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Dedekind Cuts

Definition of Dedekind cuts

A Dedekind cut is any subset α of Q with the following three properties:

(i) α ̸= ∅ and α ̸= Q.

(ii) If p ∈ α, q ∈ Q and q < p, then q ∈ α.

(iii) If p ∈ α then p < r for some r ∈ α.

Remark

The letters p, q, r will denote rational numbers and α, β, γ will denote
Dedekind cuts, which will be simply called cuts.

Property (iii) simply says that α has no largest member.

Property (ii) implies two facts which will be freely used:

If p ∈ α and q ̸∈ α, then p < q.
If r ̸∈ α and r < s, then s ̸∈ α.
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The set of real numbers R

Definition of R
We set

R = {α ⊂ Q : α is a Dedekind cut}.

Order on R
Define the order on R by setting

α < β if α ⊂ β.

Here, α is a proper subset of β, i.e. α ̸= β.

One has to show:
1 if α < β and β < γ, then α < γ,
2 if α, β ∈ R, then only one of the following holds:

α < β, or α = β, or α > β.
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Proof

Proof of (i) If α < β and β < γ it is clear that a α < γ. A proper
subset of a proper subset is a proper subset.

Proof of (ii) It is also clear that at most one of the three relations

α < β, or α = β, or α > β.

can hold for any pair α, β.

To show that at least one holds, assume that the first two fail.
Then α is not a subset of β. Hence there is a p ∈ α with p /∈ β.
If q ∈ β, it follows that q < p (since p /∈ β ), hence q ∈ α, by (i).
Thus β ⊂ α. Since β ̸= α, we conclude that β < α.

Thus R is now an ordered set.
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Least–upper–bound property

Theorem

The ordered set R has the least upper bound property.

Proof: To prove this, let ∅ ≠ A ⊆ R, and assume that β ∈ R is an upper
bound of A, i.e. α < β for every α ∈ A. Define

γ =
⋃
α∈A

α.

In other words, p ∈ γ if and only if p ∈ α for some α ∈ A. We shall prove
that γ ∈ R and that

γ = supA.

Proof of property (i): Since A ̸= ∅, there exists an α0 ∈ A. This
α0 ̸= ∅ by the property (i). This ensures that γ ̸= ∅, since α0 ⊂ γ.
Next, γ ⊂ β (since α ⊂ β for every α ∈ A ), and therefore γ ̸= Q.
Thus γ satisfies property (i).
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Proof

Proof of property (ii): Pick p ∈ γ and q < p. We show that q ∈ γ.

Since p ∈ γ, then p ∈ α1 for some α1 ∈ A.
Since q < p, then q ∈ α1, hence q ∈ γ; this proves property (ii).

Proof of property (iii): Pick p ∈ γ. We show that p < r for some
r ∈ γ.

Since p ∈ γ, then p ∈ α1 for some α1 ∈ A.
Choose r ∈ α1 so that r > p, then we see that r ∈ γ (since α1 ⊂ γ),
and therefore γ satisfies property (iii).

We have shown that γ ∈ R. It remain to show that γ = supA.

It is clear that α ≤ γ for every α ∈ A.
If δ < γ, then there is an s ∈ γ such that s /∈ δ. Since s ∈ γ, then
s ∈ α for some α ∈ A. Now taking p ∈ δ we see that p < s, since
s /∈ δ. But s ∈ α thus p ∈ α by property (ii) and consequently δ ⊂ α.
Hence, δ < α, and δ is not an upper bound of A.

This gives the desired result and γ = supA.
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Addition and zero in R
Addition and zero in R
For α, β ∈ R we define it sum by setting

α+ β = {r + s : r ∈ α, s ∈ β}.

The neutral element for addition in R is defined by 0∗ = {u ∈ Q : u < 0}.
It is easy to check that 0∗ is a cut.

Exercise: R with 0∗ is an abelian group satisfying addition axioms (A):

(A1) if x , y ∈ R, then x + y ∈ R,
(A2) x + y = y + x for all x , y ∈ R,
(A3) (x + y) + z = x + (y + z) for all x , y , z ∈ R,
(A4) we have x + 0∗ = x for all x ∈ R,
(A5) to every x ∈ R corresponds an element (−x) ∈ R such that

x + (−x) = 0∗.
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Multiplication and one in R+

Multiplication and one in R+

We define the set of positive real numbers by

R+ = {α ∈ R : α > 0∗}

and multiplication in R+ by setting

αβ = {p ∈ Q : p ≤ rs for some r ∈ α, s ∈ β, r , s > 0}.

The identity element for multiplication in R+ is defined by

1∗ = {q ∈ Q : q < 1}.
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Exercise

Exercise: R with 1∗ is an abelian group satisfying multiplication axioms (M):

(M1) if x , y ∈ R+, then their product xy ∈ R+,

(M2) xy = yx for all x , y ∈ R+,

(M3) (xy)z = x(yz) for all x , y , z ∈ R+,

(M4) we have 1∗ ̸= 0∗ and 1∗ · x = x for all x ∈ R+,

(M5) if 0∗ ̸= x ∈ R+ then there is an element x−1 = 1∗

x ∈ R+ such
that

x · x−1 = 1∗.

Exercise: R+ satisfies distributive law (D):

(D1) x(y + z) = xy + xz holds for all x , y , z ∈ R.
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Multiplication and one in R

Multiplication in R
We complete the definition of multiplication by setting 0∗α = α0∗ = 0∗,
and by setting

αβ =


(−α)(−β) if α < 0∗ and β < 0∗,

−((−α)β) if α < 0∗ and β > 0∗,

−(α(−β)) if α > 0∗ and β < 0∗.

Exercise

Now R satisfies the multiplication (M) and the distributive law (D) axioms.

Exercise: R satisfies ordered field axioms (O):

(O1) if x , y , z ∈ R and y < z , then x + y < x + z ,

(O2) if x > 0 and y > 0, then xy > 0.

So we have shown that R is an ordered field with the least–upper–bound
property.
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Q is subfield of R
We associate with each r ∈ Q the set

r∗ = {p ∈ Q : p < r}.
Clearly r∗ is a cut and satisfies the following relations:

1 r∗ + s∗ = (r + s)∗,
2 r∗s∗ = (rs)∗,
3 r∗ < s∗ ⇐⇒ r < s.

The set of all such cuts will be denoted by

Q∗ = {r∗ : r ∈ Q} ⊆ R.

Theorem (Prove it!)

There is a canonical filed isomorphism Φ : Q → Q∗ given by

Φ(r) = r∗ for all r ∈ Q.

In particular, Q is a subfield of R via this identification.
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R is an ordered field satisfying (AoC) and contains Q

Theorem ( Forget about the previous construction of R! )

There exists a set of real numbers R, which is an ordered field containing
Q and satisfying the axiom of completeness (AoC).

Axiom of completeness (AoC)

Every ∅ ≠ A ⊆ R that is bounded above has the least–upper–bound.

R with + is an abelian group satisfying addition axioms (A):

(A1) if x , y ∈ R, then x + y ∈ R,
(A2) x + y = y + x for all x , y ∈ R,
(A3) (x + y) + z = x + (y + z) for all x , y , z ∈ R,
(A4) R contains the element 0 such that x + 0 = x for all x ∈ R,
(A5) to every x ∈ R corresponds an element (−x) ∈ R such that

x + (−x) = 0.
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Proof

R with · is an abelian group satisfying multiplication axioms (M):

(M1) if x , y ∈ R, then their product xy ∈ R,
(M2) xy = yx for all x , y ∈ R,
(M3) (xy)z = x(yz) for all x , y , z ∈ R,
(M4) R contains the element 1 ̸= 0 such that 1 · x = x for all x ∈ R,
(M5) if 0 ̸= x ∈ R then there is an element x−1 = 1

x ∈ R such that

x · x−1 = 1.

R with + and · satisfies distributive law (D):

(D1) x(y + z) = xy + xz holds for all x , y , z ∈ R.

R with < satisfies ordered field axioms (O):

(O1) if x , y , z ∈ R and y < z , then x + y < x + z ,

(O2) if x > 0 and y > 0, then xy > 0.
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Consequences of Axiom of completeness

Nested interval property

Theorem

Nested interval property For each n ∈ N, assume we are given a closed
interval

In = [an, bn] = {x ∈ R : an ≤ x ≤ bn}.

Assume also that In ⊇ In+1 for all n ∈ N. Then the resulting nested
sequence of closed intervals

I1 ⊇ I2 ⊇ I3 ⊇ . . .

has a nonempty intersection, that is⋂
n∈N

In ̸= ∅.
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Consequences of Axiom of completeness

Proof 1/2

Proof: Using (AoC) we will produce x ∈ R so that x ∈ In for every
n ∈ N. Then ⋂

n∈N
In ⊃ {x} ≠ ∅.

Consider the set A = {an : n ∈ N} of all left-hand endpoints of the
intervals In. Because the intervals are nested one sees that every bn serves
as an upper bound for A. Thus by the (AoC) we are allowed to write

x = supA ∈ R.

The proof will be complete if we show that x ∈ In for all n ∈ N.
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Consequences of Axiom of completeness

Proof 2/2

Since x is an upper bound for A thus

an ≤ x for all n ∈ N.

The fact that bn is an upper bound for A and that x is the least upper
bound implies

x ≤ bn for all n ∈ N.

Thus
an ≤ x ≤ bn

for all n ∈ N hence x ∈ In for all n ∈ N and consequently

x ∈
⋂
n∈N

In.
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Consequences of Axiom of completeness

Archimedian property of R

Archimedian property

(i) Given any number x , z ∈ R with z > 0 there exists n ∈ N satisfying

nz > x .

(ii) Given any real number y > 0 there exists an n ∈ N satisfying

1

n
< y .
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Consequences of Axiom of completeness

Proof

Proof. Note that (i) implies (ii) by letting x = 1
y and z = 1. It suffices to

prove (i). Without loss of generality we can assume that x > 0 and
consider

A = {nz : n ∈ N}.

Suppose for a contradiction that A is bounded, i.e. there is y ≥ 0 such
that nz ≤ y for any n ∈ N. This means that y is an upper bound for A.
By the (AoC):

α = supA ∈ R.

Since z > 0, α− z < α and α− z is not upper bound of A. Thus we find
m ∈ N such that

α− z < mz ⇐⇒ α < (m + 1)z .

This is contradiction since α is the supremum of A.
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Consequences of Axiom of completeness

Q is dense in R

Theorem (Q is dense in R)
If x , y ∈ R and x < y then there is p ∈ Q such that x < p < y.

Proof. Since x < y , by Archimedian property there is n ∈ N such that

n(y − x) > 1.

Then, we apply Archimedian property to find m1,m2 ∈ Z such that
m1 > nx and m2 > −nx . Then −m2 < nx < m1.

Hence there is an integer m with −m2 ≤ m ≤ m1 such that

m − 1 ≤ nx < m.

We combine these inequalities to get

nx < m ≤ nx + 1< ny , so x < p =
m

n
< y .

(MATH 411H, FALL 2025) Lesson 4 September 15, 2025 19 / 31



Consequences of Axiom of completeness

n-th root of a real number

Theorem

For every real x > 0 and n ∈ N there is a unique real number y > 0 so that

yn = x .

The number y > 0 is called the n-th root of x and we will write y = n
√
x .

Proof: Uniqueness. The fact that there exists at most one such y is
clear, since 0 < y1 < y2 implies yn1 < yn2 .

Identity bn − an

In the proof (in the existence part), we will use the following identity

bn − an = (b − a)(bn−1 + bn−2a+ . . .+ an−2b + an−1),

which holds for all a, b ∈ R and n ∈ N.
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Consequences of Axiom of completeness

Proof: 1/3

Proof: Existence. Let

E = {t > 0 : tn < x}.

If t = x
x+1 , then 0 ≤ t < 1 hence

tn ≤ t < x

thus t ∈ E and E ̸= ∅.
If t > x + 1, then tn > t > x , so that t ̸∈ E . Thus 1 + x is an upper
bound of E .

By the (AoC) we may write y = supE ∈ R. We will show that

yn = x .

It suffices to show that yn < x and yn > x cannot hold.
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Consequences of Axiom of completeness

Proof: 2/3. Case y n < x .

The identity

bn − an = (b − a)(bn−1 + bn−2a+ . . .+ an−2b + an−1)

gives
bn − an < (b − a)nbn−1

if 0 < a < b.

Assume yn < x . Choose 0 < h < 1 so that

h <
x − yn

n(y + 1)n−1
.

Put a = y , b = y + h. Then

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x − yn.

Thus (y + h)n < x and y + h ∈ E . Since y + h > y this contradicts
the fact that y is an upper bound of E .
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Consequences of Axiom of completeness

Proof: 3/3. Case y n > x .

Assume that yn > x and set

k =
yn − x

nyn−1
.

Then 0 < k < y . If t ≥ y − k we conclude

yn − tn ≤ yn − (y − k)n < knyn−1 = yn − x .

Thus tn > x and t ̸∈ E . It follows that y − k is an upper bound of E .
But

y − k < y ,

which contradicts the fact that y is the least upper bound of E .

Hence
yn = x .
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Consequences of Axiom of completeness

Corollary

Corollary

If a, b > 0 are real numbers and n ∈ N, then

(ab)1/n = a1/nb1/n

It is a consequence of the uniqueness property in the previous theorem.
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Consequences of Axiom of completeness

Exercise: xy for x , y ∈ R
Fix b > 1.

If m, n, p, q ∈ Z, n, q > 0 and r = m
n = p

q , then

(bm)
1
n = (bp)

1
q .

Hence, it makes sense to define br = (bm)
1
n .

If r , s ∈ Q, then
br+s = brbs .

If x ∈ R define
B(x) = {bt : t ∈ Q, t ≤ x}.

Then br = supB(r) when r ∈ Q. Hence, it makes sense to define

bx = supB(x)

for every x ∈ R.
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Decimals

Decimals 1/2

Let x > 0 be real. Let n0 be the largest integer such that n0 ≤ x .

Remark

Note that the existence of n0 follows from the Archimedian property. Why?

Then, we define n1 to be the largest integer such that

n0 +
n1
10

≤ x .

then, having n0, n1, we define n2 to be the largest integer such that

n0 +
n1
10

+
n2
100

≤ x .

We continue this procedure...
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Decimals

Decimals 2/2

Having chosen
n0, n1, . . . , nk−1

let nk be the largest integer such that

n0 +
n1
10

+
n2
102

+ . . .+
nk
10k

≤ x .

Let
E = {n0 +

n1
10

+
n2
102

+ . . .+
nk
10k

: k ∈ N0}.

Then one can show that x = supE .
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Decimals

Decimal system - example

Example

Write down 0, 25 in the form n
m .

Solution. We write

0, 25 =
2

10
+

5

100
=

20

100
+

5

100
=

25

100
=

1

4
.
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Decimals

Decimal system - example

Example

Write down x = 0, 101010101 . . . in the form n
m .

Solution. Note that
10x = 10, 10101010 . . . ,

hence
10x = 10 + x

9x = 10 ⇐⇒ x =
10

9
.
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The extended real numbers system

The extended real number system

The extended real number system

The extended real number system consists of real numbers R and two
symbols +∞ and −∞.

We preserve the original order in R and define

−∞ < x < +∞

for all x ∈ R.

Example

If E ⊆ R, E ̸= ∅ but not bounded then

supE = +∞.
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The extended real numbers system

Properties of the extended real number system

Properties

If x ∈ R, then
(A) x +∞ = ∞, x −∞ = −∞, x

+∞ = x
−∞ = 0,

(B) if x > 0, then x(+∞) = +∞, x(−∞) = −∞,

(C) if x < 0, then x(+∞) = −∞, x(−∞) = +∞.
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