn, =k}
N—oco N

= logyg(k + 1) — logyg k
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Gelfand's problem

@ This gives the frequency in which k appears as first digit of 2.

Notice that o

Z logyo(1 +1/k) =1,

k=1
as expected.

@ Moreover, the digit with the highest frequency that appears as the
first digit in the decimal expansion of the sequence (2™)men is 1,
while the one with the lowest frequency is 9.
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Transcendence of the Euler’s number

Transcendence of the Euler's number

Definition
A real number is called algebraic if it is a root of a polynomial with
integer coefficients. Otherwise a real number is called transcendental.

Remark

Squaring the circle is a problem proposed by ancient geometers. It was the
challenge of constructing a square with the same area as a given circle by
using only a finite number of steps with compass and straightedge. In
1882, the task was proven to be impossible, as a consequence of the
Lindemann—Weierstrass theorem which proves that 7 is a transcendental,
rather than an algebraic irrational number. It had been known for some
decades before then that the construction would be impossible if 7= were
transcendental, but m was not proven transcendental until 1882. A bit
simpler is to show that e is transcendental.
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Transcendence of the Euler’s number

Hermite's theorem

Theorem (Hermite's theorem)

The number )
S
k>0

is transcendental.

Proof. If e were an algebraic number, then we could find a polynomial P
with rational coefficients such that

P(x) =apx"+ ...+ a1x+ a0

satisfying P(e) = 0. For every prime number p € P satisfying p > n and
p > |ao| we define an auxiliary polynomial by setting

fo(x) = _1|H — x)P.
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Proof
We also set
M .
Folx) = o) + 3 (),
j=1
where M = (n+ 1)p — 1 is the degree of the polynomial f,. Since
fp(MH)(x) = 0 we obtain
Fp(x) = Fy(x) = fo(x),
and consequently
(67 Fp(x)) = —e *Fp(x) + e *Fp(x) = —e *fy(x).

By the mean-value theorem we get

e XFy(x) — Fp(0) = —xe £, (0,x)
for some 6, € [0,1]. Thus

Fp(x) — € Fp(0) = —xe1=%)%£,(6,x).
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Proof
If x is fixed and p — oo, then

lim (Fp(x) — €“Fp(0)) =0,

p—>00

since for every y € R we have lim,_, yn—T = 0. We also obtain

lim > akFp(k) = lim (Zaka(k)—Fp(O)Zakek> =0. (%
P =0 P Nso k=0

Since j! divides all coefficients of j-th derivative of an arbitrary polynomial
we obtain for a suitable polynomials P; with integer coefficients that

Wy 4 o
fy)(x) = (p_l)!PJ(X)-

Hence we have

M
_ E: Wiy —
FP(O) _j:pil fP (0) - (P . 1)|
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Transcendence of the Euler’s number

Proof
since £,(0) = £3(0) = ... = 1" 2(0) =0 and all 15 TN j1P(0) € Z
and are divisible by p. Similarly, for fp( )(k) =0 for ie{l,...,p—1} and
k € {1,...,n}, thus
M .
Fo(k) =Y 5)(k) = = 0(modp).
Jj=p
Finally,

Z akFp(k) = aoFp(0) = agPp—1(0) = ag(n!)P # 0(modp).

This contradicts with (*), since a sequence of integers that converges to 0

must be constant for all but finitely many terms. This completes the proof
of theorem. O
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