

Lecture 5

The Limit of a Sequence

The Algebraic and Order Limit Theorems

Squeeze Theorem and Diverging Sequences

MATH 411H, FALL 2025

September 18, 2025

An important principle

Two $a, b \in \mathbb{Z}$ are equal iff $|a - b| < 1$. **Can this be extended beyond \mathbb{Z} ?**

Two $a, b \in \mathbb{R}$ are equal iff for every $\varepsilon > 0$ it follows

$$|a - b| < \varepsilon.$$

Proof (\Leftarrow). If $a = b$, then $|a - b| = 0 < \varepsilon$ for any $\varepsilon > 0$.

Proof (\Rightarrow). Suppose that for any $\varepsilon > 0$ one has $|a - b| < \varepsilon$. If $a = b$, then we are done. Assume that $a \neq b$ and take $\varepsilon_0 = |a - b| > 0$. Taking any $0 < \varepsilon < \varepsilon_0$, which is possible (why?), one has

$$0 < \varepsilon_0 = |a - b| < \varepsilon < \varepsilon_0,$$

which is impossible. □

Sequences

Definition

A **sequence** is a function whose domain is \mathbb{N} .

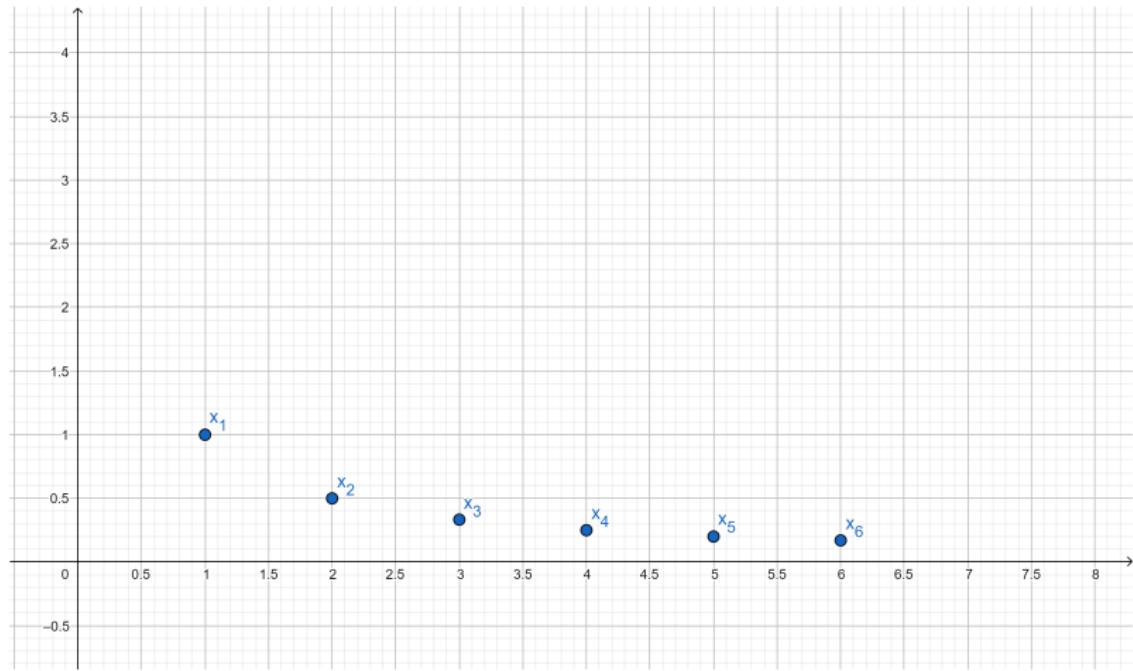
Example

Common ways to describe sequences:

- ① $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots)$,
- ② $(\frac{n+1}{n})_{n=1}^{\infty} = (\frac{n+1}{n})_{n \in \mathbb{N}} = (\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \dots)$,
- ③ $(x_n)_{n \in \mathbb{N}}$, where $x_n = 2^n$ for each $n \in \mathbb{N}$,
- ④ $(a_n)_{n \in \mathbb{N}}$, where $a_1 = 2$ and $a_{n+1} = \frac{a_n}{2}$.

Graph of a sequence

Consider $x_n = \frac{1}{n}$, then



Asymptotic behaviour of a sequence $x_n = \frac{1}{n}$

Question

Is there a reasonable way how to measure how small a sequence $(x_n)_{n \in \mathbb{N}}$, (where $x_n = \frac{1}{n}$ for $n \in \mathbb{N}$) is **asymptotically** (\equiv at infinity)?

- We take an arbitrary $\varepsilon > 0$ and since $x_n = \frac{1}{n}$ then by the Archimedean property we always find $N_\varepsilon \in \mathbb{N}$ so that $\frac{1}{N_\varepsilon} < \varepsilon$.
- Moreover, since $x_{n+1} = \frac{1}{n+1} < \frac{1}{n} = x_n$ for every $n \in \mathbb{N}$ thus

$$\frac{1}{n} < \varepsilon \quad \text{for any} \quad n \geq N_\varepsilon. \quad (*)$$

- Since $\varepsilon > 0$ is arbitrary and $(*)$ holds for all $n \geq N_\varepsilon$ (we will usually say that $(*)$ holds for all but finitely many integers or for all sufficiently large integers).
- One can also think that the sequence $(x_n)_{n \in \mathbb{N}}$ is asymptotically small or small at infinity.

Convergence of a sequence in an ordered field

Convergence of a sequence

A sequence $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ **converges** to $x \in \mathbb{R}$ if, for all $\varepsilon > 0$ there exists $N_\varepsilon \in \mathbb{N}$ such that whenever $n \geq N_\varepsilon$ it follows that

$$|x - x_n| < \varepsilon.$$

To indicate that $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ converges to $a \in \mathbb{R}$ we will write either

$$\lim_{n \rightarrow \infty} a_n = a \quad \text{or} \quad \lim a_n = a \quad \text{or} \quad a_n \xrightarrow{n \rightarrow \infty} a \quad \text{or} \quad a_n \rightarrow a.$$

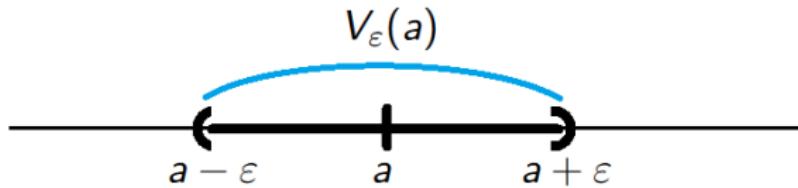
ε -neighbourhood

ε -neighbourhood

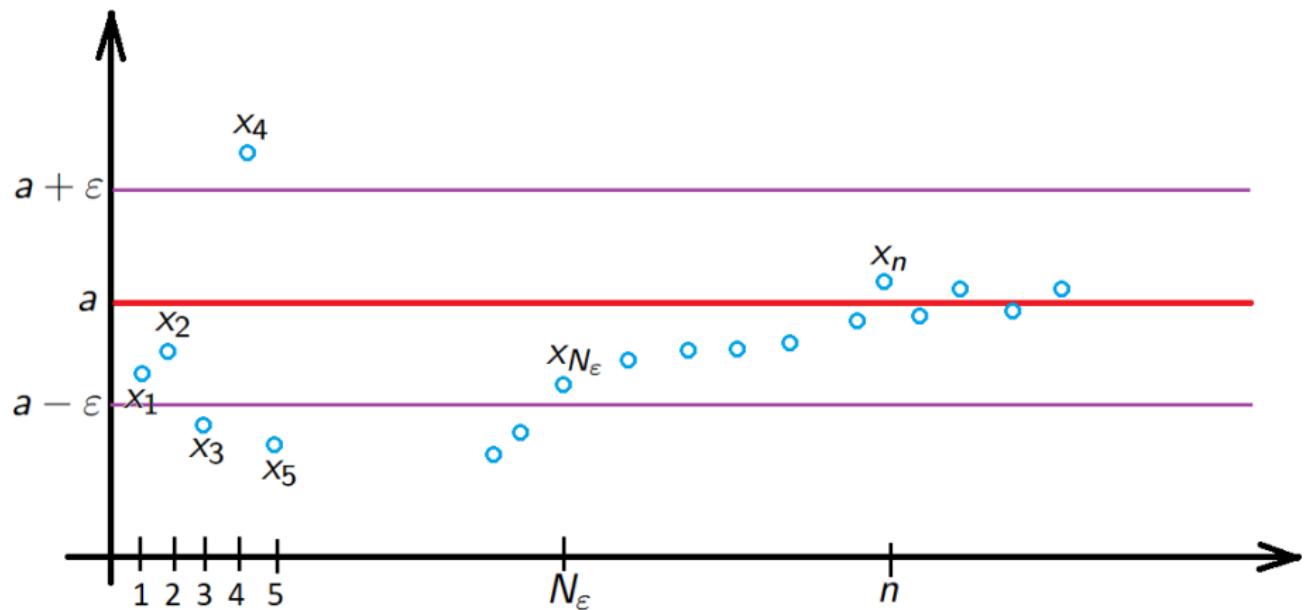
Given $a \in \mathbb{R}$ and $\varepsilon > 0$ the set

$$V_\varepsilon(a) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

is called the **ε -neighbourhood** or **an open ball** centered at a and radius ε .



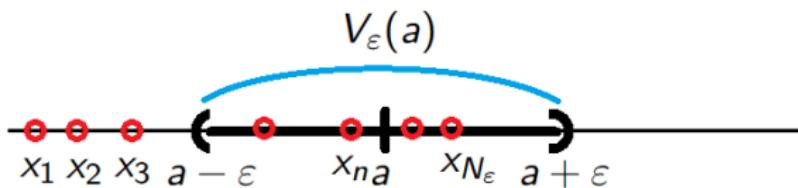
Convergence - illustration



Topological version of convergence

Topological version of convergence

A sequence $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ converges to $a \in \mathbb{R}$ if, given any ε -neighbourhood $V_\varepsilon(a) \subseteq \mathbb{R}$ of a contains all but finitely many terms of $(x_n)_{n \in \mathbb{N}}$.



Example

Exercise

Prove $\lim_{n \rightarrow \infty} \frac{3n+2}{2n+1} = \frac{3}{2}$.

Solution.

- ① Let $\varepsilon > 0$ be arbitrary, but fixed.
- ② Determine the choice of $N_\varepsilon \in \mathbb{N}$. In our case we take

$$N_\varepsilon \geq \frac{2}{\varepsilon}.$$

- ③ Now show that N_ε actually works. Assume that $n \geq N_\varepsilon$, then

$$\left| \frac{3n+2}{2n+1} - \frac{3}{2} \right| \leq \left| \frac{3n+2}{2n+1} - \frac{3n}{2n+1} \right| + \left| \frac{3n}{2n+1} - \frac{3n}{2n} \right|$$

Solution

③ Furthermore, for $n \geq N_\varepsilon$ we have

$$\left| \frac{3n+2}{2n+1} - \frac{3n}{2n+1} \right| = \frac{2}{2n+1} \leq \frac{1}{n} < \frac{\varepsilon}{2}.$$

$$\left| \frac{3n}{2n+1} - \frac{3n}{2n} \right| = \frac{3n(2n+1-2n)}{2n(2n+1)} < \frac{3}{4n} < \frac{1}{n} < \frac{\varepsilon}{2}.$$

④ Hence

$$\lim_{n \rightarrow \infty} \frac{3n+2}{2n+1} = \frac{3}{2}.$$

Example

Exercise

Prove $\lim_{n \rightarrow \infty} \frac{n}{n^3 + 3} = 0$.

Solution.

- ① Let $\varepsilon > 0$ be arbitrary, but fixed.
- ② Determine the choice of $N_\varepsilon \in \mathbb{N}$. In our case we take

$$N_\varepsilon \geq \frac{1}{\varepsilon}.$$

- ③ Now show that N_ε actually works. Assume that $n \geq N_\varepsilon$, then

$$\left| \frac{n}{n^3 + 3} - 0 \right| = \frac{n}{n^3 + 3} \leq \frac{1}{n^2} \leq \frac{1}{n} < \varepsilon.$$

Uniqueness of the limit

Theorem

The limit of the sequence $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$, when it exists, must be unique.

Proof. Suppose that

$$\lim_{n \rightarrow \infty} x_n = x \quad \text{and} \quad \lim_{n \rightarrow \infty} x_n = y.$$

We have to prove that $x = y$. Let $\varepsilon > 0$ be arbitrary, then it suffices to show $|x - y| < \varepsilon$. Note that

(*)

$\lim_{n \rightarrow \infty} x_n = x \iff$ for every $\varepsilon_1 > 0$ there exists $N_{\varepsilon_1}^1 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_1}^1 \quad \text{implies} \quad |x_n - x| < \varepsilon_1.$$

Proof

(*)

$\lim_{n \rightarrow \infty} x_n = y \iff$ for every $\varepsilon_2 > 0$ there exists $N_{\varepsilon_2}^2 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_2}^2 \quad \text{implies} \quad |x_n - y| < \varepsilon_2.$$

Applying (*) and (*) with $\varepsilon_1 = \varepsilon_2 = \frac{\varepsilon}{2}$ we know that there are $N_{\varepsilon_1}^1, N_{\varepsilon_2}^2 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_1}^1 \quad \text{implies} \quad |x_n - x| < \varepsilon_1,$$

$$n \geq N_{\varepsilon_2}^2 \quad \text{implies} \quad |x_n - y| < \varepsilon_2.$$

Setting $N_\varepsilon = \max(N_{\varepsilon/2}^1, N_{\varepsilon/2}^2)$, taking $n \geq N_\varepsilon$ and using the triangle inequality

$$|x - y| = |(x - x_n) + (x_n - y)| \leq |x_n - x| + |x_n - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \quad \square$$

Bounded sequences

Definition

A sequence $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is **bounded** if there exists $M > 0$ such that

$$|x_n| \leq M$$

for all $n \in \mathbb{N}$.

Geometrically, this means that the interval $[-M, M]$ contains all terms of the sequence $(x_n)_{n \in \mathbb{N}}$.

Example

- $(5 + \frac{1}{n})_{n \in \mathbb{N}}$ is bounded by 6,
- $(n^2)_{n \in \mathbb{N}}$ is not bounded.

Every convergent sequence is bounded

Theorem

Every convergent sequence $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is bounded, i.e. there exists $M > 0$ such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Proof. Assume that $\lim_{n \rightarrow \infty} x_n = x$. This is equivalent to the fact that for every $\varepsilon > 0$ there is $N_\varepsilon \in \mathbb{N}$ so that

$$n \geq N_\varepsilon \quad \text{implies} \quad |x_n - x| < \varepsilon. \quad (*)$$

Applying $(*)$ with $\varepsilon = 1$ we obtain

$$|x_n - x| < 1 \quad \text{for any} \quad n \geq N_1.$$

Thus $|x_n| < 1 + |x|$ for any $n \geq N_1$. Consider

$$M = \max\{|x_1|, |x_2|, \dots, |x_{N_1-1}|, |x| + 1\}$$

we see that $|x_n| \leq M$ for all $n \in \mathbb{N}$ and we are done. □

Algebraic limits theorem

Theorem

Let $a, b, c \in \mathbb{R}$ and let $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ be two convergent sequences such that $\lim_{n \rightarrow \infty} a_n = a$ and $\lim_{n \rightarrow \infty} b_n = b$. Then

- ① $\lim_{n \rightarrow \infty} (ca_n) = ac$,
- ② $\lim_{n \rightarrow \infty} (a_n + b_n) = a + b$,
- ③ $\lim_{n \rightarrow \infty} a_n b_n = ab$,
- ④ $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \frac{a}{b}$ provided that $b_n, b \neq 0$ for all $n \in \mathbb{N}$.

Proof of (i). If $c = 0$ then there is nothing to do since $ca_n = 0$ for all $n \in \mathbb{N}$, thus $\lim_{n \rightarrow \infty} ca_n = 0 = ca$.

- Assume that $c \neq 0$. Let $\varepsilon > 0$ be arbitrary but fixed and note that $\lim_{n \rightarrow \infty} a_n = a \iff$ for every $\varepsilon_0 > 0$ there is $\tilde{N}_{\varepsilon_0} \in \mathbb{N}$ such that

$$n \geq \tilde{N}_{\varepsilon_0} \quad \text{implies} \quad |a - a_n| < \varepsilon_0. \quad (*)$$

Proof of (i)

- Applying $(*)$ with $\varepsilon_0 = \frac{\varepsilon}{|c|}$ one obtains that

$$|ca_n - ca| = |c||a_n - a| < |c| \frac{\varepsilon}{|c|} = \varepsilon.$$

- Thus we have shown that for any $\varepsilon > 0$ there is $N_\varepsilon = \tilde{N}_{\varepsilon/|c|} \in \mathbb{N}$ such that if $n \geq N_\varepsilon$, then

$$|ca_n - ca| < \varepsilon.$$

- Hence $\lim_{n \rightarrow \infty} ca_n = ca$.

□

Proof of (ii): 1/2

- $\lim_{n \rightarrow \infty} a_n = a \iff$ for every $\varepsilon_1 > 0$ there exists $N_{\varepsilon_1}^1 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_1}^1 \quad \text{implies} \quad |a_n - a| < \varepsilon_1. \quad (*)$$

- $\lim_{n \rightarrow \infty} b_n = b \iff$ for every $\varepsilon_2 > 0$ there exists $N_{\varepsilon_2}^2 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_2}^2 \quad \text{implies} \quad |b_n - b| < \varepsilon_2. \quad (*)$$

- Let $\varepsilon > 0$ be arbitrary but fixed. Applying $(*)$ and $(*)$ with $\varepsilon_1 = \varepsilon_2 = \frac{\varepsilon}{2}$ one obtains

$$n \geq N_{\varepsilon_1}^1 \quad \text{implies} \quad |a_n - a| < \varepsilon/2,$$

$$n \geq N_{\varepsilon_2}^2 \quad \text{implies} \quad |b_n - b| < \varepsilon/2.$$

Proof of (ii): 2/2

- By the triangle inequality for any $n \geq N_\varepsilon = \max(N_{\varepsilon_1}^1, N_{\varepsilon_2}^2)$ we see

$$\begin{aligned}|a_n + b_n - (a + b)| &= |(a_n - a) + (b_n - b)| \\ &\leq |a_n - a| + |b_n - b| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.\end{aligned}$$

- Since $\varepsilon > 0$ was arbitrary we proved that

$$\lim_{n \rightarrow \infty} (a_n + b_n) = a + b.$$

Proof of (iii): 1/3

- $\lim_{n \rightarrow \infty} a_n = a \iff$ for every $\varepsilon_1 > 0$ there exists $N_{\varepsilon_1}^1 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_1}^1 \quad \text{implies} \quad |a_n - a| < \varepsilon_1. \quad (*)$$

- $\lim_{n \rightarrow \infty} b_n = b \iff$ for every $\varepsilon_2 > 0$ there exists $N_{\varepsilon_2}^2 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_2}^2 \quad \text{implies} \quad |b_n - b| < \varepsilon_2. \quad (*)$$

- We begin by observing that

$$\begin{aligned} |a_n b_n - ab| &= |a_n b_n - ab_n + ab_n - ab| \\ &\leq |b_n(a_n - a)| + |a(b_n - b)| \\ &\leq |b_n||a_n - a| + |a||b_n - b|. \end{aligned}$$

Proof of (iii): 2/3

- But $|a| \leq |a_n - a| + |a_n|$ thus

$$\begin{aligned}|a_n b_n - ab| &\leq |b_n| |a_n - a| + |b_n - b| (|a_n - a| + |a_n|) \\ &\leq (|b_n| + |b_n - b|) |a_n - a| + |b_n - b| |a_n|.\end{aligned}$$

- Since $\lim_{n \rightarrow \infty} a_n = a$ and $\lim_{n \rightarrow \infty} b_n = b$ then there are $M_1, M_2 > 0$ such that

$$|a_n| \leq M_1 \quad \text{and} \quad |b_n| \leq M_2 \quad \text{for all } n \in \mathbb{N}.$$

Consequently

$$|a_n b_n - ab| \leq (M_2 + |b_n - b|) |a_n - a| + M_1 |b_n - b|.$$

- Let $\varepsilon > 0$ be arbitrary but fixed. We apply $(*)$ with $\varepsilon_1 = \frac{\varepsilon}{2(M_2+1)}$ and $(*)$ with $\varepsilon_2 = \min \left\{ \frac{\varepsilon}{2M_1}, 1 \right\}$, which implies respectively

Proof of (iii): 3/3

$$n \geq N_{\varepsilon/2}^1 \quad \text{implies} \quad |a - a_n| < \frac{\varepsilon}{2(M_2 + 1)},$$

$$n \geq N_{\varepsilon/2}^2 \quad \text{implies} \quad |b - b_n| < \min \left\{ \frac{\varepsilon}{2M_1}, 1 \right\}.$$

- Thus taking $n \geq N_\varepsilon = \max(N_{\varepsilon_1}^1, N_{\varepsilon_2}^2)$ we see that

$$\begin{aligned} |a_n b_n - ab| &\leq (M_2 + |b_n - b|)|a_n - a| + M_1|b_n - b| \\ &< \left(M_2 + \min \left\{ \frac{\varepsilon}{2M_1}, 1 \right\} \right) \frac{\varepsilon}{2(M_2 + 1)} + M_1 \min \left\{ \frac{\varepsilon}{2M_1}, 1 \right\} \\ &\leq (M_2 + 1) \frac{\varepsilon}{2(M_2 + 1)} + M_1 \frac{\varepsilon}{2M_1} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

- Since $\varepsilon > 0$ was arbitrary we proved that

$$\lim_{n \rightarrow \infty} a_n b_n = ab.$$

Proof of (iv): 1/3

- $\lim_{n \rightarrow \infty} a_n = a \iff$ for every $\varepsilon_1 > 0$ there exists $N_{\varepsilon_1}^1 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_1}^1 \quad \text{implies} \quad |a_n - a| < \varepsilon_1. \quad (*)$$

- $\lim_{n \rightarrow \infty} b_n = b \iff$ for every $\varepsilon_2 > 0$ there exists $N_{\varepsilon_2}^2 \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_2}^2 \quad \text{implies} \quad |b_n - b| < \varepsilon_2. \quad (*)$$

- By (iii) it suffices to prove that $\lim_{n \rightarrow \infty} b_n = b$ implies

$$\lim_{n \rightarrow \infty} \frac{1}{b_n} = \frac{1}{b}$$

whenever $b_n, b \neq 0$ for $n \in \mathbb{N}$.

- Let $\varepsilon > 0$ be arbitrary. Note that

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{|b_n - b|}{|b_n||b|}.$$

Proof of (iv): 2/3

- Applying $(*)$ with $\varepsilon_2 = \min \left\{ \frac{|b|}{2}, \frac{\varepsilon|b|^2}{2} \right\}$ one has

$$n \geq N_{\varepsilon_2} \quad \text{implies} \quad |b_n - b| < \varepsilon_2.$$

- But $\frac{|b|}{2} > |b_n - b| \geq |b| - |b_n|$, hence

$$|b| - |b_n| < \frac{|b|}{2} \quad \text{for all} \quad n \geq N_{\varepsilon_2}.$$

- Consequently $\frac{|b|}{2} < |b_n|$ for all $n \geq N_{\varepsilon_2}$. This shows that

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{|b_n - b|}{|b_n||b|} < \frac{2|b_n - b|}{|b|^2} \quad \text{for all} \quad n \geq N_{\varepsilon_2}.$$

Proof of (iv): 3/3

- Furthermore, for $n \geq N_{\varepsilon_2}$ we also know that

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| < \frac{2|b_n - b|}{|b|^2} < \frac{2\varepsilon_2}{|b|^2} \leq \frac{2\varepsilon|b|^2}{2|b|^2} = \varepsilon.$$

- Thus

$$\lim_{n \rightarrow \infty} \frac{1}{b_n} = \frac{1}{b}.$$

This completes the proof of the theorem. □

Order limit theorem

Order limit theorem

Let $a, b, c \in \mathbb{R}$. Let $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ be two convergent sequences such that

$$\lim_{n \rightarrow \infty} a_n = a \quad \text{and} \quad \lim_{n \rightarrow \infty} b_n = b.$$

Then

- ① If $a_n \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$.
- ② If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- ③ If there is $c \in \mathbb{R}$ so that $c \leq b_n$ for each $n \in \mathbb{N}$, then $c \leq b$. Similarly, if $a_n \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$.

Proof

Proof of (i). Assume for contradiction that $a < 0$. We know that $\lim_{n \rightarrow \infty} a_n = a \iff$ for every $\varepsilon_0 > 0$ there exists $N_{\varepsilon_0} \in \mathbb{N}$ so that

$$n \geq N_{\varepsilon_0} \text{ implies } |a_n - a| < \varepsilon_0. \quad (*)$$

Applying $(*)$ with $\varepsilon_0 = |a|$ one sees

$$|a_n - a| < |a| \quad \text{for all } n \geq N_{\varepsilon_0}.$$

Hence $a_n < |a| + a = -a + a = 0$ for all $n \geq N_{\varepsilon_0}$ which is impossible since $a_n \geq 0$ for all $n \in \mathbb{N}$. Thus we must have $a \geq 0$. □

Proof of (ii). $\lim_{n \rightarrow \infty} (b_n - a_n) = b - a$. But $b_n - a_n \geq 0$ for all $n \in \mathbb{N}$ thus $b - a \geq 0$ by (i) and we are done. □

Proof of (iii). Take $a_n = c$ (or $b_n = c$) for all $n \in \mathbb{N}$ and apply (ii). □

Squeeze Theorem

Squeeze Theorem

Let $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}, (z_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ be sequences such that $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$. If $\lim_{n \rightarrow \infty} x_n = \lim_{n \rightarrow \infty} z_n = L \in \mathbb{R}$, then $\lim_{n \rightarrow \infty} y_n = L$.

Proof. Let $\varepsilon > 0$ be arbitrary, but fixed.

(*)

$\lim_{n \rightarrow \infty} x_n = L \iff$ for every $\varepsilon_1 > 0$ there exists $N_{\varepsilon_1}^1 \in \mathbb{N}$ so that $n \geq N_{\varepsilon_1}^1$ implies $|x_n - L| < \varepsilon_1$.

(*)

$\lim_{n \rightarrow \infty} z_n = L \iff$ for every $\varepsilon_2 > 0$ there exists $N_{\varepsilon_2}^2 \in \mathbb{N}$ so that $n \geq N_{\varepsilon_2}^2$ implies $|z_n - L| < \varepsilon_2$.

Proof:

We apply $(*)$ and $(*)$ with $\varepsilon_1 = \varepsilon_2 = \varepsilon$, then for $n \geq N_\varepsilon = \max(N_{\varepsilon_1}^1, N_{\varepsilon_2}^2)$ one has

$$(*) \iff L - \varepsilon < x_n < L + \varepsilon,$$

$$(*) \iff L - \varepsilon < z_n < L + \varepsilon.$$

Since $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$ we obtain for $n \geq N_\varepsilon$ that

$$L - \varepsilon < x_n \leq y_n \leq z_n < L + \varepsilon.$$

Thus if $n \geq N_\varepsilon$, then

$$|y_n - L| < \varepsilon,$$

which proves that $\lim_{n \rightarrow \infty} y_n = L$. □

Example

Exercise

Prove that $\lim_{n \rightarrow \infty} \frac{3n^3 + n^2 + 9}{n^5 + n^3} = 0$.

Solution. We will use the squeeze theorem. On the one hand,

$$x_n = 0 \leq \frac{3n^3 + n^2 + 9}{n^5 + n^3} = y_n.$$

On the other hand,

$$\frac{3n^3 + n^2 + 9}{n^5 + n^3} \leq \frac{13n^3}{n^5 + n^3} \leq \frac{13n^3}{n^5} = \frac{13}{n^2} = z_n.$$

Since $\lim_{n \rightarrow \infty} \frac{1}{n^2} = 0$, by the squeeze theorem

$$\lim_{n \rightarrow \infty} \frac{3n^3 + n^2 + 9}{n^5 + n^3} = 0.$$

□

Diverging sequences

Definition

Let $(s_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ be a sequence.

- We write that

$$\lim_{n \rightarrow \infty} s_n = +\infty \iff s_n \xrightarrow{n \rightarrow \infty} +\infty$$

if for every $M > 0$ there is $n \in \mathbb{N}$ such that $n \geq N$ implies $s_n \geq M$.

- Example: $\lim_{n \rightarrow \infty} n^2 - n = +\infty$.
- Similarly,

$$\lim_{n \rightarrow \infty} s_m = -\infty \iff s_n \xrightarrow{n \rightarrow \infty} -\infty$$

if for every $M > 0$ there is $N \in \mathbb{N}$ such that $n \geq N$ implies $s_n \leq -M$.

- Example: $\lim_{n \rightarrow \infty} \sqrt{n} - n = -\infty$.

In both cases we say that $(s_n)_{n \in \mathbb{N}}$ **diverges**.