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Sequences

An important principle

Two a, b ∈ Z are equal iff |a− b| < 1. Can this be extended beyond Z?

Two a, b ∈ R are equal iff for every ε > 0 it follows

|a− b| < ε.

Proof (⇐). If a = b, then |a− b| = 0 < ε for any ε > 0.

Proof (⇒). Suppose that for any ε > 0 one has |a− b| < ε. If a = b,
then we are done. Assume that a ̸= b and take ε0 = |a− b| > 0. Taking
any 0 < ε < ε0, which is possible (why?), one has

0 < ε0 = |a− b| < ε < ε0,

which is impossible.
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Sequences

Sequences

Definition

A sequence is a function whose domain is N.

Example

Common ways to describe sequences:

(i)
(
1, 12 ,

1
3 ,

1
4 ,

1
5 , . . .

)
,

(ii)
(
n+1
n

)∞
n=1

=
(
n+1
n

)
n∈N =

(
2
1 ,

3
2 ,

4
3 , . . .

)
,

(iii) (xn)n∈N, where xn = 2n for each n ∈ N,

(iv) (an)n∈N, where a1 = 2 and an+1 =
an
2 .
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Sequences

Graph of a sequence

Consider xn = 1
n , then
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Sequences

Asymptotic behaviour of a sequence xn =
1
n

Question

Is there a reasonable way how to measure how small a sequence (xn)n∈N,
(where xn = 1

n for n ∈ N) is asymptotically (≡ at infinity)?

We take an arbitrary ε > 0 and since xn = 1
n then by the Archimedian

property we always find Nε ∈ N so that 1
Nε

< ε.

Moreover, since xn+1 =
1

n+1 < 1
n = xn for every n ∈ N thus

1

n
< ε for any n ≥ Nε. (∗)

Since ε > 0 is arbitrary and (*) holds for all n ≥ Nε (we will usually
say that (*) holds for all but finitely many integers or for all
sufficiently large integers).

One can also think that the sequence (xn)n∈N is asymptotically small
or small at infinity.
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Convergence of sequences in ordered fields

Convergence of a sequence in an ordered field

Convergence of a sequence

A sequence (xn)n∈N ⊆ R converges to x ∈ R if, for all ε > 0 there exists
Nε ∈ N such that whenever n ≥ Nε it follows that

|x − xn| < ε.

To indicate that (an)n∈N ⊆ R converges to a ∈ R we will write either

lim
n→∞

an = a or lim an = a or an −−−→n→∞ a or an → a.
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Convergence of sequences in ordered fields

ε-neighbourhood

ε-neighbourhood

Given a ∈ R and ε > 0 the set

Vε(a) = {x ∈ R : |x − a| < ε}

is called the ε-neighbourhood or an open ball centered at a and radius ε.
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Convergence of sequences in ordered fields

Convergence - illustration
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Convergence of sequences in ordered fields

Topological version of convergence

Topological version of convergence

A sequence (xn)n∈N ⊆ R converges to a ∈ R if, given any ε-neighbourhood
Vε(a) ⊆ R of a contains all but finitely many terms of (xn)n∈N.
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Convergence of sequences in ordered fields

Example

Exercise

Prove limn→∞
3n+2
2n+1 = 3

2 .

Solution.

1 Let ε > 0 be arbitrary, but fixed.

2 Determine the choice of Nε ∈ N. In our case we take

Nε ≥
2

ε
.

3 Now show that Nε actually works. Assume that n ≥ Nε, then∣∣∣∣3n + 2

2n + 1
− 3

2

∣∣∣∣ ≤ ∣∣∣∣3n + 2

2n + 1
− 3n

2n + 1

∣∣∣∣+ ∣∣∣∣ 3n

2n + 1
− 3n

2n

∣∣∣∣
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Convergence of sequences in ordered fields

Solution

3 Furthermore, for n ≥ Nε we have∣∣∣∣3n + 2

2n + 1
− 3n

2n + 1

∣∣∣∣ = 2

2n + 1
≤ 1

n
<

ε

2
.

∣∣∣∣ 3n

2n + 1
− 3n

2n

∣∣∣∣ = 3n(2n + 1− 2n)

2n(2n + 1)
<

3

4n
<

1

n
<

ε

2
.

4 Hence

lim
n→∞

3n + 2

2n + 1
=

3

2
.
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Convergence of sequences in ordered fields

Example

Exercise

Prove limn→∞
n

n3+3
= 0.

Solution.

1 Let ε > 0 be arbitrary, but fixed.

2 Determine the choice of Nε ∈ N. In our case we take

Nε ≥
1

ε
.

3 Now show that Nε actually works. Assume that n ≥ Nε, then∣∣∣∣ n

n3 + 3
− 0

∣∣∣∣ = n

n3 + 3
≤ 1

n2
≤ 1

n
< ε.
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Convergence of sequences in ordered fields

Uniqueness of the limit

Theorem

The limit of the sequence (xn)n∈N ⊆ R, when it exists, must be unique.

Proof. Suppose that

lim
n→∞

xn = x and lim
n→∞

xn = y .

We have to prove that x = y . Let ε > 0 be arbitrary, then it suffices to
show |x − y | < ε. Note that

(*)

limn→∞ xn = x ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |xn − x | < ε1.
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Convergence of sequences in ordered fields

Proof

(*)

limn→∞ xn = y ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |xn − y | < ε2.

Applying (*) and (*) with ε1 = ε2 =
ε
2 we know that there are

N1
ε1 ,N

2
ε2 ∈ N so that

n ≥ N1
ε1 implies |xn − x | < ε1,

n ≥ N2
ε2 implies |xn − y | < ε2.

Setting Nε = max(N1
ε/2,N

2
ε/2), taking n ≥ Nε and using the triangle

inequality

|x − y | = |(x − xn) + (xn − y)| ≤ |xn − x |+ |xn − y | < ε

2
+

ε

2
= ε.
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Convergence of sequences in ordered fields

Bounded sequences

Definition

A sequence (xn)n∈N ⊆ R is bounded if there exists M > 0 such that

|xn| ≤ M

for all n ∈ N.

Geometrically, this means that the interval [−M,M] contains all terms of
the sequence (xn)n∈N.

Example(
5 + 1

n

)
n∈N is bounded by 6,

(n2)n∈N is not bounded.
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Convergence of sequences in ordered fields

Every convergent sequence is bounded

Theorem

Every convergent sequence (xn)n∈N ⊆ R is bounded, i.e. there exists
M > 0 such that |xn| ≤ M for all n ∈ N.

Proof. Assume that limn→∞ xn = x . This is equivalent to the fact that
for every ε > 0 there is Nε ∈ N so that

n ≥ Nε implies |xn − x | < ε. (∗)

Applying (*) with ε = 1 we obtain

|xn − x | < 1 for any n ≥ N1.

Thus |xn| < 1 + |x | for any n ≥ N1. Consider

M = max{|x1|, |x2|, . . . , |xN1−1|, |x |+ 1}

we see that |xn| ≤ M for all n ∈ N and we are done.
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Convergence of sequences in ordered fields

Algebraic limits theorem

Theorem

Let a, b, c ∈ R and let (an)n∈N, (bn)n∈N ⊆ R be two convergent sequences
such that limn→∞ an = a and limn→∞ bn = b. Then

(i) limn→∞(can) = ac,

(ii) limn→∞(an + bn) = a+ b,

(iii) limn→∞ anbn = ab,

(iv) limn→∞
an
bn

= a
b provided that bn, b ̸= 0 for all n ∈ N.

Proof of (i). If c = 0 then there is nothing to do since can = 0 for all
n ∈ N, thus limn→∞ can = 0 = ca.

Assume that c ̸= 0. Let ε > 0 be arbitrary but fixed and note that
limn→∞ an = a ⇐⇒ for every ε0 > 0 there is Ñε0 ∈ N such that

n ≥ Ñε0 implies |a− an| < ε0. (∗)
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Convergence of sequences in ordered fields

Proof of (i)

Applying (*) with ε0 =
ε
c one obtains that

|can − ca| = |c ||an − a| < |c | ε
|c |

= ε.

Thus we have shown that for any ε > 0 there is Nε = Ñε/|c| ∈ N such
that if n ≥ Nε, then

|can − ca| < ε.

Hence limn→∞ can = ca.
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Convergence of sequences in ordered fields

Proof of (ii): 1/2

limn→∞ an = a ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |an − a| < ε1. (∗)

limn→∞ bn = b ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |bn − b| < ε2. (∗)

Let ε > 0 be arbitrary but fixed. Applying (*) and (*) with
ε1 = ε2 =

ε
2 one obtains

n ≥ N1
ε1 implies |an − a| < ε/2,

n ≥ N2
ε2 implies |bn − b| < ε/2.
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Convergence of sequences in ordered fields

Proof of (ii): 2/2

By the triangle inequality for any n ≥ Nε = max(N1
ε1 ,N

2
ε2) we see

|an + bn − (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b|

<
ε

2
+

ε

2
= ε.

Since ε > 0 was arbitrary we proved that

lim
n→∞

(an + bn) = a+ b.
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Convergence of sequences in ordered fields

Proof of (iii): 1/3

limn→∞ an = a ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |an − a| < ε1. (∗)

limn→∞ bn = b ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |bn − b| < ε2. (∗)

We begin by observing that

|anbn − ab| = |anbn − abn + abn − ab|
≤ |bn(an − a)|+ |a(bn − b)|
≤ |bn||an − a|+ |a||bn − b|.
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Convergence of sequences in ordered fields

Proof of (iii): 2/3

But |a| ≤ |an − a|+ |an| thus

|anbn − ab| ≤ |bn||an − a|+ |bn − b|(|an − a|+ |an|)
≤ (|bn|+ |bn − b|)|an − a|+ |bn − b||an|.

Since limn→∞ an = a and limn→∞ bn = b then there are M1,M2 > 0
such that

|an| ≤ M1 and |bn| ≤ M2 for all n ∈ N.

Consequently

|anbn − ab| ≤ (M2 + |bn − b|)|an − a|+M1|bn − b|.

Let ε > 0 be arbitrary but fixed. We apply (*) with ε1 =
ε

2(M2+1) and

(*) with ε2 = min
{

ε
2M1

, 1
}
, which implies respectively
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Convergence of sequences in ordered fields

Proof of (iii): 3/3

n ≥ N1
ε/2 implies |a− an| <

ε

2(M2 + 1)
,

n ≥ N2
ε/2 implies |b − bn| < min

{ ε

2M1
, 1
}
.

Thus taking n ≥ Nε = max
(
N1
ε1 ,N

2
ε2

)
we see that

|anbn − ab| ≤ (M2 + |bn − b|)|an − a|+M1|bn − b|

<
(
M2 +min

{ ε

2M1
, 1
}) ε

2(M2 + 1)
+M1min

{ ε

2M1
, 1
}

≤ (M2 + 1)
ε

2(M2 + 1)
+M1

ε

2M1
≤ ε

2
+

ε

2
= ε.

Since ε > 0 was arbitrary we proved that

lim
n→∞

anbn = ab.
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Convergence of sequences in ordered fields

Proof of (iv): 1/3

limn→∞ an = a ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |an − a| < ε1. (∗)

limn→∞ bn = b ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |bn − b| < ε2. (∗)

By (iii) it suffices to prove that limn→∞ bn = b implies

lim
n→∞

1

bn
=

1

b

whenever bn, b ̸= 0 for n ∈ N.
Let ε > 0 be arbitrary. Note that∣∣∣∣ 1bn − 1

b

∣∣∣∣ = |bn − b|
|bn||b|

.
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Convergence of sequences in ordered fields

Proof of (iv): 2/3

Applying (*) with ε2 = min
{

|b|
2 , ε|b|

2

2

}
one has

n ≥ Nε2 implies |bn − b| < ε2.

But |b|
2 > |bn − b| ≥ |b| − |bn|, hence

|b| − |bn| <
|b|
2

for all n ≥ Nε2 .

Consequently |b|
2 < |bn| for all n ≥ Nε2 . This shows that∣∣∣∣ 1bn − 1

b

∣∣∣∣ = |bn − b|
|bn||b|

<
2|bn − b|

|b|2
for all n ≥ Nε2 .
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Convergence of sequences in ordered fields

Proof of (iv): 3/3

Furthermore, for n ≥ Nε2 we also know that∣∣∣∣ 1bn − 1

b

∣∣∣∣ < 2|bn − b|
|b|2

<
2ε2
|b|2

≤ 2ε|b|2

2|b|2
= ε.

Thus

lim
n→∞

1

bn
=

1

b
.

This completes the proof of the theorem.
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Convergence of sequences in ordered fields

Order limit theorem

Order limit theorem

Let a, b, c ∈ R. Let (an)n∈N, (bn)n∈N ⊆ R be two convergent sequences
such that

lim
n→∞

an = a and lim
n→∞

bn = b.

Then

(i) If an ≥ 0 for all n ∈ N, then a ≥ 0.

(ii) If an ≤ bn for all n ∈ N, then a ≤ b.

(iii) If there is c ∈ R so that c ≤ bn for each n ∈ N, then c ≤ b. Similarly,
if an ≤ c for all n ∈ N, then a ≤ c .
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Convergence of sequences in ordered fields

Proof

Proof of (i). Assume for contradiction that a < 0. We know that
limn→∞ an = a ⇐⇒ for every ε0 > 0 there exists Nε0 ∈ N so that

n ≥ Nε0 implies |an − a| < ε0. (∗)

Applying (*) with ε0 = |a| one sees

|an − a| < |a| for all n ≥ Nε0 .

Hence an < |a|+ a = −a+ a = 0 for all n ≥ Nε0 which is impossible since
an ≥ 0 for all n ∈ N. Thus we must have a ≥ 0.

Proof of (ii). limn→∞(bn − an) = b − a. But bn − an ≥ 0 for all n ∈ N
thus b − a ≥ 0 by (i) and we are done.

Proof of (iii). Take an = c (or bn = c) for all n ∈ N and apply (ii).
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Convergence of sequences in ordered fields

Squeeze Theorem

Squeeze Theorem

Let (xn)n∈N, (yn)n∈N, (zn)n∈N ⊆ R be sequences such that xn ≤ yn ≤ zn for
all n ∈ N. If limn→∞ xn = limn→∞ zn = L ∈ R, then limn→∞ yn = L.

Proof. Let ε > 0 be arbitrary, but fixed.

(*)

limn→∞ xn = L ⇐⇒ for every ε1 > 0 there exists N1
ε1 ∈ N so that

n ≥ N1
ε1 implies |xn − L| < ε1.

(*)

limn→∞ zn = L ⇐⇒ for every ε2 > 0 there exists N2
ε2 ∈ N so that

n ≥ N2
ε2 implies |zn − L| < ε2.
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Convergence of sequences in ordered fields

Proof:

We apply (*) and (*) with ε1 = ε2 = ε, then for n ≥ Nε = max(N1
ε1 ,N

2
ε2)

one has

(∗) ⇐⇒ L− ε < xn < L+ ε,

(∗) ⇐⇒ L− ε < zn < L+ ε.

Since xn ≤ yn ≤ zn for all n ∈ N we obtain for n ≥ Nε that

L− ε < xn ≤ yn ≤ zn < L+ ε.

Thus if n ≥ Nε, then
|yn − L| < ε,

which proves that limn→∞ yn = L.
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Convergence of sequences in ordered fields

Example

Exercise

Prove that limn→∞
3n3+n2+9
n5+n3

= 0.

Solution. We will use the squeeze theorem. On the one hand,

xn = 0 ≤ 3n3 + n2 + 9

n5 + n3
= yn.

On the other hand,

3n3 + n2 + 9

n5 + n3
≤ 13n3

n5 + n3
≤ 13n3

n5
=

13

n2
= zn.

Since limn→∞
1
n2

= 0, by the squeeze theorem

lim
n→∞

3n3 + n2 + 9

n5 + n3
= 0.
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Convergence of sequences in ordered fields

Diverging sequences

Definition

Let (sn)n∈N ⊆ R be a sequence.

We write that

lim
n→∞

sn = +∞ ⇐⇒ sn −−−→n→∞ +∞

if for every M > 0 there is n ∈ N such that n ≥ N implies sn ≥ M.

Example: limn→∞ n2 − n = +∞.

Similarly,
lim
n→∞

sm = −∞ ⇐⇒ sn −−−→n→∞ −∞

if for every M > 0 there is N ∈ N such that n ≥ N implies sn ≤ −M.

Example: limn→∞
√
n − n = −∞.

In both cases we say that (sn)n∈N diverges.
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