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Totally ordered sets ≡ linearly ordered sets

Total order ≡ linear order

One of the equivalent definitions of a total order reads as follows:

Definition

A total order is a binary relation < on a set S which satisfies:
1 If x , y ∈ S , then one and only one of the following is true:

(A) x < y ,
(B) y < x (equivalently x > y),
(C) x = y .

2 If x , y , z ∈ S , x < y and y < z , then x < z .

Notation:

x ≤ y means (x = y or x < y).

Equivalently, x ≤ y is the negation of x > y .

In Rudin’s book total order ≡ linear order is abbreviated to order.
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Totally ordered sets ≡ linearly ordered sets

Totally ordered sets ≡ linearly ordered sets

Definition

A totally ordered set (≡ linearly ordered set) (S , <) is the set S on
which the order < is defined.

In Rudin’s book totally ordered set ≡ linearly ordered set is
abbreviated to ordered set.

Example

The set of rational numbers Q is ordered set if < is the usual order on
numbers. We say that r < s for r , s ∈ Q iff s − r > 0.
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Supremum and infimum

Upper and lower bounds

Upper bound

Suppose that S is a totally ordered set and E ⊆ S . If there is β ∈ S such
that

α ≤ β for all α ∈ E ,

then E is bounded above and β is called the upper bound of E .

Lower bound

Suppose that S is a totally ordered set and E ⊆ S . If there is β ∈ S such
that

β ≤ α for all α ∈ E ,

then E is bounded below and β is called the lower bound of E .
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Supremum and infimum

Maximal/minimal and greatest/least elements

Greatest/maximal (least/minimal) elements

Suppose that (S , <) is a totally ordered set. A greatest/maximal
element of S is an element x ∈ S such that

y ≤ x for all y ∈ S .

A least/minimal element of S is an element x ∈ S such that

x ≤ y for all y ∈ S .

Remark

In totally ordered sets in contrast to general partially ordered sets

the greatest and maximal elements are the same,

the least and minimal elements are the same.
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Supremum and infimum

supE ≡ supremum of E

supE

Suppose that S is a totally ordered set, E ⊂ S , and E is bounded from
above. Suppose that there exists α ∈ S with the following properties:

(A) α is a upper bound of E ,

(B) if γ < α, then γ is not an upper bound of E (equivalently, there is
x ∈ E such that γ < x ≤ α).

Then α is called a least upper bound or supremum of E . We write

α = supE .
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Supremum and infimum

inf E ≡ infimum of E

inf E

Suppose that S is a totally ordered set, E ⊂ S , and E is bounded from
below. Suppose that there exists α ∈ S with the following properties:

(A) α is a lower bound of E ,

(B) if γ > α, then γ is not a lower bound of E (equivalently, there is
x ∈ E such that α ≤ x < γ).

Then α is called the greatest lower bound or infimum of E . We write

α = inf E .
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Supremum and infimum

Example

Example

Let

E =

{
1

n
: n ∈ N

}
⊆ Q.

Then supE = 1 and 1 ∈ E , but inf E = 0 and 0 ̸∈ E .

Proof. Indeed, note that

1
n ≤ 1 for all n ∈ N, and 1 = 1

n ∈ E for n = 1, thus 1 = supE .

1
n > 0 for all n ∈ N. Thus 0 is the lower bound for E , but 0 ̸∈ E .

By the the Archimedean property for the rational numbers we know
that for every positive rational number x > 0 there exists n ∈ N such
that 0 < 1

n < x . Thus inf E = 0.
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Supremum and infimum

Example

Example

Find supE and inf E , where

E = {(−1)n : n ∈ N0} .

Solution. We have (−1)n = 1 for even n and (−1)n = −1 for odd n.

Hence
E = {−1, 1}.

Consequently

supE = maxE = 1,

inf E = minE = −1.
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Supremum and infimum

Example

Example

Find supE and inf E , where

E =

{
1

n2 + 1
: n ∈ N0

}
⊆ Q.

Solution. Note that
1

n2+1
≤ 1

1 for all n ∈ N0, and 1 = 1
n2+1

∈ E for n = 0, hence 1 is the
greatest element of E and we have supE = 1.

1
n2+1

> 0 for all n ∈ N0. Thus 0 is the lower bound for E , but 0 ̸∈ E .

By the the Archimedean property for the rational numbers we know
that for every positive rational number x > 0 there exists n ∈ N such
that 0 < 1

n < x . Also n < n2 + 1 which implies 0 < 1
n2+1

< 1
n < x .

Hence inf E = 0 ̸∈ E .
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Least–upper–bound property

Least–upper–bound property

Least–upper–bound property ≡ Axiom of completeness (AoC)

A totally ordered set S is said to have least–upper–bound property (or
satisfies the axiom of completeness (AoC)) if the supremum supE
exists in S for all nonempty subsets E ⊆ S that are bounded above.

Example

Let
A = {p ∈ Q : p > 0, p2 < 2},

B = {p ∈ Q : p > 0, p2 > 2}.

The set A is bounded from above. In fact, the upper bounds of A are
exactly the members of B. Since B contains no smallest member, it has
no least upper bound in Q.

Hence Q has no the least–upper–bound property.
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Least–upper–bound property

Theorem

Theorem

Suppose that S is a totally ordered set with the least–upper–bound
property. Let ∅ ≠ B ⊆ S be bounded below. Let L be the set of all lower
bounds of B. Then α = sup L exists in S and α = inf B.
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Least–upper–bound property

Proof

Proof. Let
L = {y ∈ S : y ≤ x for all x ∈ B}.

We see that L ̸= ∅, since B is bounded below. Every x ∈ B is an upper
bound of L. Thus L is bounded above and consequently the
least–upper–bound property implies that α = sup L exists in S .

We show that α ∈ L. It suffices to prove that α ≤ x for all x ∈ B.
Suppose for a contradiction that there is γ ∈ B such that γ < α. By the
definition of supremum γ is not an upper bound. Therefore, there exists
y ∈ L such that γ < y ≤ α, so y ≤ x for every x ∈ B, and hence γ < x for
all x ∈ B. In particular, we obtain γ < γ since γ ∈ B, which is impossible!

Now we show that α = inf B. We have shown that α ∈ L, which means
that α is a lower bound of B, since α ≤ x for all x ∈ B. If α < β, then
β ̸∈ L. If not, we would have α < β ≤ α = sup L. Since β ̸∈ L then there
exists x ∈ B such that β > x ≥ α. This proves that α = inf B.

(MATH 411H, FALL 2025) Lecture 3 September 11, 2025 13 / 31



Fields

Field 1/2

Field

A field F is a set with two binary operations called addition (+) and
multiplication (( · ) or without symbol), which satisfies the following field
axioms (A), (M), and (D).

Addition axioms (A)

(A1) if x , y ∈ F, then x + y ∈ F,
(A2) addition is commutative, i.e. x + y = y + x for all x , y ∈ F,
(A3) addition is associative, i.e. (x + y) + z = x + (y + z) for all
x , y , z ∈ F,
(A4) F contains the element 0F such that x + 0F = x for all x ∈ F,
(A5) to every x ∈ F corresponds an element (−x) ∈ F such that

x + (−x) = 0F.
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Fields

Field 2/2

Multiplication axioms (M)

(M1) if x , y ∈ F, then their product xy ∈ F,
(M2) multiplication is commutative, i.e. xy = yx for all x , y ∈ F,
(M3) addition is associative, i.e. (xy)z = x(yz) for all x , y , z ∈ F,
(M4) F contains the element 1F ̸= 0F such that 1Fx = x for all x ∈ F,
(M5) if x ∈ F and x ̸= 0F then there exists an element x−1 = 1

x ∈ F
such that

x · x−1 = 1F.

Distributive law (D)

(D1) x(y + z) = xy + xz holds for all x , y , z ∈ F.
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Fields

Field properties - addition

Example 1

Q is a field.

Example 2

Zp a set of residue classes of mod p for any prime number p ∈ N is a field.

Example 3

Z is not a field, because (M5) does not hold, i.e. there is no x ∈ Z such
that 2x = 1.

Properties of addition

The axioms of addition imply the following:

(A) if x + y = x + z , then y = z ,

(B) if x = x + y , then y = 0F,

(C) if x + y = 0F, then y = (−x),

(D) (−(−x)) = x .
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Fields

Proofs

Proof of (A).

y

(A4)︷︸︸︷
= 0F + y

(A5)︷︸︸︷
= (−x + x) + y

(A3)︷︸︸︷
= −x + (x + y)

= −x + (x + z)

(A3)︷︸︸︷
= (−x + x) + z

(A5)︷︸︸︷
= 0F + z

(A4)︷︸︸︷
= z .

To prove (B), we take z = 0F in (A).

To prove (C) we take z = −x in (A).

Since x + (−x) = 0F, so by (C) with −x in place of x we get

(−(−x)) = x .
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Fields

Field properties - multiplication

Properties of multiplication

The axioms of multiplication imply the following:

(A) if x ̸= 0F and xy = xz , then y = z ,

(B) if x ̸= 0F and x = xy , then y = 1F,

(C) if x ̸= 0F and xy = 1F, then y = x−1,

(D) if x ̸= 0F, then
(
x−1

)−1
= x

Exercise.
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Fields

Further field properties

Properties of fields

The field axioms imply the following:

(A) x · 0F = 0F for all x ∈ F,
(B) if x ̸= 0F and y ̸= 0F, then xy ̸= 0F,

(C) (−x)y = −(xy) = x(−y) for all x , y ∈ F,
(D) (−x)(−y) = xy for all x , y ∈ F.

For the proof of (A), we use (D1):

0Fx + 0Fx

(D1)︷︸︸︷
= (0F + 0F)x = 0Fx .

Thus we must have 0Fx = 0F.
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Fields

Proofs

To prove (B) assume x , y ̸= 0F, but xy = 0F. Then

1F = x−1y−1xy = x−1y−10F = 0F,

but 0F ̸= 1F.

To prove (C) we write

(−x)y + xy

(D1)︷︸︸︷
= (−x + x)y = 0Fy = 0F,

thus (−x)y = −(xy).

To prove (D) we use (C ) and we write

(−x)(−y) = −(x(−y)) = −(−(xy)) = xy .
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Ordered fields

Ordered fields

Definition of an ordered field

An ordered field is a field with is also a totally ordered set such that

(A) if x , y , z ∈ F and y < z , then x + y < x + z ,

(B) xy > 0F if x > 0F and y > 0F.

Positive element

The element x ∈ F is called positive if x > 0F.

Negative element

The element x ∈ F is called negative if x < 0F.

Example

Q is an ordered field, but Zp is not.
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Ordered fields

Properties of ordered fields

Proposition

The following are true in every ordered field:

(A) if x > 0F, then −x < 0F and vice versa,

(B) if x > 0F and y < z , then xy < xz ,

(C) if x < 0F and y < z , then xy > xz ,

(D) if x ̸= 0F, then x · x = x2 > 0F. In particular, 1F > 0F,

(E) if 0F < x < y , then 0 < y−1 < x−1.
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Ordered fields

Proofs 1/2

Proof of (A).

If x > 0F, then 0F = −x + x > −x + 0F, thus −x < 0F.

If x < 0F, then 0F = −x + x < −x + 0F, so that −x > 0F.

Proof of (B).

Since z > y we have z − y > y − y = 0F, hence x(z − y) > 0F if
x > 0F.

Thus
xz = x(z − y) + xy > 0F + xy = xy .

Proof of (C). By (A),(B), and (−x)y = −(xy) = x(−y):

−(x(z − y)) = (−x)(z − y) > 0F

so that x(z − y) < 0F hence xz < xy .
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Ordered fields

Proofs 2/2

Proof of (D).

If x > 0F we get x2 > 0F.

If x < 0F, then −x > 0F, hence (−x)2 > 0F, but x
2 = (−x)2.

We also see 12F = 1F, thus 1F > 0F.

Proof of (E).

If y > 0F and v ≤ 0F, then yv ≤ 0F.

But y−1 · y = 1F > 0F, thus y
−1 > 0F.

In similar way x−1 > 0F.

Multiplying the inequality x < y by x−1y−1 we have

0F < y−1 < x−1.
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Ordered fields

A useful lemma

Lemma

Let (F, <) be an ordered field. Then, for any n ∈ Z \ {0} one has

n · 1F = 1F + . . .+ 1F︸ ︷︷ ︸
n-times

̸= 0F.

Proof.

By the previous proposition 1 · 1F = 1F > 0F. Proceeding by induction,
suppose we have shown that n · 1F > 0F. Then

(n + 1) · 1F = n · 1F + 1F > 0F + 1F > 0F.

Thus n · 1F > 0F for every integer n > 0. If n < 0 we show that
n · 1F < 0F and we are done.
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Ordered fields

The absolute value in ordered fields

Absolute value

Let F be an ordered field an absolute value of x ∈ F is

|x | =

{
x if x ≥ 0,

−x if x < 0.

Properties of |x |
For x , y ∈ F one has

|xy | = |x ||y |,
x ≤ |x | and x ≥ −|x |,
|x + y | ≤ |x |+ |y |, (triangle inequality).

||x | − |y || ≤ |x − y | ≤ |x |+ |y |, (triangle inequality).
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Ordered fields

Proof

If x ≥ 0 and y ≥ 0 then xy ≥ 0 and |xy | = xy = |x ||y |. If x ≥ 0 and
y < 0 then xy ≤ 0 and |xy | = −(xy) = x · (−y) = |x ||y |. Two other
cases x < 0 and y ≥ 0 or x < 0 and y < 0 can be covered similarly.

Clearly x ≤ |x | for all x ∈ R. Similarly, −x ≤ |x | giving x ≥ −|x |.

Since x ≤ |x | and y ≤ |y |, then x + y ≤ |x |+ |y |. We also have
−(|x |+ |y |) ≤ x + y , since −|x | ≤ x and −|y | ≤ y . Hence

−(|x |+ |y |) ≤ x + y ≤ |x |+ |y | ⇐⇒ |x + y | ≤ |x |+ |y |.

Note that |x | = |y + x − y | ≤ |y |+ |x − y |, and similarly we obtain
|y | = |x + y − x | ≤ |x |+ |x − y |. Thus

−|x − y | ≤ |x | − |y | and |x | − |y | ≤ |x − y |,

which gives ||x | − |y || ≤ |x − y |.
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Ordered fields

Maximum and minimum functions

Let F be an ordered field. Using the absolute value one can define
maximum and minimum of two elements from the field.

Maximum and minimum

For any x , y ∈ F define

max{x , y} =
x + y + |x − y |

2
,

and

min{x , y} =
x + y − |x − y |

2
.
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Ordered fields

Subfields and field homomorphisms

Definition of a subfield

We say A is a subfield of a field B if A is a field and A ⊆ B.

Definition of a field homomorphism

Let (A, <A) and (B, <B) be two ordered fields. An ordered field
homomorphism φ : A → B is a function which preserves the field
operations: for all x , y ∈ A we have

φ(x +A y) = φ(x) +B φ(y), φ(x ·A y) = φ(x) ·B φ(y)

φ(0A) = 0B, φ(1A) = 1B

and preserves the order relation: for all x , y ∈ A if x <A y then

φ(x) <B φ(y).
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Ordered fields

Field embeddings

Injective functions

A function f : X → Y is said to be injective if

f (x1) = f (x2) implies x1 = x2.

An injective ordered field homomorphism should be thought of as an
embedding. We will show that Q can be realized as a subset of any
ordered field F, in a way that respects all the ordered field structure.

Theorem

Let (F, <) be an ordered field. The map φ : Q → F given by

φ

(
m

n

)
= (m · 1F) · (n · 1F)−1

is an injective ordered field homomorphism.
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Ordered fields

Proof:

First we must check that φ is well defined: if m1
n1

= m2
n2
, then

m1n2 = m2n1. By an easy induction it follows that

(m1 · 1F) · (n2 · 1F) = (m2 · 1F) · (n2 · 1F).

Dividing out on both sides then shows that φ is well-defined, since

φ

(
m1

n1

)
= (m1 · 1F) · (n1 · 1F)−1 = (m2 · 1F) · (n2 · 1F)−1 = φ

(
m2

n2

)
It is routine to verify that φ is an ordered field homomorphism.

Finally, to show that φ is injective, suppose that φ(q1) = φ(q2) this
means, using the homomorphism property, that φ(q1 − q2) = 0F. Let
q1 − q2 =

m
n , then 0F = φ(q1 − q2) = φ

(
m
n

)
= (m · 1F) · (n · 1F)−1,

which implies that m · 1F = 0F. By the previous lemma this in turn
implies that m = 0. Thus q1 = q2 as desired and φ is injective.
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