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The principle of induction

Well ordered sets

Well ordered set

If (X ,≤) is linearly ordered, i.e. for every x , y ∈ X either x ≤ y or y ≤ x ,
and every non-empty subset of X has a minimal (≡ smallest) element,
which is necessarily unique, X is said to be well ordered by ≤; and ≤ is
called well ordering on X .

Examples

(N0,≤) is well ordered in contrast to (Z,≤) which is not well ordered.

Example 1

If A = {21, 43, 65}, then the smallest element is 21.

Example 2

If A = {2n : n ∈ N0}, then the smallest element is 0.
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The principle of induction

Well ordering principle and induction principle

Well ordering principle (or minimum principle)

If A is a non-empty subset of non-negative integers N0, then A contains
the smallest number.

The principle of induction

If A is a set of non-negative integers such that

(A) (Base step): 0 ∈ A

(B) (Induction step): Whenever A contains a number n, it also contains
the number n + 1.

Then A = N0.

∀A⊆N0 (0 ∈ A and ∀k∈N(k ∈ A =⇒ (k + 1) ∈ A) then A = N0)

(MATH 411H, FALL 2025) Lecture 2 September 8, 2025 3 / 26



The principle of induction

The maximum principle

Subset bounded from above

We say that A ⊆ N0 is bounded from above if there is M ∈ N0 such that
a ≤ M for all a ∈ A.

∃M∈N0 ∀a∈A a ≤ M

The maximum principle

A non-empty subset of N0, which is bounded from above contains the
greatest number.
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The principle of induction

Induction principle: classical example

Exercise

Prove that for all n ∈ N0 we have

n∑
k=0

k =
n(n + 1)

2
. (1)

Solution. Let A be the set of n for which (1) holds.

A =

{
n ∈ N0 :

n∑
k=0

k =
n(n + 1)

2

}
.

Our goal is to show that A = N0. We will use the induction principle.
We have to check the base step and the induction step.
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The principle of induction

Solution

We verify (base step): 0 ∈ A. Indeed, one has

0∑
k=0

k = 0 =
0(0 + 1)

2
, thus 0 ∈ A.

We verify (induction step): n ∈ A =⇒ n + 1 ∈ A. If n ∈ A, then

n∑
k=0

k =
n(n + 1)

2
.

Our goal is to prove that n + 1 ∈ A. We calculate

n+1∑
k=0

k =
n∑

k=0

k + (n + 1) =
n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2
.
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Three equivalent statements

Three principles

Well ordering principle (A)

If A is a non-empty subset of non-negative integers N0, then A contains
the smallest number.

The principle of induction (B)

If A is a subset of non-negative integers N0 such that

(A) (Base step): 0 ∈ A.

(B) (Induction step): Whenever A contains a number n, it also contains
the number n + 1.

Then A = N0.

The maximum principle (C)

A non-empty subset of N0, which is bounded from above contains the
greatest number.
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Three equivalent statements

Our goal

Our goal is to prove that the statements (A), (B), and (C) are equivalent.
In order to prove that, we will show:

1 (A) ⇒ (B)

2 (B) ⇒ (A)

3 (A) ⇒ (C)

4 (C) ⇒ (A)
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Three equivalent statements

(A) ⇒ (B)

If A is a set of non-negative integers such that

(1) 0 ∈ A.
(2) Whenever A contains a number n, it also contains n + 1.

We want to establish A = N0.

Suppose for contradiction that A ̸= N0. Then N0 \ A ̸= ∅. By well
ordering principle (A) there is the smallest element m of N0 \ A.
(a) Since 0 ∈ A, we have m ̸= 0,
(b) Observe that m − 1 ∈ A, because otherwise m − 1 ∈ N0 \ A, which

contradicts the fact that m is the smallest element of N0 \ A. But if
m − 1 ∈ A, then by (2) we have m ∈ A, which is impossible.

The implication (A) ⇒ (B) follows.
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Three equivalent statements

(B) ⇒ (A)

Let A ⊆ N0 = {0, 1, 2, . . .} such that A ̸= ∅. Suppose for contradiction
that A does not have a least element.

It is easy to see that 0 ̸∈ A, because otherwise it would be a minimal
element of A (as 0 is the minimal element of N0).

We also see 1 ̸∈ A, otherwise it is a minimal element of A.

We continue and assume that 1, 2, . . . , n ̸∈ A. Then n + 1 ̸∈ A,
otherwise n + 1 is the smallest element of A.

Now use the principle of induction and conclude that A = ∅.
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Three equivalent statements

(A) ⇒ (C)

Suppose that A ̸= ∅ and bounded.

∃︸︷︷︸
there exists

M ∈ N0 ∀︸︷︷︸
for all

a ∈ A a ≤ M

This means that M − a ≥ 0 for all a ∈ A. Let us consider the set

B = {M − a : a ∈ A} ≠ ∅.

By the well ordering principle (A) there is b ∈ A such that M − b is
the smallest element of B.

Thus
M − b ≤ M − a

for all a ∈ A, equivalently a ≤ b for all a ∈ A.
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Three equivalent statements

(C) ⇒ (A)

Let A ⊆ N0, A ̸= ∅. We show that A has a minimal element. Let

B = {n ∈ N0 : n ≤ a for every a ∈ A} = {n ∈ N0 : ∀a ∈ A n ≤ a}

The set B is bounded and 0 ∈ B since 0 ≤ n for any n ∈ N0. Thus,
by the maximum principle (C) we are able to find b0 ∈ B such that b0
is maximal in B. We see

∀a ∈ A ∀b ∈ B b ≤ b0 ≤ a.

The proof will be completed if we show b0 ∈ A.

Assume for contradiction b0 ̸= a and b0 ≤ a for all a ∈ A. Thus
b0 < a for all a ∈ A. Hence

b0 + 1 ≤ a

for any a ∈ A. Then b0 + 1 ∈ B, but b0 is the maximal element of B,
which gives contradiction.
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Three equivalent statements

Induction: example

Example

Prove that 6 divides the number 7n − 1 for all n ∈ N0.

Solution. Let A be the set of n for which 6 divides 7n − 1.

A = {n ∈ N0 : 6 divides 7n − 1}

Our goal is to show A = N0. We will use the induction principle.

Base step. We have 70 − 1 = 0 hence 6 divides 0. Thus 0 ∈ A.

Induction step. We now verity that n ∈ A =⇒ n + 1 ∈ A. Indeed,

7n+1 − 1 = 7n+1 − 7n + 7n − 1

= (7− 1)7n + 7n − 1

= 6 · 7n︸ ︷︷ ︸
divisible by 6

+ 7n − 1︸ ︷︷ ︸
divisible by 6 since n∈A
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Three equivalent statements

Another example: Factorization theorem

Theorem (Factorization theorem)

Every integer n > 1 is either a prime number or a product of prime
numbers.

Proof.

Base step. The theorem is clearly true for n = 2.

Induction step. Proceeding by induction on n > 1 we can assume
that it is also true for every integer less than n.

Then, if n is not prime, it has a positive divisor d such that
1 < d < n. Hence, n = cd , where 1 < c < n.

By induction each of c and d is a product of prime numbers by
induction. Therefore, n is also a product of prime numbers.
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Three equivalent statements

Well ordering principle: example

Example

A sequence (an)n∈N0 is given by a0 = −1, a1 = 0, and an+1 = 5an − 6an−1

for n ≥ 1. Prove that
an = 2 · 3n − 3 · 2n.

Solution. In the proof, we will use the well ordering principle. Let A be
the set of integers n ∈ N0 such that an ̸= 2 · 3n − 3 · 2n. We will show that
A = ∅. Suppose for a contradiction that A ̸= ∅ and let n0 be the smallest
element of this set. Since

a0 = 2 · 1− 3 · 1 = −1,

a1 = 2 · 31 − 3 · 21 = 0

we have n0 ̸= 0, 1. By the minimality of n0 we have

an = 2 · 3n − 3 · 2n

for all 0 ≤ n < n0.
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Three equivalent statements

Solution

Using the reccurence definition

an0 = 5an0−1 − 6an0−2

we obtain

2 · 3n0 − 3 · 2n0 ̸= an0 = 5an0−1 − 6an0−2

= 5 · (2 · 3n0−1 − 3 · 2n0−1)− 6 · (2 · 3n0−2 − 3 · 2n0−2)

= 2 · 3n0 − 3 · 2n0 ,

which contradicts the minimality of n0. This shows that A = ∅.
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Three equivalent statements

Another example: The division algorithm

Theorem (The division algorithm)

Let a, d ∈ Z and d ̸= 0. There exist unique integers q and r such that

a = dq + r , where 0 ≤ r < |d |. (2)

In particular, d | a if and only if r = 0.

Proof.

Let
S := {a− dq : q ∈ Z} ∩ N0,

and note that S ̸= ∅. Indeed,
If a ≥ 0, then a = a− d · 0 ∈ S .

If a < 0, then

a− d(d |d |−1a) = (−a)(|d | − 1) ∈ S .
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Three equivalent statements

Proof

Existence: By the minimum principle, S contains a smallest element
r ∈ N0, and a = dq + r for some q ∈ Z. If r ≥ |d |, then

0 ≤ r − |d | = a− d(q + d |d |−1) < r ,

and r − |d | ∈ S , which contradicts the minimality of r implying (2).

Uniqueness: Let q1, r1, q2, r2 ∈ Z be integers such that
a = dq1 + r1 = dq2 + r2 and 0 ≤ r1, r2 < |d |. If q1 ̸= q2, then

|d | ≤ |d ||q1 − q2| = |r2 − r1| < |d |.

which is impossible. Therefore, q1 = q2 and r1 = r2 as desired.
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Square root of 2

The equation p2 = 2 has no solution in rational numbers

Exercise

Prove that the equation p2 = 2 has no solution in rational numbers.

The rational numbers are

Q =
{ n

m
: n ∈ Z, m ∈ Z \ {0}

}
.

Relatively prime numbers

We say that m, n ∈ N are relatively prime if there is no a number a ∈ N,
a ̸= 1 such that a divides m and n.

The numbers 6 and 42 are not relatively prime.

The numbers 21 and 10 are relatively prime.

The number n ∈ N0 is even if it is divisable by 2.

The number n ∈ N is odd if it is not divisable by 2.
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Square root of 2

The equation p2 = 2 has no solution in rational numbers

Proof.

Assume for a contradiction that there is p = m
n ∈ Q such that m, n

are relatively prime and

p2 =
(m
n

)2
= 2.

Equivalently, we obtain an equation in integers:

m2 = 2n2.

This implies that m is even. (If m was odd then m2 would be odd.)

Since m is even, then 2n2 must be divisable by 4.

Consequently, n is also even.

Thus, m, n are both even, so they are divisable by 2.

This means that m, n are not relatively prime.

Contradiction!
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Square root of 2

The solution of p2 = 2

The solution of p2 = 2 exists as a geometric length of the diagonal of the
square of side-length 1.
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Square root of 2

Sets without minimal and maximal elements

Let
A = {p ∈ Q : p > 0, p2 < 2},

B = {p ∈ Q : p > 0, p2 > 2},

We will show that:

A contains no largest number,

B contains no smallest number.

It is also easy to see that

Q+ = {x ∈ Q : x > 0} = A ∪ B.

Remark

The sets A and B illustrate that neither well-ordering principle nor
maximum principle is true in Q.
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Square root of 2

Set A

Claim

A contains no largest number means that for every p ∈ A we can find
q ∈ A such that p < q.

For p ∈ A we define

q = p − p2 − 2

p + 2
=

2p + 2

p + 2
. (3)

Then we have

q2 − 2 =
2(p2 − 2)

(p + 2)2
. (4)

Since p2 − 2 < 0, it follows by (3) that p < q.

Then, (4) shows that q2 < 2, so q ∈ A.
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Square root of 2

Set B

Claim

B contains no smallest number means that for every p ∈ B we can find
q ∈ B such that q < p.

Again, for p ∈ B we define

q = p − p2 − 2

p + 2
=

2p + 2

p + 2
. (5)

Then we have

q2 − 2 =
2(p2 − 2)

(p + 2)2
(6)

This time p2 − 2 > 0, it follows by (5) that q < p.

Then, (6) shows that q2 > 2, so q ∈ B.
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Concepts of largeness and smallness

Concepts of largeness and smallness

Archimedian property on Q
1 Given any number x ∈ Q there exists n ∈ N satisfying

n > x .

2 Given any rational number y > 0 there exists an n ∈ N satisfying

1

n
< y .
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Concepts of largeness and smallness

Proof

The second property follows from the first one by taking x = 1
y . Thus

it suffices to prove the first statement.

If x ∈ Q and x ≤ 0, then there is nothing to do. Suppose that x > 0,
then x = p

q for some p, q ∈ N. Consider the set

A = {n ∈ N0 : n ≤ x}.

This set is nonempty since x > 0. We see that m ∈ A iff p − qm ≥ 0.
Consider now the set

B = {p − qn : n ∈ A} ⊂ N0, and B ̸= ∅.

By the well-ordering principle B contains the smallest element, say
p − qm0 for some m0 ∈ A. Thus for all n ∈ A we have

p − qm0 ≤ p − qn ⇐⇒ n ≤ m0 ≤ x .

Now we see that x < m0 + 1 has desired property.
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