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Sequences

An important principle

Two a, b € Z are equal iff |a— b| < 1. Can this be extended beyond Z? J

Two a, b € R are equal iff for every € > 0 it follows

la—b| <e.

Proof (<). If a= b, then |a— b| =0 < ¢ for any € > 0.

Proof (=). Suppose that for any ¢ > 0 one has |a— b| <. If a= b,
then we are done. Assume that a # b and take ¢g = |a — b| > 0. Taking
any 0 < € < g9, which is possible (why?), one has

O<ep=l|a—b|<e<eo,

which is impossible. U
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Sequences

Sequences

Definition
A sequence is a function whose domain is N.

Example

Common ways to describe sequences:
1111
Q@ (1727374 57”')'

1 1 2 3
@ ()= (e = (3.5,
ii] (x,,),,eN, where x, = 2" for each n € N,
Q@ (an)nen, where a; =2 and apy1 = 3.
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Sequences

Graph of a sequence

Consider x, = % then

-05
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Asymptotic behaviour of a sequence x, = +

Question
Is there a reasonable way how to measure how small a sequence (x,)nen,
(where x, = 1 for n € N) is asymptotically (= at infinity)?

@ We take an arbitrary € > 0 and since x, = % then by the Archimedian
property we always find N. € N so that N% <E.

@ Moreover, since xp11 = ﬁ < % = x, for every n € N thus

1
—<e forany n>N.. (%)
n

@ Since € > 0 is arbitrary and (*) holds for all n > N. (we will usually
say that (*) holds for all but finitely many integers or for all
sufficiently large integers).

@ One can also think that the sequence (x,)nen is asymptotically small
or small at infinity.
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Convergence of sequences in ordered fields

Convergence of a sequence in an ordered field

Convergence of a sequence

A sequence (x,)neny C R converges to x € R if, for all € > 0 there exists
N. € N such that whenever n > N, it follows that

|x — xp| < e.

To indicate that (a,)neny € R converges to a € R we will write either

lim a,=a or Ilima,=a or

a a or anp — a.
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Convergence of sequences in ordered fields

e-neighbourhood

e-neighbourhood
Given a € R and € > 0 the set

Vi(a) ={xeR : |[x—a|<e}

is called the e-neighbourhood or an open ball centered at a and radius €.

V.(a)
/_\
Y [ LY
- | | " 4
a—¢ a a+t+e
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Convergence of sequences in ordered fields

Convergence - illustration

X3
o
a-—+eée
Xn
O o o}
a
X2 o ° o d
oO XNE o o O
a— ek o
2 o
X7 ©
3 X5 o
Ll l !
T T T T 1 T |
12345 N n
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Convergence of sequences in ordered fields

Topological version of convergence

Topological version of convergence

A sequence (xp)nen € R converges to a € R if, given any e-neighbourhood
V.(a) C R of a contains all but finitely many terms of (x,)nen-

" 4
X1X2 X3 3—¢ Xng XN a4¢
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Convergence of sequences in ordered fields

Example

Exercise

Prove lim_o 2042 = 3

2n+1 2"

Solution.

@ Let € > 0 be arbitrary, but fixed.

@ Determine the choice of N. € N. In our case we take

| J

© Now show that N actually works. Assume that n > N., then

Ne >

o N

3n+2 3 < 3n+2 3n 3n 3n
2n+1 2|~

2 2n+1 2n+1 2n+1 2n
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Convergence of sequences in ordered fields

Solution

© Furthermore, for n > N. we have

<

3n+2 3n 2 <1
2n+1 2n+1 n

N ™

T on+1o

3n 3n| 3n(2n+1-2n) 3 1 ¢
-—|= < —<=< -
2n+1 2n 2n(2n+1) 4n "~ n 2

Hence
® 3n+2 3

M Tl 2
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Convergence of sequences in ordered fields

Example

Exercise

. no
Prove lim,_ s wE = 0.

Solution.
© Let £ > 0 be arbitrary, but fixed.

@ Determine the choice of N. € N. In our case we take

| J

© Now show that N actually works. Assume that n > N., then

Nz >

™| =

n 0 n < 1 <1
———— 0| = - €.
n3+3 m+3 " n—

S|
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Uniqueness of the limit

Theorem J

The limit of the sequence (x,)nen € R, when it exists, must be unique.

Proof. Suppose that

lim x, =x and lim x, =y.
n—o0 n—o0

We have to prove that x = y. Let € > 0 be arbitrary, then it suffices to
show |[x — y| < e. Note that

(*)

lim,— oo Xp = x <= for every €1 > 0 there exists Nsl1 € N so that

n>N. implies |x,— x| < er.
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Convergence of sequences in ordered fields
Proof

*)
lim, so0 X, =y <= for every 5 > 0 there exists N§2 € N so that

n> Ni_.lz2 implies  |x, — y| < e2.

Applying (*) and (*) with e = €2 = § we know that there are
N2, N2 € N so that

n> Nsl1 implies  |xp, — x| < €1,

n> N€22 implies  |x, — y| < 2.

Setting N. = max(Nel/27 N52/2)' taking n > N and using the triangle
inequality

3 €
x =yl =10x =xa) + (0 = y)| < o = x|+ |xa =yl < S+ 5 =e. O
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Bounded sequences

Definition
A sequence (xp)nen C R is bounded if there exists M > 0 such that

Ixn| <M

for all n € N.

Geometrically, this means that the interval [-M, M| contains all terms of
the sequence (xp)nen-

Example

o (5+ %)neN is bounded by 6,

o (n?),en is not bounded.
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Every convergent sequence is bounded

Theorem

Every convergent sequence (xp)nen € R is bounded, i.e. there exists
M > 0 such that |x,| < M for all n € N.

Proof. Assume that lim, . x, = x. This is equivalent to the fact that
for every € > 0 there is N; € N so that

n> N, implies |x,— x| <e. (%)
Applying (*) with e = 1 we obtain
|xo — x| <1 forany n>Nj.
Thus |xp| < 1+ |x| for any n > Nj. Consider
M = max{|x1|, |x2|, .-, |xn,—1], |x] + 1}

we see that |x,| < M for all n € N and we are done. O
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Algebraic limits theorem

Theorem

Let a,b,c € R and let (ap)nen, (bn)neny € R be two convergent sequences
such that lim,— o @, = a and lim,_so b, = b. Then

@ limpoo(can) = ac,

@ limpyoo(an+ bp) = a+ b,

@ lim,—o anb, = ab,

Q limpseo Z—Z = £ provided that b,, b # 0 for all n € N.

Proof of (i). If ¢ = 0 then there is nothing to do since ca, = 0 for all
n €N, thus lim, - ca, =0 = ca.

@ Assume that ¢ # 0. Let € > 0 be arbitrary but fixed and note that
limp_o0 an = a <= for every g9 > 0 there is N, € N such that

n> /VEO implies  |a — ap| < €o. (*)
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Proof of (i)

@ Applying (*) with g = £ one obtains that
£

el

@ Thus we have shown that for any £ > 0 there is N, = IVE/|C| € N such
that if n > N, then

|cap — ca| = |c||lap — a] < |c|— =e¢.

|cap — ca| < e.

@ Hence lim,_ ca, = ca. ]
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Proof of (ii): 1/2

o limy_ooa, =a <= for every e1 > 0 there exists N2, € N so that

n>N. implies |a,—a| <e;. (%)

€1

@ lim, 00 by = b <= for every g5 > 0 there exists N§2 € N so that
2 . .
n> NS, implies |b, —b| < ea. (%)

@ Let € > 0 be arbitrary but fixed. Applying (*) and (*) with
€1 = €2 = 5 one obtains
n>N! implies |a,—a| <e/2,

n> N2 implies |b,— b| <¢/2.
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Proof of (ii): 2/2

o By the triangle inequality for any n > N. = max(N_,, N2 ) we see

€17

|an + by — (a+ b)| = |(an — a) + (bn — b)|
< lan — a| + |by — b|
9 €
<§+§—5

@ Since € > 0 was arbitrary we proved that

lim (an+ by) = a+ b.

n—o0
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Proof of (iii): 1/3

@ lim, 00 an = a <= for every €1 > 0 there exists Ngl € N so that
1 . .
n>N; implies |3, —a| <e1. (%)
@ lim, 00 by = b <= for every g5 > 0 there exists N§2 € N so that
2 . .
n> N7, implies |b, —b| < ea. (%)
@ We begin by observing that

|anb, — ab| = |apb, — ab, + ab, — ab|
S |bn(an - 3)’ + |a(bn - b)|
< |bnl|an — a| + |a||bn — b].
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Proof of (iii): 2/3
e But |a| < |a, — a| + |an| thus

|anbn — ab| < |bp||an — a| + |bn — b|(|an — a| + |an])
< (|bn| + |bn — b|)|an — a| + |bn — bl|as|.

@ Since lim,_ o0 a, = a and lim,,_, b, = b then there are My, M, > 0
such that

lan] < My and  |by| < My forall neN.
Consequently
lanb, — ab| < (Ma + |b, — bl|)|a, — a| + My|b, — b|.

@ Let € > 0 be arbitrary but fixed. We apply (*) with ¢; = m and

(*) with e2 = min {2€W1’ 1}, which implies respectively
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Proof of (iii): 3/3

&£
2(My 4+ 1)’
n> N{f/2 implies  |b— b,| < m|n{

nZNsl/2 implies  |a— a,| <

ai

o Thus taking n > N. = max (N2, N2,) we see that

|anbn, — ab| < (My + |b, — bl|)|a, — a| + My|b, — b

£ g
My + mi 1 Mymin{ 51
<< 2+m'“{2M1 }>2(M2+1)+ 1mm{2M1/ }
9 9 9
<My+1)—t M < Z
=M Do P Moy S5 F

@ Since € > 0 was arbitrary we proved that

=¢&.

N[ ™

lim a,b, = ab.
n—o00
U
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Proof of (iv): 1/3
o limy_oca, =a <= for every e1 > 0 there exists N2, € N so that
n> Nal1 implies  |a, — a| < 1. (%)
@ limp_oo by = b <= for every €5 > 0 there exists N€22 € N so that
n> N2 implies |b, — b| < 2. (%)

@ By (iii) it suffices to prove that lim,_,o, b, = b implies

whenever b,, b # 0 for n € N.
@ Let £ > 0 be arbitrary. Note that
1 1| |b,— b
’bn B b’ ~ Iballb]
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Proof of (iv): 2/3

Co (%) wi — min J 16l elbP
e Applying (*) with e2 = min ¢ 51, =5~ ¢ one has
n> N, implies |b,— b| < .

o But 2 > |bp — b| > |b| — |bp|, hence
b—b,,<m forall n>N,,.
2 2

o Consequently 5 1Bl < |bp| for all n > N.,. This shows that

forall n>N,,.

1 1] [by—b| _2/by—b]
b b~ Iballb] ~ [BP
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Proof of (iv): 3/3

e Furthermore, for n > N., we also know that

1 1|  2|b,— b <2ﬂ<26|b’2 .
b, b |bJ? b2 = 2[p2 T
@ Thus
i 1 1
nino by b
This completes the proof of the theorem. O
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Order limit theorem

Order limit theorem

Let a, b, c € R. Let (an)nen, (bn)nen € R be two convergent sequences
such that

im a, =a and lim b, = b.
n—oo n—oo

Then

@ Ifa,>0forall neN, then a> 0.

@ Ifa, < b, forall neN, then a < b.

@ If thereis c € R so that ¢ < b, for each n € N, then ¢ < b. Similarly,
if a, < cforall neN, then a <c.
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Convergence of sequences in ordered fields
Proof

Proof of (i). Assume for contradiction that a < 0. We know that
lim,_oc an = @ <= for every g9 > 0 there exists N, € N so that

n> N, implies |a,— a| < eo. (%)

Applying (*) with £g = |a| one sees

lap —a| < |a| forall n> Ng.
Hence a, < |a| +a= —a+ a= 0 for all n > N_, which is impossible since
ap > 0 for all n € N. Thus we must have a > 0. O]

Proof of (ii). lim,—oo(by —an) = b—a. But b, —a, >0forall neN
thus b—a > 0 by (i) and we are done. O

Proof of (iii). Take a, = ¢ (or b, = ¢) for all n € N and apply (ii). O
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Squeeze Theorem

Squeeze Theorem

Let (Xn)nens (Vn)nen, (2n)nen C R be sequences such that x, < y, < z, for
all n e N. If limp_00 X, = lim, o0 2z, = L € R, then lim, o y, = L.

Proof. Let € > 0 be arbitrary, but fixed.

(*)

limp oo Xp = L <= for every €1 > 0 there exists Ngl1 € N so that
n> N2 implies [x, — L] < e1.

(*)
lim, o0 zy = L <= for every e, > 0 there exists Naz2 € N so that
n> NEZ2 implies |z, — L| < e3.
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Convergence of sequences in ordered fields
Proof:

We apply (*) and (*) with c; = e2 =, then for n > N = max(N2, N2))
one has

(¥) <= L—e<x, < L+e¢,

(x) <= L—e<zp<L+e
Since x, < y, < z, for all n € N we obtain for n > N, that
L—e<x, <y, <z <L+e.

Thus if n > N, then
‘yn - L| <g,

which proves that lim,_ v, = L. ]
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Convergence of sequences in ordered fields

Example

Exercise

- 3m+n’+9 _
Prove that lim_,o #7575~ = 0.

Solution. We will use the squeeze theorem. On the one hand,

3n3+n2—|—9_

=02 n® + n3

Yn-
On the other hand,

3 +n*4+9 _ 13n®° _ 13n® 13
B S mam= s o2

Since limp_ 00 712 = 0, by the squeeze theorem

o 3m+n’49
im —————— =
n—oo n5 —+ n3

O
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Diverging sequences
Definition
Let (sp)nen € R be a sequence.

@ We write that

lim s, =400 <= s, 55+

n—o0

if for every M > 0 there is n € N such that n > N implies s, > M.

e Example: limp_oo N> — n = +00.

@ Similarly,
nIi_)n;Osm:—oo = Spimg — 0
if for every M > 0 there is N € N such that n > N implies s, < —M.
e Example: lim, oo /n—n= —00.

In both cases we say that (s,),en diverges.

v
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