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N
Dedekind Cuts

Definition of Dedekind cuts

A Dedekind cut is any subset a of Q with the following three properties:
@ a#0and a#Q.

@ Ifpea, geQandqg<p,thenqgea.

@ If pe athen p <r forsomer € a.

Remark

@ The letters p, g, r will denote rational numbers and «, 3, will denote
Dedekind cuts, which will be simply called cuts.

@ Property (iii) simply says that « has no largest member.

@ Property (ii) implies two facts which will be freely used:

o lf pecaand g & a, then p < q.
o If ré&aand r <s, thens € a.

v
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The set of real numbers R

Definition of R

We set
R ={a CQ: «is a Dedekind cut}.

Order on R
Define the order on R by setting

a<pf if acCpg.

Here, « is a proper subset of (3, i.e. o # .

One has to show:
Q ifa< fand § <, then a < 7,
@ if o, 8 € R, then only one of the following holds:

a<fB, o a=p, o a>0}p.
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N
Proof

@ Proof of (i) If « < 8 and B < it is clear that a « < . A proper
subset of a proper subset is a proper subset. O

@ Proof of (ii) It is also clear that at most one of the three relations

a<pB, o a=p, o a>0p.

can hold for any pair «, 3.

To show that at least one holds, assume that the first two fail.
Then « is not a subset of 3. Hence there is a p € a with p ¢ S.
If g € 3, it follows that g < p (since p ¢ 8 ), hence g € a, by (i).

o
o
o
e Thus 8 C a. Since 8 # a, we conclude that 8 < a. O

@ Thus R is now an ordered set.
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N
Least—upper—bound property

Theorem
The ordered set R has the least upper bound property.

Proof: To prove this, let ) # A C R, and assume that 8 € R is an upper
bound of A, i.e. a < B for every a € A. Define

7:Ua.

In other words, p € «v if and only if p € o for some a € A. We shall prove
that v € R and that

v =supA.

@ Proof of property (i): Since A # (), there exists an ag € A. This
ag # 0 by the property (i). This ensures that v # (), since ag C 7.
Next, v C /3 (since aw C 3 for every o € A ), and therefore v # Q.
Thus ~y satisfies property (i). Ol
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N
Proof

@ Proof of property (ii): Pick p € v and g < p. We show that g € .

e Since p € ~, then p € a; for some a; € A.
e Since g < p, then g € ay, hence g € ~; this proves property (ii). O

e Proof of property (iii): Pick p € v. We show that p < r for some
re-.
e Since p € 7, then p € oy for some a; € A.
o Choose r € ay so that r > p, then we see that r €  (since oy C ),
and therefore ~y satisfies property (iii).

@ We have shown that v € R. It remain to show that v = sup A.
o It is clear that a <y for every a € A.
o If § < v, then there is an s € v such that s ¢ §. Since s € v, then
s € a for some a € A. Now taking p € § we see that p < s, since
s ¢ 0. But s € « thus p € « by property (ii) and consequently ¢ C «a.
e Hence, 6 < «, and § is not an upper bound of A.

This gives the desired result and v = sup A. O
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Addition and zero in R

Addition and zero in R
For a,, B € R we define it sum by setting

a+pB={r+s:rea, scp}

The neutral element for addition in R is defined by 0* = {u € Q : u < 0}.

It is easy to check that 0* is a cut.

Exercise: R with 0* is an abelian group satisfying addition axioms (A):
o (Al)if x,y € R, then x +y € R,
o (A2) x+y=y+xforall x,y €R,
o (A3) (x+y)+z=x+(y+z)forall x,y,z R,
o (A4) we have x 4+ 0" = x for all x € R,
o (A5)

Ab) to every x € R corresponds an element (—x) € R such that

*
x+ (—x) =0"
o
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Multiplication and one in R

Multiplication and one in R

We define the set of positive real numbers by
Ry ={aeR:a>0"}
and multiplication in R by setting
af={peQ:p<rsforsomereca,scp rs>0}

The identity element for multiplication in R is defined by

I"={qeQ:qg<1}.

(MATH 411H, FALL 2025) Lesson 4 September 15, 2025 8/31



Exercise

Exercise: R with 1* is an abelian group satisfying multiplication axioms (M):
o (M1)if x,y € Ry, then their product xy € Ry,
(M2) xy = yx for all x,y € Ry,
(M3) (xy)z = x(yz) for all x,y,z € Ry,
(M4) we have 1* # 0* and 1* - x = x for all x € Ry,
(M5) if 0* # x € R, then there is an element x~1 = 17* € R4 such
t

x-x 1 =1*%

Exercise: R satisfies distributive law (D):

e (D1) x(y + z) = xy + xz holds for all x,y,z € R.
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Multiplication and one in R

Multiplication in R

We complete the definition of multiplication by setting 0*a = a0* = 0%,
and by setting

(—a)(=pB) if a« < 0" and B < 0%,
aff = ¢ —((—a)B) if a < 0* and > 0%,
—(a(—p)) if @ > 0* and B < 0*.

Exercise

Now R satisfies the multiplication (M) and the distributive law (D) axioms.

Exercise: R satisfies ordered field axioms (O):
e (Ol)ifx,y,zeRand y <z thenx+y < x+ z,
e (02)if x>0andy >0, then xy > 0.
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|
Q is subfield of R

We associate with each r € QQ the set
r'={peQ:p<r}
Clearly r* is a cut and satisfies the following relations:
Q r"+s5*=(r+5s),
Q r*s* =(rs)*,
Q r'<s* < r<s.
The set of all such cuts will be denoted by

Q*={r":reQ}CR.
Theorem (Prove it!)

There is a canonical filed isomorphism ® : Q — Q* given by
O(r)y=r* forall reQ.

In particular, Q is a subfield of R via this identification.
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R is an ordered field satisfying (AoC) and contains Q

Theorem ( Forget about the previous construction of R! )

There exists a set of real numbers R, which is an ordered field containing
Q and satisfying the axiom of completeness (AoC).

Axiom of completeness (AoC)

Every () # A C R that is bounded above has the least—upper—bound.

R with + is an abelian group satisfying addition axioms (A):
(A1) if x,y € R, then x +y € R,
A2) x+y =y +xforall x,y € R,
) (x+y)+z=x+(y+2z) foral x,y,z€eR,
A4) R contains the element 0 such that x + 0 = x for all x € R,
Ab) to every x € R corresponds an element (—x) € R such that
x4+ (—x)=0.
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N
Proof

R with - is an abelian group satisfying multiplication axioms (M):

(M1) if x,y € R, then their product xy € R,

(M2) xy = yx for all x,y € R,

(M3) (xy)z = x(yz) for all x,y,z € R,

(M4) R contains the element 1 # 0 such that 1-x = x for all x € R,
(M5) if 0 # x € R then there is an element x "1 = 1 € R such that

x-x1=1.

R with + and - satisfies distributive law (D):
e (D1) x(y + z) = xy + xz holds for all x,y,z € R.

R with < satisfies ordered field axioms (O):
o (Ol)ifx,y,zeRand y <z thenx+y < x+ z,

e (02)if x>0andy >0, then xy > 0.
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Consequences of Axiom of completeness

Nested interval property

Theorem

Nested interval property For each n € N, assume we are given a closed
interval

In=1an, bp] ={x €R : a, < x < by}

Assume also that I, 2 I,41 for all n € N. Then the resulting nested
sequence of closed intervals

hoh2>hKko...

has a nonempty intersection, that is

() 1 #0.

neN
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Proof 1/2

Proof: Using (AoC) we will produce x € R so that x € , for every
n € N. Then

()12 {x} #0.

neN
r rr A 1 1T 17
L L L L .. e .o - =
a as as an b, by b2 by

Consider the set A= {a, : n & N} of all left-hand endpoints of the
intervals /,. Because the intervals are nested one sees that every b, serves
as an upper bound for A. Thus by the (AoC) we are allowed to write

x=supA eR.

The proof will be complete if we show that x € [, for all n € N.
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Proof 2/2

Since x is an upper bound for A thus
an < x for all neN.

The fact that b, is an upper bound for A and that x is the least upper
bound implies

x < b, for all neN.

Thus
an <x < by

for all n € N hence x € I, for all n € N and consequently
X € m 1,.

U
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Archimedian property of R

Archimedian property
@ Given any number x,z € R with z > 0 there exists n € N satisfying

nz > Xx.

@ Given any real number y > 0 there exists an n € N satisfying

1
- <y.
n
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Consequences of Axiom of completeness
Proof

Proof. Note that (i) implies (ii) by letting x = % and z = 1. It suffices to
prove (i). Without loss of generality we can assume that x > 0 and

consider
A={nz : ne N}

Suppose for a contradiction that A is bounded, i.e. there is y > 0 such
that nz < y for any n € N. This means that y is an upper bound for A.
By the (AoC):

a=supAeR.

Since z > 0, @ — z < « and a — z is not upper bound of A. Thus we find
m € N such that

a—z<mz <= a<(m+1)z
This is contradiction since « is the supremum of A. []
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Q is dense in R

Theorem (Q is dense in R)
If x,y € R and x < y then there is p € Q such that x < p < y. J

Proof. Since x < y, by Archimedian property there is n € N such that
n(y —x) > 1.

@ Then, we apply Archimedian property to find my, my € Z such that
mi > nx and my > —nx. Then —my < nx < my.
@ Hence there is an integer m with —my < m < m; such that

m—1<nx<m.
@ We combine these inequalities to get
m
nx < m < nx -+ 1< ny, SO x<p=—<Yy.
n

U
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Consequences of Axiom of completeness

n-th root of a real number

Theorem
For every real x > 0 and n € N there is a unique real number y > 0 so that

y'=x.

The number y > 0 is called the n-th root of x and we will write y = /x.

Proof: Uniqueness. The fact that there exists at most one such y is
clear, since 0 < y1 < y» implies y{' < y3.

Identity b" — a"

In the proof (in the existence part), we will use the following identity

b" —a"=(b—a)(b" ' +b"2a+ ... +a" b+ a"t),

which holds for all a,b € R and n € N.
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Proof: 1/3

o Proof: Existence. Let
E={t>0:t"<x}.
o If t = %5, then 0 <t <1 hence
t"<t<x

thus t € E and E # 0.

o Ift>x+1, thent”" >t > x,sothat t ¢ E. Thus 1+ x is an upper
bound of E.

@ By the (AoC) we may write y = sup E € R. We will show that
y" = x.

o It suffices to show that y"” < x and y" > x cannot hold.

(MATH 411H, FALL 2025) Lesson 4 September 15, 2025 21/31



Proof: 2/3. Case y" < x.

@ The identity
b" —a" = (b—a)(b" 4+ b"2a+...+a"?h+a" )
gives
b" —a" < (b— a)nb"?
if0<a<b.
@ Assume y" < x. Choose 0 < h < 1 so that

x—y"
h< ————.
n(y + 1)1

@ Puta=y, b=y+ h. Then
(y+h)"—y" < hn(y +h)" P < hn(y +1)" L < x—y"

@ Thus (y + h)" < x and y + h € E. Since y + h > y this contradicts
the fact that y is an upper bound of E.
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___ Comscauences of Axiom of completencss
Proof: 3/3. Case y" > x.

@ Assume that y” > x and set

n
— X
kz%ﬁ:‘

@ Then0< k< y. If t >y — k we conclude
Y —t" <y —(y — k)" < kny"l = y" — x.

@ Thus t" > x and t &€ E. It follows that y — k is an upper bound of E.
But
y—k<y,
which contradicts the fact that y is the least upper bound of E.

@ Hence
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Consequences of Axiom of completeness

Corollary

Corollary

If a, b > 0 are real numbers and n € N, then

(ab)l/n _ al/nbl/n

It is a consequence of the uniqueness property in the previous theorem.
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Consequences of Axiom of completeness

Exercise: x¥ for x,y € R

Fix b > 1.
o If mn,p,geZ ng>0andr="7"= g, then
(b7)7 = (b5,
@ Hence, it makes sense to define b" = (b’")%.

If r,s € Q, then
bt = b"b°.

o If x € R define
B(x)={b" : teQ, t <x}.

@ Then b" = sup B(r) when r € Q. Hence, it makes sense to define
b* = sup B(x)

for every x € R.
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Decimals 1/2

Let x > 0 be real. Let ng be the largest integer such that ng < x.

Remark

Note that the existence of ng follows from the Archimedian property. Why?

Then, we define n; to be the largest integer such that

+ 1 <
n, .
0 10 =X

then, having ng, n1, we define ny to be the largest integer such that

We continue this procedure...
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Decimals 2/2

Having chosen
no, N, ...

let ni be the largest integer such that

m n
np+ — +

10 ' 102
Let ny n

Then one can show that x =sup E.

+ ...+

— kENo}.
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Decimals

Decimal system - example

Example
Write down 0,25 in the form . J

Solution. We write

™10 100 100 100 100 4~
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Decimals

Decimal system - example

Example
Write down x = 0,101010101... in the form . J

Solution. Note that
10x = 10,10101010.. .,

hence
10x =10 + x
10
Ix =10 <= x = —.
9
L]
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The extended real number system

The extended real number system

The extended real number system consists of real numbers R and two
symbols +o0o and —oc.

We preserve the original order in R and define
—00 < X < 400

for all x € R.

Example
If EC R, E # () but not bounded then

sup E = +o0.
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The extended real numbers system

Properties of the extended real number system

Properties
If x € R, then
Q@ x+o00=00x—00=-00 P ==5=0,

@ if x>0, then x(+00) = +00, x(—00) = —o0,

@ if x <0, then x(+00) = —o0, x(—00) = +0o0.
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