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More about sequences

Tools

Theorem (Squeeze Theorem)

Let (xn)n∈N, (yn)n∈N, (zn)n∈N ⊆ R be sequences such that xn ≤ yn ≤ zn for
all n ∈ N. If limn→∞ xn = limn→∞ zn = L ∈ R, then limn→∞ yn = L.

Corollary (Monotone convergence theorem (MCT))

Every bounded and monotonic sequence in R converges to some x ∈ R.

Binomial theorem

For every n ∈ N and x , y ∈ R one has

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k , where

(
n

k

)
=

n!

k!(n − k)!
,

and n! = 1 · 2 · 3 · . . . · n, for all n ∈ N and 0! = 1.

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.
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More about sequences

Theorem

Theorem

(a) If p > 0, then limn→∞
1
np = 0.

(b) If p > 0, then limn→∞ n
√
p = 1

(c) limn→∞ n
√
n = 1.

(d) If p > 0 and α ∈ R, then limn→∞
nα

(1+p)n = 0.

(e) If |x | < 1, then limn→∞ xn = 0.

Proof of (a): Take ε > 0 be arbitrary, but fixed. Then

n >

(
1

ε

)1/p

,

which is possible by the Archimedian property.
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More about sequences

Proof of (b):

Proof of (b): If p > 1 set xn = n
√
p − 1, then xn > 0 and by Bernoulli’s

inequality
1 + nxn ≤ (1 + xn)

n = p,

so that

0 < xn ≤ p − 1

n
.

But

lim
n→∞

p − 1

n
= 0,

thus by the squeeze theorem we conclude

lim
n→∞

xn = 0

as desired.
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More about sequences

Proof of (c):

Proof of (c): Set xn = n
√
n − 1. Then xn ≥ 0 and by the binomial

theorem

n = (1 + xn)
n ≥

(
n

2

)
x2n =

n(n − 1)

2
x2n .

Hence

0 ≤ xn ≤
(

2

n − 1

)1/2

for n ≥ 2.

But

lim
n→∞

(
2

n − 1

)1/2

= 0.

Thus by the squeeze theorem

lim
n→∞

xn = 0

as desired.
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More about sequences

Proof of (d) and (e):

Proof of (d): Let k ∈ N so that k > α. For n > 2k by the binomial
theorem

(1 + p)n >

(
n

k

)
pk =

n(n − 1) . . . (n − k + 1)

k!
pk >

nkpk

2kk!
,

since n ≥ n
2 , n − 1 ≥ n

2 , . . . , n − k + 1 ≥ n
2 . Hence

0 <
nα

(1 + p)n
<

2kk!

pk
nα−k for n > 2k .

Since α− k < 0 thus limn→∞ nα−k = 0 by (a) and by the squeeze
theorem limn→∞

nα

(1+p)n = 0.

Proof of (e): Take α = 0 in (d) and observe that if 0 < x < 1 then the
sequence xn = xn is decreasing and bounded. Thus limn→∞ xn = 0.
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More about sequences

Proposition

Proposition

If a > 0 and limn→∞ xn = x0, then limn→∞ axn = ax0 .

Proof. It suffices to prove that limn→∞ axn = 1 if limn→∞ xn = 0.
Assume a > 1. By the previous theorem we know that

lim
n→∞

a1/n = lim
n→∞

a−1/n = 1.

Thus for any ε > 0 there is Mε ∈ N such that for any m ≥ Mε

1− ε < a−1/m < a1/m < 1 + ε.

Now since limn→∞ xn = 0 we find Nm,ε ∈ N so that for n ≥ Nε,m

|xn| <
1

m
⇐⇒ − 1

m
< xn <

1

m
.
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More about sequences

Proof of Proposition

Thus
1− ε < a−1/m < axn < a1/m < 1 + ε

which proves |axn − 1| < ε for any n ≥ Nm,ε proving that

lim
n→∞

axn = 1.

If 0 < a < 1 we note that

lim
n→∞

axn = lim
n→∞

1(
1
a

)xn
and this completes the proof of the proposition.
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Geometric Mean vs Arithmetic Mean

Geometric and arithmetic means

Let a1, a2, . . . , an ≥ 0 be given.

Arithmetic mean

We define arithmetic mean of a1, a2, . . . , an by

An =
a1 + a2 + . . .+ an

n
.

Geometric mean

We define geometric mean of a1, a2, . . . , an by

Gn = n
√
a1 · a2 · . . . · an.
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Geometric Mean vs Arithmetic Mean

Geometric Mean vs Arithmetic Mean

Theorem

For any n ∈ N we have
Gn ≤ An.

Proof. For n = 2 observe that

(a− b)2 ≥ 0,

since

a2 − 2ab + b2 ≥ 0 ⇐⇒ ab ≤ a2 + b2

2
.

Taking a =
√
a1 and b =

√
a2 we obtain

A2 =
a1 + a2

2
=

(
√
a1)

2 + (
√
a2)

2

2
≥

√
a1a2 = G2.
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Geometric Mean vs Arithmetic Mean

Cases n = 4 and n = 8 suggest induction

Case n = 4. Note that

A4 =
a1 + a2 + a3 + a4

4
=

1

2

(
a1 + a2

2
+

a3 + a4
2

)
≥︸︷︷︸

A2≥G2

(
(a1a2)

1/2 (a3a4)
1/2
)1/2

= (a1a2a3a4)
1/4 = G4.

Case n = 8. Let us use A4 ≥ G4 and A2 ≥ G2 to prove A8 ≥ G8.

A8 =
a1 + . . .+ a8

8
=

1

2

(
a1 + . . .+ a4

4
+

a5 + . . .+ a8
4

)
≥︸︷︷︸

A2≥G2

(
a1 + . . .+ a4

4

a5 + . . .+ a8
4

)1/2

≥︸︷︷︸
A4≥G4

(
(a1 . . . a4)

1/4 (a5 . . . a8)
1/4
)1/2

= (a1 . . . a8)
1/8 = G8.
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Geometric Mean vs Arithmetic Mean

Claim and base step

We first use induction to prove

A2n ≥ G2n

for all n ∈ N.

Base step. For n = 2 the inequality is true as

A2 =
a1 + a2

2
≥ (a1a2)

1/2 = G2.
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Geometric Mean vs Arithmetic Mean

Inductive step

Let P(n) be the statement that A2n ≥ G2n holds for some n ∈ N.

Inductive step. Now we prove that P(n) =⇒ P(n + 1). Indeed,

A2n+1 =
a1 + . . .+ a2n+1

2n+1
=

1

2

(
a1 + . . .+ a2n

2n
+

a2n+1 + . . .+ a2n+1

2n

)
≥︸︷︷︸

A2≥G2

(
a1 + . . .+ a2n

2n
a2n+1 + . . .+ a2n+1

2n

)1/2

≥︸︷︷︸
A2n≥G2n

(
(a1 . . . a2n)

1/2n (a2n+1 . . . a2n+1)1/2
n
)1/2

= (a1 . . . a2n+1)1/2
n+1

= G2n+1 .
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Geometric Mean vs Arithmetic Mean

Proof of GM vs AM inequality

Now we have to show that

An ≥ Gn

for all n ∈ N.

We first observe that the following downwards induction holds.

Let Q(n) be the statement that

An ≥ Gn

holds for some n ∈ N. Then

Q(n − 1)

is also true.

This will follow from the so-called bootstrap phenomenon.
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Geometric Mean vs Arithmetic Mean

Bootstrap phenomenon

Note that (by An ≥ Gn with a1, a2, . . . , an−1, an = An−1) one has

a1 + . . .+ an−1 + An−1

n
≥ (a1 · . . . · an−1 · An−1)

1/n .

But
a1 + . . .+ an−1 + An−1

n
=

(n − 1)An−1 + An−1

n
= An−1.

Thus we have shown

Bootstrapping inequality

An−1 ≥ (a1 · . . . · an−1)
1/n A

1/n
n−1.

Hence
A
1−1/n
n−1 ≥ (a1 · . . . · an−1)

1/n = G
(n−1)/n
n−1 ,

thus An−1 ≥ Gn−1, which means that Q(n − 1) holds.
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Geometric Mean vs Arithmetic Mean

Geometric Mean vs Arithmetic Mean: 1/2

Now we can show that

Claim (⋆)

An ≥ Gn for all n ∈ N.

Proof. We know:

1 A2m ≥ G2m for all m ∈ N,
2 if Ak ≥ Gk holds for some k ∈ N, then also holds for k − 1, i.e.

Ak−1 ≥ Gk−1 is true.

Concluding, we can easily prove Claim (⋆). Fix n ∈ N and choose the
smallest m ∈ N so that

2m−1 < n ≤ 2m.

By (1) we know A2m ≥ G2m holds.
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Geometric Mean vs Arithmetic Mean

Geometric Mean vs Arithmetic Mean: 2/2

Claim (⋆)

An ≥ Gn for all n ∈ N.

By (2) with k = 2m we deduce

A2m ≥ G2m implies A2m−1 ≥ G2m−1.

Repeating

A2m−1 ≥ G2m−1 implies A2m−2 ≥ G2m−2.

We now apply (2) as many times until we reach An ≥ Gn and the proof is
finally completed.
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Mean inequalities

Means

Let a1, a2, . . . , an > 0 be given. We have the following means.

Arithmetic mean

An =
a1 + . . .+ an

n
;

Geometric mean

Gn = (a1 · . . . · an)1/n ;

Harmonic mean

Hn =
n

1
a1

+ 1
a2

+ . . .+ 1
an

;

Quadratic mean

Qn =

(
a21 + . . .+ a2n

n

)1/2

.
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Mean inequalities

Theorem

Theorem

For all n ∈ N and a1, a2, . . . , an > 0 we have

min(a1, . . . , an) ≤ Hn ≤ Gn ≤ An ≤ Qn ≤ max(a1, . . . , an).

Proof. We will proceed in several steps.

We have proved that An ≥ Gn.

To prove Hn ≤ Gn we apply An ≥ Gn with

1

a1
,
1

a2
, . . . ,

1

an
.

We obtain

G−1
n =

(
1

a1
· 1

a2
· . . . · 1

an

)1/n

≤
1
a1

+ 1
a2

+ . . .+ 1
an

n
= H−1

n ,

thus Hn ≤ Gn.
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Mean inequalities

Proof: 1/2

To prove inequality An ≤ Qn consider the relation

(a1 + a2 + . . .+ an)
2 = a21 + a22 + . . .+ a2n

+ 2(a1a1 + a1a3 + . . .+ a1an)

+ 2(a2a3 + a2a4 + . . .+ a2an)

+ . . .+ 2(an−2an−1 + an−2an) + 2an−1an.

Since 2aiaj ≤ a2i + a2j , thus

(a1 + . . .+ an)
2 ≤ n(a21 + . . .+ a2n).

Hence

a1 + . . .+ an ≤
(
n(a21 + . . .+ a2n)

)1/2
,

and consequently An ≤ Qn.
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Mean inequalities

Proof: 2/2

Finally wlog suppose that

0 < a1 ≤ a2 ≤ . . . ≤ an.

then a1 = min(a1, . . . , an), and an = max(a1, . . . , an). Hence

Hn =
n

1
a1

+ 1
a2

+ . . .+ 1
an

≥ n
a1
n

= a1,

and

Qn =

(
a21 + . . .+ a2n

n

)1/2

≤
(
na2n
n

)1/2

= an.

The proof is completed.
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Mean inequalities

AM-GM inequality - example

Example

Prove that for any x , y , z > 0 we have

x2

yz
+

y2

xz
+

z2

xy
≥ 3.

Solution. Consider the numbers x2

yz ,
y2

xz ,
z2

xy . Then

A3 =

x2

yz + y2

xz + z2

xy

3
,

G3 =
3

√
x2

yz
· y

2

xz
· z

2

xy
= 1,

so our inequality is a consequence of A3 ≥ G3.
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Mean inequalities

AM-GM inequality - example

Example

If the product of n positive real numbers is 1, then their sum is at least n.

Solution. Let a1, . . . , an > 0 be the numbers such that

Gn = n
√
a1 · · · an = 1,

so by An ≥ Gn,
a1 + . . .+ an ≥ nGn = n.
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Bernoulli inequality

Bernoulli inequality: 1/2

Bernoulli inequality

If x > −1 and n ∈ N, then one has

(1 + x)n ≥ 1 + nx .

Proof. We will use An ≥ Gn with

a1 = a2 = . . . = an−1 = 1 and an = 1 + nx .

Indeed,

An =
a1 + . . .+ an

n
=

n−1 times︷ ︸︸ ︷
1 + . . .+ 1+1 + nx

n
=

n(1 + x)

n
= 1 + x .
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Bernoulli inequality

Bernoulli inequality: 2/2

On the other hand

(1 + x) = An ≥ Gn =

 n−1 times︷ ︸︸ ︷
1 · 1 · . . . · 1 ·(1 + nx)

1/n

= (1 + nx)1/n,

which implies

(1 + x)n ≥ 1 + nx ,

and we are done.
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Bernoulli inequality

Bernoulli inequality: generalization

Our aim will be to built tools and generalize Bernoulli’s inequality. We
show that the following is true.

Bernoulli inequality - generalization

If −1 < x ̸= 0 and a > 1 or a < 0, then

(1 + x)a > 1 + ax .

If −1 < x ̸= 0 and 0 < a < 1, then

(1 + x)a < 1 + ax .
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Cauchy–Schwarz inequality

Cauchy–Schwarz inequality

Cauchy–Schwarz inequality

For any real numbers a1, . . . , an and b1, . . . , bn one has n∑
j=1

ajbj

2

≤

 n∑
j=1

a2j

 n∑
j=1

b2j

 .

Proof. Consider the polynomial

0 ≤ (a1x + b1)
2 + (a2x + b2)

2 + . . .+ (anx + bn)
2 =

(a21 + . . .+ a2n)x
2 + 2(a1b1 + a2b2 + . . .+ anbn)x + (b21 + . . .+ b2n).

Since the polynomial is nonnegative

∆ = 4(a1b1 + . . .+ anbn)
2 − 4(a21 + . . .+ a2n)(b

2
1 + . . .+ b2n) ≤ 0

and we are done.
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Cauchy–Schwarz inequality

Minkowski’s inequality: 1/3

Minkowski’s inequality

For any real numbers a1, . . . , an and b1, . . . , bn one has n∑
j=1

|aj + bj |2
1/2

≤

 n∑
j=1

|aj |2
1/2

+

 n∑
j=1

|bj |2
1/2

.

Proof. Let

Sn =

 n∑
j=1

|aj + bj |2
1/2

.
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Cauchy–Schwarz inequality

Minkowski’s inequality: 2/3

Then

S2
n =

n∑
j=1

|aj + bj |2 =
n∑

j=1

|aj + bj ||aj + bj |

≤
n∑

j=1

|aj + bj ||aj |+
n∑

j=1

|aj + bj ||bj |.

By the Cauchy–Schwarz inequality,

S2
n ≤ n∑

j=1

|aj + bj |2
1/2

︸ ︷︷ ︸
=Sn

 n∑
j=1

|aj |2
1/2

+

 n∑
j=1

|aj + bj |2
1/2

︸ ︷︷ ︸
=Sn

 n∑
j=1

|bj |2
1/2
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Cauchy–Schwarz inequality

Minkowski’s inequality: 3/3

= Sn


 n∑

j=1

|aj |2
1/2

+

 n∑
j=1

|bj |2
1/2

 .

Thus we have proved a bootstrap inequality, i.e.

S2
n ≤ Sn


 n∑

j=1

|aj |2
1/2

+

 n∑
j=1

|bj |2
1/2

 .

Hence

Sn ≤

 n∑
j=1

|aj |2
1/2

+

 n∑
j=1

|bj |2
1/2

.
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Cauchy–Schwarz inequality

Weighted arithmetic and geometric means

Theorem

For all positive real numbers a1, a2, . . . , an and all positive weights
q1, q2, . . . , qn satisfying the following convexity condition

q1 + . . .+ qn = 1,

we have
aq11 · . . . · aqnn ≤ q1a1 + . . .+ qnan.

If q1 = q2 = . . . = qn = 1
n , then we have

aq11 · . . . · aqnn = (a1 · . . . · an)1/n ≤ a1 + . . .+ an
n

= q1a1 + . . .+ qnan,

which recovers the inequality between geometric and arithmetic means.
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Cauchy–Schwarz inequality

Proof: 1/2

Proof: We first assume

q1, . . . , qn ∈ Q and q1, . . . , qn > 0.

We can assume that qi =
ki
m for 1 ≤ i ≤ n and

k1 + . . .+ kn = m.

Invoking the inequality between geometric and arithmetic means we obtain

n∑
i=1

qiai = k1
a1
m

+ . . .+ kn
an
m

≥ m

((a1
m

)k1
· . . . ·

(an
m

)kn)1/m

= a
k1/m
1 · . . . · akn/mn

= aq11 · . . . · aqnn .
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Cauchy–Schwarz inequality

Proof: 2/2

If now all weights q1, . . . , qn > 0 are real numbers, then for any 1 ≤ i ≤ n,
we choose a sequence of positive rationals (qi ,k)k∈N so that

lim
k→∞

qi ,k = qi

and so that
n∑

i=1

qi ,k = 1 for all k ∈ N.

Then by the previous part

a
qi,k
1 · . . . · aqn,kn ≤ q1,ka1 + . . .+ qn,kan.

Passing with k → ∞ we conclude that

aq11 · . . . · aqnn ≤ q1a1 + . . .+ qnan.

Here we used the following fact: if a > 0 and limn→∞ xn = x0, then
limn→∞ axn = ax0 .
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Cauchy–Schwarz inequality

Hölder’s inequality

Hölder’s inequality

Let 1 < p, q < ∞ be such that 1
p + 1

q = 1. Then for any real numbers
x1, . . . , xn and y1, . . . , yn one has

n∑
j=1

|xjyj | ≤
( n∑

j=1

|xj |p
)1/p( n∑

j=1

|yj |q
)1/q

.

Proof. By the previous theorem for any a1, b1 > 0 we have

a
1
p

1 b
1
q

1 ≤ 1

p
a1 +

1

q
b1,

which for a1 = ap and b1 = bq yields

(*)

ab ≤ 1

p
ap +

1

q
bq.
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Cauchy–Schwarz inequality

Proof of Hölder’s inequality 1/2

Let

aj :=
|xj |(∑n

j=1 |xj |p
)1/p , bj :=

|yj |(∑n
j=1 |yj |q

)1/q
Applying (*) to each 1 ≤ j ≤ n one gets

n∑
j=1

ajbj ≤
n∑

j=1

(
1

p
apj +

1

q
bqj

)

=
n∑

j=1

(
|xj |p

p
(∑n

j=1 |xj |p
) + |yqj |

q
(∑n

j=1 |yj |q
))

=
1

p

∑n
j=1 |xj |p∑n
j=1 |xj |p

+
1

q

∑n
j=1 |yj |q∑n
j=1 |yj |q

=
1

p
+

1

q
= 1.
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Cauchy–Schwarz inequality

Proof of Hölder’s inequality 2/2

Thus we have proved
n∑

j=1

ajbj ≤ 1,

which is equivalent to

n∑
j=1

|xjyj | ≤
( n∑

j=1

|xj |p
)1/p( n∑

j=1

|yj |q
)1/q

and the proof of Hölder’s inequality is completed.
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