Lecture 2

Three important principles and their consequences

MATH 411H, FALL 2025

September 8, 2025
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Well ordered sets

Well ordered set

If (X, <) is linearly ordered, i.e. for every x,y € X either x < y or y < x,
and every non-empty subset of X has a minimal (= smallest) element,
which is necessarily unique, X is said to be well ordered by <; and < is
called well ordering on X.

Examples

o (Np, <) is well ordered in contrast to (Z, <) which is not well ordered.

v

Example 1
If A= {21,43,65}, then the smallest element is 21.

Example 2
If A= {2n:n € Np}, then the smallest element is 0.

v
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The principle of induction

Well ordering principle and induction principle

Well ordering principle (or minimum principle)

If Ais a non-empty subset of non-negative integers N, then A contains
the smallest number.

The principle of induction
If Ais a set of non-negative integers such that

@ (Basestep): 0€ A

@ (Induction step): Whenever A contains a number n, it also contains
the number n + 1.

Then A = No.

Vacw, (0 € A and Veen(k € A= (k + 1) € A) then A = Np)
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The principle of induction

The maximum principle

Subset bounded from above

We say that A C Ny is bounded from above if there is M € Ny such that
a< M forall ae€ A.

El/\/IENO va€A a< M

The maximum principle

A non-empty subset of Ny, which is bounded from above contains the
greatest number.
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The principle of induction

Induction principle: classical example

Exercise

Prove that for all n € Ny we have
- 1
Z k — M (1)
2
k=0
Solution. Let A be the set of n for which (1) holds.

A:{neNo:zn:k:n(n;D}
k=0

Our goal is to show that A = Ny. We will use the induction principle.
We have to check the base step and the induction step.
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The principle of induction

Solution

o We verify (base step): 0 € A. Indeed, one has

0

1
S k= 0;) thus 0c A
k=0

o We verify (induction step): n€ A== n+1¢€ A. If n € A, then

Zk_ n+1

Our goal is to prove that n+ 1 € A. We calculate
n+1

(n+1) _(n+1)(n+2)
Zk—Zk-i- n+1) S+ =
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Three principles

Well ordering principle (A)

If Ais a non-empty subset of non-negative integers Ny, then A contains
the smallest number.

The principle of induction (B)
If Ais a subset of non-negative integers Np such that
@ (Base step): 0 € A,

@ (Induction step): Whenever A contains a number n, it also contains
the number n 4 1.

Then A = Np.

The maximum principle (C)

A non-empty subset of Ny, which is bounded from above contains the
greatest number.

(MATH 411H, FALL 2025) Lecture 2 September 8, 2025 7/26



Our goal

Our goal is to prove that the statements (A), (B), and (C) are equivalent.
In order to prove that, we will show:

0 (A)= (B)
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o If Ais a set of non-negative integers such that

@ 0e€A.
@ Whenever A contains a number n, it also contains n + 1.

@ We want to establish A = Np.

@ Suppose for contradiction that A # Ny. Then Ng \ A # (). By well
ordering principle (A) there is the smallest element m of Ny \ A.

@ Since 0 € A, we have m #£ 0,

@ Observe that m — 1 € A, because otherwise m — 1 € Ny \ A, which
contradicts the fact that m is the smallest element of Np \ A. But if
m —1 € A, then by (2) we have m € A, which is impossible.

@ The implication (A) = (B) follows. O
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Let AC No =1{0,1,2,...} such that A # (). Suppose for contradiction
that A does not have a least element.
@ It is easy to see that 0 ¢ A, because otherwise it would be a minimal
element of A (as 0 is the minimal element of Np).

@ We also see 1 ¢ A, otherwise it is a minimal element of A.

@ We continue and assume that 1,2,... ., n & A. Then n+ 1 & A,
otherwise n + 1 is the smallest element of A.

Now use the principle of induction and conclude that A = ().
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@ Suppose that A # () and bounded.

<
3 MeNy V aeA a<M

there exists for all

@ This means that M — a > 0 for all a € A. Let us consider the set
B={M—-a: acA}#0.

@ By the well ordering principle (A) there is b € A such that M — b is
the smallest element of B.

@ Thus
M—-—b< M-—a

for all a € A, equivalently a < b for all a € A. O
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(C) = (A)
@ Let AC Ny, A# (. We show that A has a minimal element. Let
B={neNy: n<aforeveryac A} ={neNy: Vac An<a}

@ The set B is bounded and 0 € B since 0 < n for any n € Ng. Thus,
by the maximum principle (C) we are able to find by € B such that by
is maximal in B. We see

YVac A Vbe B b<by<a.

@ The proof will be completed if we show by € A.
@ Assume for contradiction by % a and by < a for all a € A. Thus
by < a for all a € A. Hence

b0+1§a

for any a € A. Then by + 1 € B, but by is the maximal element of B,
which gives contradiction. O
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Three equivalent statements

Induction: example

Example

Prove that 6 divides the number 77 — 1 for all n € Ny.

Solution. Let A be the set of n for which 6 divides 7" — 1.
A={ne Ny : 6 divides 7" — 1}
Our goal is to show A = Ny. We will use the induction principle.
Base step. We have 7 — 1 = 0 hence 6 divides 0. Thus 0 € A.
Induction step. We now verity that n € A= n+1 € A. Indeed,
AR Ry (L ey Ty (|
—(7-D7"+7" -1
= 67" + 7" -1
divisible by 6  divisible by 6 since ncA

O

(MATH 411H, FALL 2025) Lecture 2 September 8, 2025 13/26



Three equivalent statements

Another example: Factorization theorem

Theorem (Factorization theorem)

Every integer n > 1 is either a prime number or a product of prime
numbers.

Proof.
o Base step. The theorem is clearly true for n = 2.

@ Induction step. Proceeding by induction on n > 1 we can assume
that it is also true for every integer less than n.

@ Then, if nis not prime, it has a positive divisor d such that
1 <d < n. Hence, n=cd, where 1 < c < n.

@ By induction each of ¢ and d is a product of prime numbers by
induction. Therefore, n is also a product of prime numbers.

O
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Three equivalent statements

Well ordering principle: example

Example

A sequence (ap)nen, is given by ag = —1, a; =0, and a,41 = ba, — 6ap_1
for n > 1. Prove that
ap=2-3"-3.2".

Solution. In the proof, we will use the well ordering principle. Let A be

the set of integers n € Ny such that a, # 2-3" — 3-2". We will show that
A = (). Suppose for a contradiction that A # () and let ng be the smallest

element of this set. Since

ag=2-1-3-1=-1,
aa=2-31-3.21=0
we have ng # 0,1. By the minimality of nyp we have
an=2-3"-3.2"

for all 0 < n < ng.
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Three equivalent statements

Solution

Using the reccurence definition
ano = 53n071 - 6an072
we obtain

2. 3no —3. 2’70 # ano = Sano—l — 6an0—2
_5. (2 .3m-1_ 3, 2n071) —6- (2 .3mM-2 _ 3, 2n072)
:2.3no_3_2’707

which contradicts the minimality of ng. This shows that A = (). O
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Another example: The division algorithm

Theorem (The division algorithm)

Let a,d € Z and d # 0. There exist unique integers q and r such that
a=dq+r, where 0<r<|d| (2)

In particular, d | a if and only if r = 0.

Proof.
o Let
S:={a—dq:q€Z}NNy,
and note that S # (). Indeed,
elfa>0,thena=a—-d-0ecS.
e If a <0, then

a—d(d|d|"*a) = (—a)(|d| — 1) € S.
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Proof

o Existence: By the minimum principle, S contains a smallest element
r € No, and a = dq + r for some g € Z. If r > |d|, then

0<r—|dl=a—-d(g+dld™") <r,

and r — |d| € S, which contradicts the minimality of r implying (2).

@ Uniqueness: Let g1, 1, g2, » € Z be integers such that
a=dg+n=dgp+nrnand0<r,rn<|d. If g1 # g, then

|d| < |d||lq1 — q2| = | — | < |d].

which is impossible. Therefore, g1 = g» and rn = r» as desired. O
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Square root of 2

The equation p?> = 2 has no solution in rational numbers

Exercise

Prove that the equation p?> = 2 has no solution in rational numbers.

The rational numbers are

Q:{% . neZ, mGZ\{O}}.

Relatively prime numbers

We say that m, n € N are relatively prime if there is no a number a € N,
a # 1 such that a divides m and n.

The numbers 6 and 42 are not relatively prime.

The numbers 21 and 10 are relatively prime.

The number n € Ny is even if it is divisable by 2.

The number n € N is odd if it is not divisable by 2.
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Square root of 2

The equation p?> = 2 has no solution in rational numbers

Proof.
@ Assume for a contradiction that there is p = 7 € Q such that m, n
are relatively prime and
mh 2
o= () =2
n

Equivalently, we obtain an equation in integers:

m? = 2n°.

This implies that m is even. (If m was odd then m? would be odd.)
Since m is even, then 2n® must be divisable by 4.
Consequently, n is also even.

Thus, m, n are both even, so they are divisable by 2.

This means that m, n are not relatively prime.
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The solution of p? =2

The solution of p?> = 2 exists as a geometric length of the diagonal of the
square of side-length 1.

TRZ
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Square root of 2

Sets without minimal and maximal elements

Let
A={peQ : p>0, p?> <2},
B={peQ : p>0, p>>2},
We will show that:
@ A contains no largest number,
@ B contains no smallest number.

It is also easy to see that

Qr={xeQ: x>0} =AUB.

Remark

The sets A and B illustrate that neither well-ordering principle nor
maximum principle is true in Q.
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Set A

Claim

A contains no largest number means that for every p € A we can find

g € A such that p < g.

@ For p € A we define

p>P—2 2p+2
q:p— =

p+2 p+2°
@ Then we have )
-2 = 2(p —22)
(p+2)

e Since p? —2 < 0, it follows by (3) that p < q.
@ Then, (4) shows that g> < 2, so q € A.
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Set B

Claim

B contains no smallest number means that for every p € B we can find
g € B such that g < p.

@ Again, for p € B we define

p>—2 2p+2

— = . 5
I=P- = (5)
@ Then we have ( ) )
2(p°—2
2
—o=22F =/ 6
I (p+2)? (©)

@ This time p? —2 > 0, it follows by (5) that g < p.
@ Then, (6) shows that g°> > 2, so g € B.
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Concepts of largeness and smallness

Concepts of largeness and smallness

Archimedian property on Q
@ Given any number x € QQ there exists n € N satisfying

n> x.

@ Given any rational number y > 0 there exists an n € N satisfying

1
- <y.
n
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Proof

@ The second property follows from the first one by taking x = . Thus

. . Y
it suffices to prove the first statement.

o If x € Q and x < 0, then there is nothing to do. Suppose that x > 0,
then x = g for some p,q € N. Consider the set

A={neNg:n<x}.

@ This set is nonempty since x > 0. We see that me€ A iff p— gm > 0.
Consider now the set

B={p—gn:nec A} C Ny, and B # .

@ By the well-ordering principle B contains the smallest element, say
p — gmg for some mg € A. Thus for all n € A we have

p—qmp<p—qn <= n<my<X.

@ Now we see that x < mg + 1 has desired property. Ol
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