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Subsequences

Definition
Let (an)neny C R, and ny < my < ...
of positive integers. Then the sequence

(anys anys - -

<y < ...

an,, - -

)

is called a subsequence of (a,)nen and is denoted by (ap, )ken-

be an increasing sequence

Example

Let (an)nEN = (1 2 % %
are subsequences of (an)n

11
10°2'100" "

eN. The sequences

), then (1,1,1, .

> and (1,1,...) are NOTL

1 1 1
) and (E’Toov 10007 " *
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N
Limit of a subsequence

Theorem

Subsequences of a convergent sequence (ap)neny € R converge to the same
limit as the original sequence.

Proof. Assume lim,_,» a, = a and let (ap, Jken be a subsequence. Given
€ > 0 there is N. € N so that

n> N implies  |a, — a| < e.

Because ni > k for all k € N, the same N. will suffice for the
subsequence, that is

lan, —al <e whenever k> N..
L]
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Cauchy sequences and their properties

Cauchy sequences

Cauchy sequences

A sequence (an)neny C R is called Cauchy sequence if for every € > 0
there exists N. € N such that whenever m, n > N it follows

lan — am| < e.

Convergent sequences

Recall that a sequence (a,)nen C R converges to a € R if for any e > 0
there is N; € N such that whenever n > N, if follows

lap —a| <e.
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Cauchy sequences and their properties

Convergent sequences are Cauchy
Theorem

Every convergent sequence (x,)neny C R is a Cauchy sequence.

Proof. Let € > 0 be given. If

lim x, = x,
n—o0

then there is N. € N so that n > N implies

£
>

|xn — x| <

Thus for n,m > N, we obtain

e €
[Xm — Xn| < |Xn—X| + |Xm — x| < =+ = =¢.
2 2
The proof is completed.

U
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Cauchy sequences and their properties

Cauchy sequences are bounded

Lemma
Cauchy sequences (x,)neny € R are bounded.

Proof. Let (xp)nen be Cauchy. Given € =1 there is N € N so that if
n,m > N then |x, — xm| < 1. Thus
bl < Jxu] + 1.

Taking
M = max{|x1|, [x2|, ..., [xn|, |xn| + 1}

we conclude |x,| < M for all n € N. O
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Cauchy sequences and their properties

Cauchy sequences and converging subsequences

Theorem

Let (xn)nen € R be a Cauchy sequence. Suppose that there is (ng)ken so
that limyg_00 Xp, = x. Then lim,_o0 Xp = X.

Proof. Assume that (x,)neny € R is Cauchy and there is (nk)ken so that
lim x, =x€F ().
k—o0

Let € > 0 be given. Then there is N. € N so that n, m > N. implies
|Xn — xm| < 5. By (*) we can choose nj € N so that n > N, and

€
|Xn, — x| < 5
Then for n > N and the triangle inequality
e €
]x,,—x|g\x,,—x,,k\—i—]x,,k—x\<§—|—§:6. O
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Cauchy sequences and their properties

Increasing and decreasing sequences

Increasing and decreasing sequences

Let R be an ordered field. A sequence of real numbers (a,)neny C R is
@ increasing if a, < a4 for all n € N;

o decreasing if a, > ap1 for all n € N,

Monotone sequence

A sequence is monotone if it is either increasing or decreasing.

Example

1 . . .o

® (34 1),y is decreasing, so it is monotone.
3 . . . . .

o (n®) .y is increasing, so it is monotone.

® ((—1)") e is neither increasing nor decreasing, so it is not monotone.
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Consequences of the and nested intervals property

Monotone convergence theorem

Monotone convergence theorem (MCT)

If a sequence (xp)nen C R is monotone and bounded then it converges.

Proof. Assume that (x,)nen is increasing and bounded. Consider the set
E={x,: ne N} CR,

which is nonempty and bounded. Let x = sup E € R, which exists by the
axiom of completeness (AoC). We will show that lim,_,o X, = x.

Let € > 0 and note that there exists N. € N so that
X —e < xy, <X
But (xn)nen is increasing thus for any n > N one has
X—e<xn, <xp <x<Xx+e.

Hence |x, — x| < ¢ for all n > N, which shows that lim,_ x, = x. O
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Consequences of the and nested intervals property

Bolzano—Weierstrass theorem

Theorem

Every bounded sequence (x,)neny € R contains a convergent subsequence.

Proof. Let (ap)nen € R be bounded. Then there is M > 0 such that
lan| <M forall neN.
Thus a, € [-M, M] for all n € N.

e Step 1. Divide [-M, M] into two closed intervals [—M, 0], [0, M].
We can assume (wlog) that /; = [0, M] contains infinitely many
elements of (ap)sen. Moreover, the length of / is M.

@ Step 2. Divide /; into two closed intervals of the same length and
select the one which contains infinitely many elements of (a,)nen.
Call it /» C /; and note that has length %
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Proof: 1/2

o Step 3. Proceeding inductively as above we obtain a sequence of
decreasing closed intervals

hohDhLDIlD...

where each /lx contains infinitely many elements of (a,)nen and has
length zk—l‘/_’l

T

I

N

Is
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Proof: 2/2

o Step 4. By the nested intervals property (o ; I # 0. In fact,
oo
ﬂ Ik = {x} forsome xe€R why?.
k=1

Now for each k € N select an element a,, € /x so that
m<n<...<n<...
where ap, is any element of /.

@ Step 5. Let ¢ > 0 and choose N. € N so that
M 2M

21 S T
Then for every k > N. we have

<e for k>N..

lan, — x| < <e,

2k71

thus lim,_o an, = x. O
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Consequences of the and nested intervals property

Bolzano—Weierstrass theorem implies Cauchy completeness

Example

Let us consider a sequence a, = (—1)". It in NOT convergent, but the
subsequence (—1)2" = 1 converges to 1.

Theorem (Cauchy completeness of R)

A sequence (xp)nen converges iff it is a Cauchy sequence.

Proof: The implication (=) has already been proved. For the reverse
implication (<=) assume that (x,)nen is Cauchy, thus it is bounded. By
the Bolzano—Weierstrass theorem there is (ng)ken so that

lim x, =x forsome xcR.
k—00

But Cauchy sequences with converging subsequences converge, i.e.

im x, = x.
n—oo

This completes the proof. O
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The complex field

Complex numbers

Definition (Complex numbers)

A complex number is an ordered pair (a,b) € R x R.

Definition (Addition and multiplication of complex numbers)
For two complex numbers x = (a,b),y = (¢, d) € R x R we define

o addition + by setting
x+y=(a+c,b+d),
o multiplication - by setting

x -y = (ac — bd, ad + bc).
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The complex field

Complex field

Theorem

These operations addition + and multilpication - turn the set of all

complex numbers into a field with (0,0) and (1,0) playing, respectively,
the role of 0 and 1. This field will be denoted by C.

Proof. We have to verify the field axioms.
Addition axioms (A)
o (Al)if x,y € C, then x+y € C,
o (A2) x+y=y+xforall x,y € C,
o (A3) (x+y)+z=x+(y+z) forall x,y,z € C,
@ (A4) C contains the element 0 such that x + 0 = x for all x € C,
@ (Ab) to every x € C corresponds an element (—x) € C such that

x+(—x)=0.
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Proof

Multiplication axioms (M)

(M1) if x,y € C, then their product xy € C,

(M2) xy = yx for all x,y € C,

(M3) (xy)z = x(yz) for all x,y,z € C,

(M4) C contains the element 1 # 0 such that 1-x = x for all x € C,
(M5) if 0 # x € C then there is an element x ™1 = 1 € C such that

x-x1=1.

Distributive law (D)
e (D1) x(y + z) = xy + xz holds for all x,y,z € C.

Let x = (a,b),y = (c,d),z = (e, f). We will use the field structure of R.
o Proof of (Al). By the definition of addition

x+y=(a,b)+(c,d)=(a+c,b+d)eC.
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Proof
e Proof of (A2).
x+y=(a+c,b+d)=(c+a)+(d+b)=y+x.
e Proof of (A3).

(x+y)+z=(a+c,b+d)+ (e, f)
=(at+c+eb+d+f)
=(a,b)+(c+ed+f)=x+(y+2).

e Proof of (A4).
x+0=(a,b)+(0,0) = (a, b) = x.
e Proof of (A5). Set —x = (—a, —b) and note that
x+(—=x)=(a—a,b—b)=(0,0) =0.
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Proof

@ Proof of (M1). By the definition of multiplication
x-y=(a,b)-(c,d) = (ac— bd,ad + bc) € C.
e Proof of (M2).
x-y = (ac — bd,ad + bc) = (ca— db,da+ cb) =y - x.
e Proof of (M3).

(x-y)-z=(ac— bd,ad + bc) - (e, f)
= (ace — bde — adf — bcf, acf — bdf + ade + bce)
= (a,b)‘(Ce-df,cf—i—de):x.(y.z).

e Proof of (M4).
1-x=(1,0)-(a,b) = (a,b) = x.

(MATH 411H, FALL 2025) Lecture 6 September 22, 2025 18 /27



Proof

@ Proof of (M5). If x # 0 then (a, b) # (0, 0), which means that at
least one of the real numbers a, b is different from 0. Hence
a®> + b? > 0 and we define

li a —b
x  \a2+b2"a2+p2)

a —b
(3 b) <32+b2732+b2> _(170)

Then

X -

><\|—l

e Proof of (D1).
x-(y+z)=(a,b)-(c+e,d+T)
= (ac + ae — bd — bf,ad + af + bc + be)
= (ac — bd, ad + bc) + (ae — bf, af + be)
=X-y+x-z
This completes the proof that C is a field. Ol
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Imaginary number |

Remark

For any a,b € R we have

(a,0) + (b,0) = (a+ b,0) and (a,0)-(b,0) = (ab,0).

@ The complex numbers from the set {(a,0) : a € R} have the same
arithmetic properties as the corresponding real numbers R.

@ We can therefore identify (a,0) with a. This identification gives us
the real field R as a subfield of the complex field C.

@ We have defined the complex numbers C without any reference to the
mysterious square root of —1. We now show that the notation (a, b)
is equivalent to the more customary a + bi.

Definition
We define the imaginary number by setting i = (0, 1).
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Equivalent definition of C
Theorem
One has that i = —1.

Proof.
Note that i = (0,1) - (0,1) = (—1,0). O

Theorem

We also have
C={a+ib:abecR}.

Proof.

It suffices to note that

a+ib=(a,0)+(0,1)-(b,0)

U
v
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Conjugate, real and imaginary parts

Definition
If z€ C and z = a+ ib for some a, b € R then the complex number

Z=a—ib

is called the conjugate of z. The numbers a and b are the real part and
imaginary part of z respectively. We shall write

a=%R(z) =Re(z) and b=S(z)=1Im(z).

Theorem
If z,w € C then
()z+w=Zz+Ww.
(i) z
(iii) z4+Zz = 2Re(z) and z — Zz = 2iIm(z).
)

(iv) zz is a positive real number except when z = 0.

W =2Z - W.
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Proof

Proof. Let z=a+ iband w =c+ id.
e Proof of (i). Note that

z+w=(a+c)+i(b+d)=(a+c)—i(b+d)=Z+w.
e Proof of (ii). Note that
z-w = (ac — bd) — i(ad + bc) and
z-w=(a—ib)(c—id) = (ac — bd) — i(ad + bc).
@ Proof of (iii). We have
z+Zz = (a+ib)+ (a— ib) = 2a = 2Re(2),
z—z=(a+ib) — (a—ib) = 2ib=2iIm(z).
o Proof of (iv). We have z-z = (a+ ib)(a — ib) = a®> + b> > 0 if and
only if z £ 0. O
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The complex field

Absolute value on C

Definition
If z € C its absolute value |z| is defined by setting

|z| =Vz-Z.

Remark
This absolute value exists and is unique. Moreover, it coincides with the
absolute value from R. If x € R then X = x hence |x| = Vx - X = Vx2.

Thus
X if x <0,
x| = )
—x if x<O0.
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The complex field

Properties of the absolute value on C

Theorem

If z,w € C then

(i) |z| > 0 if and only if z # 0, and |0| = 0.
(if)
(iii)
(iv) [Re(z)| < |z and [Im(z)| < |2|
(v) [z +w| <[z + |wl.

Proof. Let z=a+ iband w = c+ id.

z| = |z].

|zw| = [z]|w].

@ Proof of (i). From the previous theorem we have
|z2=2z-Z=(a+ib)(a—ib) =a°+ b*> >0,
which gives the desired claim.
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Proof

e Proof of (ii). Note that |z|?> = a® + b% = |z]2.
@ Proof of (iii). Note that

|z-w| = (ac — bd)? + (ad + bc)? = (a° + b*)(c?® + d?) = |z|*|w|?.
@ Proof of (iv). We have

Re(z)| = |a| < Va2 + b?2 = |z|, and |Im(z)| =|b| < Va2 + b% = |z|.

@ Proof of (v). Note that Zw is the conjugate of zw so that
zw + zw = 2Re(zw). Hence
z+w]?=(z4+w)(Z+W) =27+ z2W +Zw + ww
= |z|* 4+ 2Re(zw) + |w/?
< |2]* + 2|Re(zw)| + |w|®
= [2? + 2lz[|w| + |w|? = (|2 + [w])*.

The proof of the theorem is completed. O
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The complex field

Convergence in C

Definition
We say that a sequence of complex numbers (z,),eny € C converges to

z € Cif and only if
lim |z, —z| =0.
—00

We write

lim z,=z ifandonlyif lim |z, —2z|=0.
n—oo n—oo

This is also equivalent to say that for every £ > 0 there exists an integer
N. € N such that if n > N. then

|zn — z| < e.
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