

Lecture 3

Least Upper Bounds and Greatest Lower Bounds,
Fields and Ordered Fields,
Axiom of Completeness

MATH 411H, FALL 2025

September 11, 2025

Total order \equiv linear order

One of the equivalent definitions of a total order reads as follows:

Definition

A **total order** is a binary relation $<$ on a set S which satisfies:

① If $x, y \in S$, then **one and only one** of the following is true:

- Ⓐ $x < y$,
- Ⓑ $y < x$ (equivalently $x > y$),
- Ⓒ $x = y$.

② If $x, y, z \in S$, $x < y$ and $y < z$, then $x < z$.

Notation:

- $x \leq y$ means $(x = y \text{ or } x < y)$.
- Equivalently, $x \leq y$ is the negation of $x > y$.
- In Rudin's book **total order \equiv linear order** is abbreviated to **order**.

Totally ordered sets \equiv linearly ordered sets

Definition

A **totally ordered set** (\equiv **linearly ordered set**) $(S, <)$ is the set S on which the order $<$ is defined.

- In Rudin's book **totally ordered set** \equiv **linearly ordered set** is abbreviated to **ordered set**.

Example

The set of rational numbers \mathbb{Q} is ordered set if $<$ is the usual order on numbers. We say that $r < s$ for $r, s \in \mathbb{Q}$ iff $s - r > 0$.

Upper and lower bounds

Upper bound

Suppose that S is a totally ordered set and $E \subseteq S$. If there is $\beta \in S$ such that

$$\alpha \leq \beta \quad \text{for all } \alpha \in E,$$

then E is **bounded above** and β is called the **upper bound** of E .

Lower bound

Suppose that S is a totally ordered set and $E \subseteq S$. If there is $\beta \in S$ such that

$$\beta \leq \alpha \quad \text{for all } \alpha \in E,$$

then E is **bounded below** and β is called the **lower bound** of E .

Maximal/minimal and greatest/least elements

Greatest/maximal (least/minimal) elements

Suppose that $(S, <)$ is a totally ordered set. A **greatest/maximal** element of S is an element $x \in S$ such that

$$y \leq x \quad \text{for all } y \in S.$$

A **least/minimal** element of S is an element $x \in S$ such that

$$x \leq y \quad \text{for all } y \in S.$$

Remark

In totally ordered sets **in contrast to general partially ordered sets**

- the greatest and maximal elements **are the same**,
- the least and minimal elements **are the same**.

$\sup E \equiv$ supremum of E

$\sup E$

Suppose that S is a totally ordered set, $E \subset S$, and E is bounded from above. Suppose that there exists $\alpha \in S$ with the following properties:

- A** α is an upper bound of E ,
- B** if $\gamma < \alpha$, then γ is not an upper bound of E (equivalently, there is $x \in E$ such that $\gamma < x \leq \alpha$).

Then α is called a **least upper bound** or **supremum** of E . We write

$$\alpha = \sup E.$$

$\inf E \equiv$ infimum of E

$\inf E$

Suppose that S is a totally ordered set, $E \subset S$, and E is bounded from below. Suppose that there exists $\alpha \in S$ with the following properties:

- Ⓐ α is a lower bound of E ,
- Ⓑ if $\gamma > \alpha$, then γ is not a lower bound of E (equivalently, there is $x \in E$ such that $\alpha \leq x < \gamma$).

Then α is called **the greatest lower bound** or **infimum** of E . We write

$$\alpha = \inf E.$$

Example

Example

Let

$$E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \subseteq \mathbb{Q}.$$

Then $\sup E = 1$ and $1 \in E$, but $\inf E = 0$ and $0 \notin E$.

Proof. Indeed, note that

- $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$, and $1 = \frac{1}{1} \in E$ for $n = 1$, thus $1 = \sup E$.
- $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$. Thus 0 is the lower bound for E , but $0 \notin E$.
- By the the Archimedean property for the rational numbers we know that for every positive rational number $x > 0$ there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$. Thus $\inf E = 0$. □

Example

Example

Find $\sup E$ and $\inf E$, where

$$E = \{(-1)^n : n \in \mathbb{N}_0\}.$$

Solution. We have $(-1)^n = 1$ for even n and $(-1)^n = -1$ for odd n .

Hence

$$E = \{-1, 1\}.$$

Consequently

$$\sup E = \max E = 1,$$

$$\inf E = \min E = -1.$$

Example

Example

Find $\sup E$ and $\inf E$, where

$$E = \left\{ \frac{1}{n^2 + 1} : n \in \mathbb{N}_0 \right\} \subseteq \mathbb{Q}.$$

Solution. Note that

- $\frac{1}{n^2 + 1} \leq \frac{1}{1}$ for all $n \in \mathbb{N}_0$, and $1 = \frac{1}{0^2 + 1} \in E$ for $n = 0$, hence 1 is the greatest element of E and we have $\sup E = 1$.
- $\frac{1}{n^2 + 1} > 0$ for all $n \in \mathbb{N}_0$. Thus 0 is the lower bound for E , but $0 \notin E$.
- By the the Archimedean property for the rational numbers we know that for every positive rational number $x > 0$ there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$. Also $n < n^2 + 1$ which implies $0 < \frac{1}{n^2 + 1} < \frac{1}{n} < x$. Hence $\inf E = 0 \notin E$.

Least-upper-bound property

Least-upper-bound property \equiv Axiom of completeness (AoC)

A totally ordered set S is said to have **least-upper-bound property** (or satisfies the **axiom of completeness (AoC)**) if the supremum $\sup E$ exists in S for all nonempty subsets $E \subseteq S$ that are bounded above.

Example

Let

$$A = \{p \in \mathbb{Q} : p > 0, p^2 < 2\},$$

$$B = \{p \in \mathbb{Q} : p > 0, p^2 > 2\}.$$

The set A is bounded from above. In fact, the upper bounds of A are exactly the members of B . Since B contains no smallest member, it has no least upper bound in \mathbb{Q} .

- Hence \mathbb{Q} has no the least-upper-bound property.

Theorem

Theorem

Suppose that S is a totally ordered set with the least-upper-bound property. Let $\emptyset \neq B \subseteq S$ be bounded below. Let L be the set of all lower bounds of B . Then $\alpha = \sup L$ exists in S and $\alpha = \inf B$.

Proof

Proof. Let

$$L = \{y \in S : y \leq x \text{ for all } x \in B\}.$$

We see that $L \neq \emptyset$, since B is bounded below. Every $x \in B$ is an upper bound of L . Thus L is bounded above and consequently the least-upper-bound property implies that $\alpha = \sup L$ exists in S .

We show that $\alpha \in L$. It suffices to prove that $\alpha \leq x$ for all $x \in B$. Suppose for a contradiction that there is $\gamma \in B$ such that $\gamma < \alpha$. By the definition of supremum γ is not an upper bound. Therefore, there exists $y \in L$ such that $\gamma < y \leq \alpha$, so $y \leq x$ for every $x \in B$, and hence $\gamma < x$ for all $x \in B$. In particular, we obtain $\gamma < \gamma$ since $\gamma \in B$, which is **impossible!**

Now we show that $\alpha = \inf B$. We have shown that $\alpha \in L$, which means that α is a lower bound of B , since $\alpha \leq x$ for all $x \in B$. If $\alpha < \beta$, then $\beta \notin L$. If not, we would have $\alpha < \beta \leq \alpha = \sup L$. Since $\beta \notin L$ then there exists $x \in B$ such that $\beta > x \geq \alpha$. This proves that $\alpha = \inf B$. □

Field 1/2

Field

A **field** \mathbb{F} is a set with two binary operations called **addition** (+) and **multiplication** (\cdot) or without symbol), which satisfies the following **field axioms (A)**, **(M)**, and **(D)**.

Addition axioms (A)

- (A1) if $x, y \in \mathbb{F}$, then $x + y \in \mathbb{F}$,
- (A2) addition is commutative, i.e. $x + y = y + x$ for all $x, y \in \mathbb{F}$,
- (A3) addition is associative, i.e. $(x + y) + z = x + (y + z)$ for all $x, y, z \in \mathbb{F}$,
- (A4) \mathbb{F} contains the element $0_{\mathbb{F}}$ such that $x + 0_{\mathbb{F}} = x$ for all $x \in \mathbb{F}$,
- (A5) to every $x \in \mathbb{F}$ corresponds an element $(-x) \in \mathbb{F}$ such that

$$x + (-x) = 0_{\mathbb{F}}.$$

Field 2/2

Multiplication axioms (M)

- (M1) if $x, y \in \mathbb{F}$, then their product $xy \in \mathbb{F}$,
- (M2) multiplication is commutative, i.e. $xy = yx$ for all $x, y \in \mathbb{F}$,
- (M3) addition is associative, i.e. $(xy)z = x(yz)$ for all $x, y, z \in \mathbb{F}$,
- (M4) \mathbb{F} contains the element $1_{\mathbb{F}} \neq 0_{\mathbb{F}}$ such that $1_{\mathbb{F}}x = x$ for all $x \in \mathbb{F}$,
- (M5) if $x \in \mathbb{F}$ and $x \neq 0_{\mathbb{F}}$ then there exists an element $x^{-1} = \frac{1}{x} \in \mathbb{F}$ such that

$$x \cdot x^{-1} = 1_{\mathbb{F}}.$$

Distributive law (D)

- (D1) $x(y + z) = xy + xz$ holds for all $x, y, z \in \mathbb{F}$.

Field properties - addition

Example 1

\mathbb{Q} is a field.

Example 2

\mathbb{Z}_p a set of residue classes of mod p for any prime number $p \in \mathbb{N}$ is a field.

Example 3

\mathbb{Z} is not a field, because (M5) does not hold, i.e. there is no $x \in \mathbb{Z}$ such that $2x = 1$.

Properties of addition

The axioms of addition imply the following:

- A** if $x + y = x + z$, then $y = z$,
- B** if $x = x + y$, then $y = 0_{\mathbb{F}}$,
- C** if $x + y = 0_{\mathbb{F}}$, then $y = (-x)$,
- D** $(-(-x)) = x$.

Proofs

Proof of (A).

$$\begin{aligned}
 y &\stackrel{(A4)}{=} 0_{\mathbb{F}} + y \stackrel{(A5)}{=} (-x + x) + y \stackrel{(A3)}{=} -x + (x + y) \\
 &= -x + (x + z) \stackrel{(A3)}{=} (-x + x) + z \stackrel{(A5)}{=} 0_{\mathbb{F}} + z \stackrel{(A4)}{=} z.
 \end{aligned}$$

To prove (B), we take $z = 0_{\mathbb{F}}$ in (A).

To prove (C) we take $z = -x$ in (A).

Since $x + (-x) = 0_{\mathbb{F}}$, so by (C) with $-x$ in place of x we get

$$(-(-x)) = x.$$

Field properties - multiplication

Properties of multiplication

The axioms of multiplication imply the following:

- A if $x \neq 0_F$ and $xy = xz$, then $y = z$,
- B if $x \neq 0_F$ and $x = xy$, then $y = 1_F$,
- C if $x \neq 0_F$ and $xy = 1_F$, then $y = x^{-1}$,
- D if $x \neq 0_F$, then $(x^{-1})^{-1} = x$

Exercise.

Further field properties

Properties of fields

The field axioms imply the following:

- A** $x \cdot 0_{\mathbb{F}} = 0_{\mathbb{F}}$ for all $x \in \mathbb{F}$,
- B** if $x \neq 0_{\mathbb{F}}$ and $y \neq 0_{\mathbb{F}}$, then $xy \neq 0_{\mathbb{F}}$,
- C** $(-x)y = -(xy) = x(-y)$ for all $x, y \in \mathbb{F}$,
- D** $(-x)(-y) = xy$ for all $x, y \in \mathbb{F}$.

- For the proof of (A), we use (D1):

$$0_{\mathbb{F}}x + 0_{\mathbb{F}}x \stackrel{(D1)}{=} (0_{\mathbb{F}} + 0_{\mathbb{F}})x = 0_{\mathbb{F}}x.$$

Thus we must have $0_{\mathbb{F}}x = 0_{\mathbb{F}}$.

Proofs

- To prove (B) assume $x, y \neq 0_{\mathbb{F}}$, but $xy = 0_{\mathbb{F}}$. Then

$$1_{\mathbb{F}} = x^{-1}y^{-1}xy = x^{-1}y^{-1}0_{\mathbb{F}} = 0_{\mathbb{F}},$$

but $0_{\mathbb{F}} \neq 1_{\mathbb{F}}$.

- To prove (C) we write

$$(-x)y + xy \stackrel{(D1)}{=} (-x + x)y = 0_{\mathbb{F}}y = 0_{\mathbb{F}},$$

thus $(-x)y = -(xy)$.

- To prove (D) we use (C) and we write

$$(-x)(-y) = -(x(-y)) = -(-(xy)) = xy.$$

Ordered fields

Definition of an ordered field

An **ordered field** is a field with is also a totally ordered set such that

- A** if $x, y, z \in \mathbb{F}$ and $y < z$, then $x + y < x + z$,
- B** $xy > 0_{\mathbb{F}}$ if $x > 0_{\mathbb{F}}$ and $y > 0_{\mathbb{F}}$.

Positive element

The element $x \in \mathbb{F}$ is called **positive** if $x > 0_{\mathbb{F}}$.

Negative element

The element $x \in \mathbb{F}$ is called **negative** if $x < 0_{\mathbb{F}}$.

Example

\mathbb{Q} is an ordered field, but \mathbb{Z}_p is not.

Properties of ordered fields

Proposition

The following are true in every ordered field:

- A** if $x > 0_{\mathbb{F}}$, then $-x < 0_{\mathbb{F}}$ and vice versa,
- B** if $x > 0_{\mathbb{F}}$ and $y < z$, then $xy < xz$,
- C** if $x < 0_{\mathbb{F}}$ and $y < z$, then $xy > xz$,
- D** if $x \neq 0_{\mathbb{F}}$, then $x \cdot x = x^2 > 0_{\mathbb{F}}$. In particular, $1_{\mathbb{F}} > 0_{\mathbb{F}}$,
- E** if $0_{\mathbb{F}} < x < y$, then $0 < y^{-1} < x^{-1}$.

Proofs 1/2

Proof of (A).

- If $x > 0_{\mathbb{F}}$, then $0_{\mathbb{F}} = -x + x > -x + 0_{\mathbb{F}}$, thus $-x < 0_{\mathbb{F}}$.
- If $x < 0_{\mathbb{F}}$, then $0_{\mathbb{F}} = -x + x < -x + 0_{\mathbb{F}}$, so that $-x > 0_{\mathbb{F}}$.

Proof of (B).

- Since $z > y$ we have $z - y > y - y = 0_{\mathbb{F}}$, hence $x(z - y) > 0_{\mathbb{F}}$ if $x > 0_{\mathbb{F}}$.
- Thus

$$xz = x(z - y) + xy > 0_{\mathbb{F}} + xy = xy.$$

Proof of (C). By (A),(B), and $(-x)y = -(xy) = x(-y)$:

$$-(x(z - y)) = (-x)(z - y) > 0_{\mathbb{F}}$$

so that $x(z - y) < 0_{\mathbb{F}}$ hence $xz < xy$.

Proofs 2/2

Proof of (D).

- If $x > 0_{\mathbb{F}}$ we get $x^2 > 0_{\mathbb{F}}$.
- If $x < 0_{\mathbb{F}}$, then $-x > 0_{\mathbb{F}}$, hence $(-x)^2 > 0_{\mathbb{F}}$, but $x^2 = (-x)^2$.
- We also see $1_{\mathbb{F}}^2 = 1_{\mathbb{F}}$, thus $1_{\mathbb{F}} > 0_{\mathbb{F}}$.

Proof of (E).

- If $y > 0_{\mathbb{F}}$ and $v \leq 0_{\mathbb{F}}$, then $yv \leq 0_{\mathbb{F}}$.
- But $y^{-1} \cdot y = 1_{\mathbb{F}} > 0_{\mathbb{F}}$, thus $y^{-1} > 0_{\mathbb{F}}$.
- In similar way $x^{-1} > 0_{\mathbb{F}}$.
- Multiplying the inequality $x < y$ by $x^{-1}y^{-1}$ we have

$$0_{\mathbb{F}} < y^{-1} < x^{-1}.$$

A useful lemma

Lemma

Let $(\mathbb{F}, <)$ be an ordered field. Then, for any $n \in \mathbb{Z} \setminus \{0\}$ one has

$$n \cdot 1_{\mathbb{F}} = \underbrace{1_{\mathbb{F}} + \dots + 1_{\mathbb{F}}}_{n\text{-times}} \neq 0_{\mathbb{F}}.$$

Proof.

By the previous proposition $1 \cdot 1_{\mathbb{F}} = 1_{\mathbb{F}} > 0_{\mathbb{F}}$. Proceeding by induction, suppose we have shown that $n \cdot 1_{\mathbb{F}} > 0_{\mathbb{F}}$. Then

$$(n+1) \cdot 1_{\mathbb{F}} = n \cdot 1_{\mathbb{F}} + 1_{\mathbb{F}} > 0_{\mathbb{F}} + 1_{\mathbb{F}} > 0_{\mathbb{F}}.$$

Thus $n \cdot 1_{\mathbb{F}} > 0_{\mathbb{F}}$ for every integer $n > 0$. If $n < 0$ we show that $n \cdot 1_{\mathbb{F}} < 0_{\mathbb{F}}$ and we are done.

The absolute value in ordered fields

Absolute value

Let \mathbb{F} be an ordered field an **absolute value** of $x \in \mathbb{F}$ is

$$|x| = \begin{cases} x & \text{if } x \geq 0, \\ -x & \text{if } x < 0. \end{cases}$$

Properties of $|x|$

For $x, y \in \mathbb{F}$ one has

- $|xy| = |x||y|$,
- $x \leq |x|$ and $x \geq -|x|$,
- $|x + y| \leq |x| + |y|$, (triangle inequality).
- $||x| - |y|| \leq |x - y| \leq |x| + |y|$, (triangle inequality).

Proof

- If $x \geq 0$ and $y \geq 0$ then $xy \geq 0$ and $|xy| = xy = |x||y|$. If $x \geq 0$ and $y < 0$ then $xy \leq 0$ and $|xy| = -(xy) = x \cdot (-y) = |x||y|$. Two other cases $x < 0$ and $y \geq 0$ or $x < 0$ and $y < 0$ can be covered similarly.
- Clearly $x \leq |x|$ for all $x \in \mathbb{R}$. Similarly, $-x \leq |x|$ giving $x \geq -|x|$.
- Since $x \leq |x|$ and $y \leq |y|$, then $x + y \leq |x| + |y|$. We also have $-(|x| + |y|) \leq x + y$, since $-|x| \leq x$ and $-|y| \leq y$. Hence

$$- (|x| + |y|) \leq x + y \leq |x| + |y| \iff |x + y| \leq |x| + |y|.$$

- Note that $|x| = |y + x - y| \leq |y| + |x - y|$, and similarly we obtain $|y| = |x + y - x| \leq |x| + |x - y|$. Thus

$$-|x - y| \leq |x| - |y| \quad \text{and} \quad |x| - |y| \leq |x - y|,$$

which gives $||x| - |y|| \leq |x - y|$.

Maximum and minimum functions

Let \mathbb{F} be an ordered field. Using the absolute value one can define maximum and minimum of two elements from the field.

Maximum and minimum

For any $x, y \in \mathbb{F}$ define

$$\max\{x, y\} = \frac{x + y + |x - y|}{2},$$

and

$$\min\{x, y\} = \frac{x + y - |x - y|}{2}.$$

Subfields and field homomorphisms

Definition of a subfield

We say \mathbb{A} is a **subfield** of a field \mathbb{B} if \mathbb{A} is a field and $\mathbb{A} \subseteq \mathbb{B}$.

Definition of a field homomorphism

Let $(\mathbb{A}, <_{\mathbb{A}})$ and $(\mathbb{B}, <_{\mathbb{B}})$ be two ordered fields. An **ordered field homomorphism** $\varphi : \mathbb{A} \rightarrow \mathbb{B}$ is a function which preserves the field operations: for all $x, y \in \mathbb{A}$ we have

$$\begin{aligned}\varphi(x +_{\mathbb{A}} y) &= \varphi(x) +_{\mathbb{B}} \varphi(y), & \varphi(x \cdot_{\mathbb{A}} y) &= \varphi(x) \cdot_{\mathbb{B}} \varphi(y) \\ \varphi(0_{\mathbb{A}}) &= 0_{\mathbb{B}}, & \varphi(1_{\mathbb{A}}) &= 1_{\mathbb{B}}\end{aligned}$$

and preserves the order relation: for all $x, y \in \mathbb{A}$ if $x <_{\mathbb{A}} y$ then

$$\varphi(x) <_{\mathbb{B}} \varphi(y).$$

Field embeddings

Injective functions

A function $f : X \rightarrow Y$ is said to be **injective** if

$$f(x_1) = f(x_2) \quad \text{implies} \quad x_1 = x_2.$$

An injective ordered field homomorphism should be thought of as an **embedding**. We will show that \mathbb{Q} can be realized as a subset of any ordered field \mathbb{F} , in a way that respects all the ordered field structure.

Theorem

Let $(\mathbb{F}, <)$ be an ordered field. The map $\varphi : \mathbb{Q} \rightarrow \mathbb{F}$ given by

$$\varphi\left(\frac{m}{n}\right) = (m \cdot 1_{\mathbb{F}}) \cdot (n \cdot 1_{\mathbb{F}})^{-1}$$

is an injective ordered field homomorphism.

Proof:

- First we must check that φ is well defined: if $\frac{m_1}{n_1} = \frac{m_2}{n_2}$, then $m_1 n_2 = m_2 n_1$. By an easy induction it follows that

$$(m_1 \cdot 1_{\mathbb{F}}) \cdot (n_2 \cdot 1_{\mathbb{F}}) = (m_2 \cdot 1_{\mathbb{F}}) \cdot (n_2 \cdot 1_{\mathbb{F}}).$$

Dividing out on both sides then shows that φ is well-defined, since

$$\varphi\left(\frac{m_1}{n_1}\right) = (m_1 \cdot 1_{\mathbb{F}}) \cdot (n_1 \cdot 1_{\mathbb{F}})^{-1} = (m_2 \cdot 1_{\mathbb{F}}) \cdot (n_2 \cdot 1_{\mathbb{F}})^{-1} = \varphi\left(\frac{m_2}{n_2}\right)$$

- It is routine to verify that φ is an ordered field homomorphism.
- Finally, to show that φ is injective, suppose that $\varphi(q_1) = \varphi(q_2)$ this means, using the homomorphism property, that $\varphi(q_1 - q_2) = 0_{\mathbb{F}}$. Let $q_1 - q_2 = \frac{m}{n}$, then $0_{\mathbb{F}} = \varphi(q_1 - q_2) = \varphi\left(\frac{m}{n}\right) = (m \cdot 1_{\mathbb{F}}) \cdot (n \cdot 1_{\mathbb{F}})^{-1}$, which implies that $m \cdot 1_{\mathbb{F}} = 0_{\mathbb{F}}$. By the previous lemma this in turn implies that $m = 0$. Thus $q_1 = q_2$ as desired and φ is injective. \square