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Subsequences

Definition

Let (an)n∈N ⊆ R, and n1 < n2 < . . . < nk < . . . be an increasing sequence
of positive integers. Then the sequence

(an1 , an2 , . . . , ank , . . .)

is called a subsequence of (an)n∈N and is denoted by (ank )k∈N.

Example

Let (an)n∈N =
(
1, 12 ,

1
3 ,

1
4 . . . ,

)
, then

(
1
2 ,

1
4 ,

1
6 , . . .

)
and

(
1
10 ,

1
100 ,

1
1000 , . . .

)
are subsequences of (an)n∈N. The sequences(

1

10
,
1

2
,

1

100
, . . .

)
and (1, 1, . . .) are NOT!.
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Limit of a subsequence

Theorem

Subsequences of a convergent sequence (an)n∈N ⊆ R converge to the same
limit as the original sequence.

Proof. Assume limn→∞ an = a and let (ank )k∈N be a subsequence. Given
ε > 0 there is Nε ∈ N so that

n ≥ Nε implies |an − a| < ε.

Because nk ≥ k for all k ∈ N, the same Nε will suffice for the
subsequence, that is

|ank − a| < ε whenever k ≥ Nε.
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Cauchy sequences and their properties

Cauchy sequences

Cauchy sequences

A sequence (an)n∈N ⊆ R is called Cauchy sequence if for every ε > 0
there exists Nε ∈ N such that whenever m, n ≥ Nε it follows

|an − am| < ε.

Convergent sequences

Recall that a sequence (an)n∈N ⊆ R converges to a ∈ R if for any ε > 0
there is Nε ∈ N such that whenever n ≥ Nε if follows

|an − a| < ε.
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Cauchy sequences and their properties

Convergent sequences are Cauchy

Theorem

Every convergent sequence (xn)n∈N ⊆ R is a Cauchy sequence.

Proof. Let ε > 0 be given. If

lim
n→∞

xn = x ,

then there is Nε ∈ N so that n ≥ Nε implies

|xn − x | < ε

2
.

Thus for n,m ≥ Nε we obtain

|xm − xn| ≤ |xn − x |+ |xm − x | < ε

2
+

ε

2
= ε.

The proof is completed.
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Cauchy sequences and their properties

Cauchy sequences are bounded

Lemma

Cauchy sequences (xn)n∈N ⊆ R are bounded.

Proof. Let (xn)n∈N be Cauchy. Given ε = 1 there is N ∈ N so that if
n,m ≥ N then |xn − xm| < 1. Thus

|xn| ≤ |xN |+ 1.

Taking
M = max{|x1|, |x2|, . . . , |xN |, |xN |+ 1}

we conclude |xn| ≤ M for all n ∈ N.
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Cauchy sequences and their properties

Cauchy sequences and converging subsequences

Theorem

Let (xn)n∈N ⊆ R be a Cauchy sequence. Suppose that there is (nk)k∈N so
that limk→∞ xnk = x . Then limn→∞ xn = x .

Proof. Assume that (xn)n∈N ⊆ R is Cauchy and there is (nk)k∈N so that

lim
k→∞

xnk = x ∈ F (∗).

Let ε > 0 be given. Then there is Nε ∈ N so that n,m ≥ Nε implies
|xn − xm| < ε

2 . By (*) we can choose nk ∈ N so that nk ≥ Nε and

|xnk − x | < ε

2
.

Then for n ≥ Nε and the triangle inequality

|xn − x | ≤ |xn − xnk |+ |xnk − x | < ε

2
+

ε

2
= ε.
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Cauchy sequences and their properties

Increasing and decreasing sequences

Increasing and decreasing sequences

Let R be an ordered field. A sequence of real numbers (an)n∈N ⊆ R is

increasing if an ≤ an+1 for all n ∈ N;
decreasing if an ≥ an+1 for all n ∈ N.

Monotone sequence

A sequence is monotone if it is either increasing or decreasing.

Example(
3 + 1

n

)
n∈N is decreasing, so it is monotone.(

n3
)
n∈N is increasing, so it is monotone.

((−1)n)n∈N is neither increasing nor decreasing, so it is not monotone.
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Consequences of the (AoC) and nested intervals property

Monotone convergence theorem

Monotone convergence theorem (MCT)

If a sequence (xn)n∈N ⊆ R is monotone and bounded then it converges.

Proof. Assume that (xn)n∈N is increasing and bounded. Consider the set

E = {xn : n ∈ N} ⊆ R,

which is nonempty and bounded. Let x = supE ∈ R, which exists by the
axiom of completeness (AoC). We will show that limn→∞ xn = x .

Let ε > 0 and note that there exists Nε ∈ N so that

x − ε < xNε ≤ x .

But (xn)n∈N is increasing thus for any n ≥ Nε one has

x − ε < xNε ≤ xn ≤ x < x + ε.

Hence |xn − x | < ε for all n ≥ Nε, which shows that limn→∞ xn = x .
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Consequences of the (AoC) and nested intervals property

Bolzano–Weierstrass theorem

Theorem

Every bounded sequence (xn)n∈N ⊆ R contains a convergent subsequence.

Proof. Let (an)n∈N ⊆ R be bounded. Then there is M > 0 such that

|an| ≤ M for all n ∈ N.

Thus an ∈ [−M,M] for all n ∈ N.

Step 1. Divide [−M,M] into two closed intervals [−M, 0], [0,M].
We can assume (wlog) that I1 = [0,M] contains infinitely many
elements of (an)n∈N. Moreover, the length of I1 is M.

Step 2. Divide I1 into two closed intervals of the same length and
select the one which contains infinitely many elements of (an)n∈N.
Call it I2 ⊂ I1 and note that has length M

2 .

(MATH 411H, FALL 2025) Lecture 6 September 22, 2025 10 / 27



Consequences of the (AoC) and nested intervals property

Proof: 1/2

Step 3. Proceeding inductively as above we obtain a sequence of
decreasing closed intervals

I1 ⊃ I2 ⊃ I3 ⊃ I4 ⊃ . . .

where each Ik contains infinitely many elements of (an)n∈N and has
length M

2k−1 .
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Consequences of the (AoC) and nested intervals property

Proof: 2/2

Step 4. By the nested intervals property
⋂∞

k=1 Ik ̸= ∅. In fact,

∞⋂
k=1

Ik = {x} for some x ∈ R why?.

Now for each k ∈ N select an element ank ∈ Ik so that

n1 < n2 < . . . < nk < . . .

where an1 is any element of I1.

Step 5. Let ε > 0 and choose Nε ∈ N so that

M

2k−1
≤ 2M

k
< ε for k ≥ Nε.

Then for every k ≥ Nε we have

|ank − x | ≤ M

2k−1
< ε,

thus limn→∞ ank = x .
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Consequences of the (AoC) and nested intervals property

Bolzano–Weierstrass theorem implies Cauchy completeness

Example

Let us consider a sequence an = (−1)n. It in NOT convergent, but the
subsequence (−1)2n = 1 converges to 1.

Theorem (Cauchy completeness of R)
A sequence (xn)n∈N converges iff it is a Cauchy sequence.

Proof: The implication (=⇒) has already been proved. For the reverse
implication (⇐=) assume that (xn)n∈N is Cauchy, thus it is bounded. By
the Bolzano–Weierstrass theorem there is (nk)k∈N so that

lim
k→∞

xnk = x for some x ∈ R.

But Cauchy sequences with converging subsequences converge, i.e.

lim
n→∞

xn = x .

This completes the proof.
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The complex field

Complex numbers

Definition (Complex numbers)

A complex number is an ordered pair (a, b) ∈ R× R.

Definition (Addition and multiplication of complex numbers)

For two complex numbers x = (a, b), y = (c , d) ∈ R× R we define

addition + by setting

x + y = (a+ c , b + d),

multiplication · by setting

x · y = (ac − bd , ad + bc).
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The complex field

Complex field

Theorem

These operations addition + and multilpication · turn the set of all
complex numbers into a field with (0, 0) and (1, 0) playing, respectively,
the role of 0 and 1. This field will be denoted by C.

Proof. We have to verify the field axioms.

Addition axioms (A)

(A1) if x , y ∈ C, then x + y ∈ C,
(A2) x + y = y + x for all x , y ∈ C,
(A3) (x + y) + z = x + (y + z) for all x , y , z ∈ C,
(A4) C contains the element 0 such that x + 0 = x for all x ∈ C,
(A5) to every x ∈ C corresponds an element (−x) ∈ C such that

x + (−x) = 0.
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The complex field

Proof

Multiplication axioms (M)

(M1) if x , y ∈ C, then their product xy ∈ C,
(M2) xy = yx for all x , y ∈ C,
(M3) (xy)z = x(yz) for all x , y , z ∈ C,
(M4) C contains the element 1 ̸= 0 such that 1 · x = x for all x ∈ C,
(M5) if 0 ̸= x ∈ C then there is an element x−1 = 1

x ∈ C such that

x · x−1 = 1.

Distributive law (D)

(D1) x(y + z) = xy + xz holds for all x , y , z ∈ C.

Let x = (a, b), y = (c, d), z = (e, f ). We will use the field structure of R.
Proof of (A1). By the definition of addition

x + y = (a, b) + (c , d) = (a+ c , b + d) ∈ C.
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The complex field

Proof

Proof of (A2).

x + y = (a+ c , b + d) = (c + a) + (d + b) = y + x .

Proof of (A3).

(x + y) + z = (a+ c , b + d) + (e, f )

= (a+ c + e, b + d + f )

= (a, b) + (c + e, d + f ) = x + (y + z).

Proof of (A4).

x + 0 = (a, b) + (0, 0) = (a, b) = x .

Proof of (A5). Set −x = (−a,−b) and note that

x + (−x) = (a− a, b − b) = (0, 0) = 0.
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The complex field

Proof

Proof of (M1). By the definition of multiplication

x · y = (a, b) · (c , d) = (ac − bd , ad + bc) ∈ C.

Proof of (M2).

x · y = (ac − bd , ad + bc) = (ca− db, da+ cb) = y · x .

Proof of (M3).

(x · y) · z = (ac − bd , ad + bc) · (e, f )
= (ace − bde − adf − bcf , acf − bdf + ade + bce)

= (a, b) · (ce − df , cf + de) = x · (y · z).

Proof of (M4).

1 · x = (1, 0) · (a, b) = (a, b) = x .
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The complex field

Proof

Proof of (M5). If x ̸= 0 then (a, b) ̸= (0, 0), which means that at
least one of the real numbers a, b is different from 0. Hence
a2 + b2 > 0 and we define

1

x
=

(
a

a2 + b2
,

−b

a2 + b2

)
.

Then

x · 1
x
= (a, b) ·

(
a

a2 + b2
,

−b

a2 + b2

)
= (1, 0).

Proof of (D1).

x · (y + z) = (a, b) · (c + e, d + f )

= (ac + ae − bd − bf , ad + af + bc + be)

= (ac − bd , ad + bc) + (ae − bf , af + be)

= x · y + x · z .

This completes the proof that C is a field.
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The complex field

Imaginary number i

Remark

For any a, b ∈ R we have

(a, 0) + (b, 0) = (a+ b, 0) and (a, 0) · (b, 0) = (ab, 0).

The complex numbers from the set {(a, 0) : a ∈ R} have the same
arithmetic properties as the corresponding real numbers R.
We can therefore identify (a, 0) with a. This identification gives us
the real field R as a subfield of the complex field C.
We have defined the complex numbers C without any reference to the
mysterious square root of −1. We now show that the notation (a, b)
is equivalent to the more customary a+ bi .

Definition

We define the imaginary number by setting i = (0, 1).
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The complex field

Equivalent definition of C
Theorem

One has that i2 = −1.

Proof.

Note that i2 = (0, 1) · (0, 1) = (−1, 0).

Theorem

We also have
C = {a+ ib : a, b ∈ R}.

Proof.

It suffices to note that

a+ ib = (a, 0) + (0, 1) · (b, 0)
= (a, 0) + (0, b) = (a, b).
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The complex field

Conjugate, real and imaginary parts

Definition

If z ∈ C and z = a+ ib for some a, b ∈ R then the complex number

z = a− ib

is called the conjugate of z . The numbers a and b are the real part and
imaginary part of z respectively. We shall write

a = ℜ(z) = Re(z) and b = ℑ(z) = Im(z).

Theorem

If z ,w ∈ C then

(i) z + w = z + w .

(ii) zw = z · w .

(iii) z + z = 2Re(z) and z − z = 2iIm(z).

(iv) zz is a positive real number except when z = 0.
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The complex field

Proof

Proof. Let z = a+ ib and w = c + id .

Proof of (i). Note that

z + w = (a+ c) + i(b + d) = (a+ c)− i(b + d) = z + w .

Proof of (ii). Note that

z · w = (ac − bd)− i(ad + bc) and

z · w = (a− ib)(c − id) = (ac − bd)− i(ad + bc).

Proof of (iii). We have

z + z = (a+ ib) + (a− ib) = 2a = 2Re(z),

z − z = (a+ ib)− (a− ib) = 2ib = 2iIm(z).

Proof of (iv). We have z · z = (a+ ib)(a− ib) = a2 + b2 > 0 if and
only if z ̸= 0.
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The complex field

Absolute value on C

Definition

If z ∈ C its absolute value |z | is defined by setting

|z | =
√
z · z .

Remark

This absolute value exists and is unique. Moreover, it coincides with the
absolute value from R. If x ∈ R then x = x hence |x | =

√
x · x =

√
x2.

Thus

|x | =

{
x if x ≤ 0,

−x if x < 0.
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The complex field

Properties of the absolute value on C

Theorem

If z ,w ∈ C then

(i) |z | > 0 if and only if z ̸= 0, and |0| = 0.

(ii) |z | = |z |.
(iii) |zw | = |z ||w |.
(iv) |Re(z)| ≤ |z | and |Im(z)| ≤ |z |
(v) |z + w | ≤ |z |+ |w |.

Proof. Let z = a+ ib and w = c + id .

Proof of (i). From the previous theorem we have

|z |2 = z · z = (a+ ib)(a− ib) = a2 + b2 > 0,

which gives the desired claim.

(MATH 411H, FALL 2025) Lecture 6 September 22, 2025 25 / 27



The complex field

Proof

Proof of (ii). Note that |z |2 = a2 + b2 = |z |2.
Proof of (iii). Note that

|z · w | = (ac − bd)2 + (ad + bc)2 = (a2 + b2)(c2 + d2) = |z |2|w |2.

Proof of (iv). We have

|Re(z)| = |a| ≤
√

a2 + b2 = |z |, and |Im(z)| = |b| ≤
√
a2 + b2 = |z |.

Proof of (v). Note that zw is the conjugate of zw so that
zw + zw = 2Re(zw). Hence

|z + w |2 = (z + w)(z + w) = zz + zw + zw + ww

= |z |2 + 2Re(zw) + |w |2

≤ |z |2 + 2|Re(zw)|+ |w |2

= |z |2 + 2|z ||w |+ |w |2 = (|z |+ |w |)2.

The proof of the theorem is completed.
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The complex field

Convergence in C

Definition

We say that a sequence of complex numbers (zn)n∈N ⊆ C converges to
z ∈ C if and only if

lim
n→∞

|zn − z | = 0.

We write

lim
n→∞

zn = z if and only if lim
n→∞

|zn − z | = 0.

This is also equivalent to say that for every ε > 0 there exists an integer
Nε ∈ N such that if n ≥ Nε then

|zn − z | < ε.
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