Lecture 8

Stolz theorem and Euler's number
Upper and lower limits
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Stolz theorem and applications

Stolz theorem

Stolz theorem
Let (xn)nen, (Vn)nen be two sequences so that
@ (Yn)nen strictly increases to 400, i.e. yp < ynt1 for all n € N and

lim y, = +o0.
n—oo

@ Also we have

then
Xn

Remark: It is a prototype of a I'Hopital’s rule.
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Proof: 1/3

@ Without loss of generality we may assume that y, > 0, since lim y, =400
n— o0

and thus we have y, > 0 for large n € N.
@ Since lim X=X=1 — 3 there is M > 0 such that for n > M we have
n—oo Yn—Yn—1

e Xp — Xp—1 5
a—=—<—<a+ =
2 Yn — Yn—-1 2

So for n > M we have

e g
(a — 5)(yn — }/nfl) <Xp — Xp—1< (8 + §>(Yr1 - }/nfl)'

@ Summing now from k = M to k = n for any n > M we get

(3 - %)(yn — ym-1) = z”: (3 - g)()/k — Yk-1) < zn:(xk — Xk—1)

k=M k=M

n g £
= Xp — XpM-1< k;; (a + §>(yk - Yk-1) = (a+ 5)(yn — YM-1).

since the above sums are telescoping.
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Stolz theorem and applications

Proof: 2/3

@ Therefore dividing by y, — ym—1 for any n > M we obtain

Xp — XM—1 9
LT < at -

€
? 2 < Yn —YmM-1 2
SO Xpn — XM—1 g
"7—a‘<f for n> M.
Yn —YM-1
@ Observe that
Xn (17 YI\/I71>Xn*XI\/I71‘ _ X _ Xn—XM71’: ’XMfl :
Yn Yn Yn

Yn Yn Yn — YM-1
so the triangle inequality gives us for n > M the inequalities

) Xn — XM—1 ‘

—a

li<17YM71)Xn*XM71‘+‘(17YM—1
Yn Yn —YM-1 Yn /7 Yn—YM-1
X, _ Xp — X
S‘M1’+’( Ym 1)‘ n M— ‘+H}/M1
Yn Yn — YM-1 Yn

X a
<€ +\M 1|+ lalym— 1
2 Yn
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Proof: 3/3

So for n > M we have

n Ixm—1| + |3|y/\/l—1_
2 Yn

X 9
Yn

Since lim y, = 400, we may choose N > M such that for n > N we have
n—o00

xm—1| + [alym—1 <&
Yn 2
Therefore for n > N we get
o
Yn
and the proof is finished. O
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Example 1/2

Exercise
Let kK € N be fixed. Find the limit

" 1K+ ... 4+ nk
mm —
n—o0 nk+1

Proof. We apply Stolz’s theorem with
x,,:1k+...+nk, y,,:nk‘H.

Observe that (yp)nen is strictly increasing and lim y, = 4+o00. Therefore
n—o0
it suffices to compute

. Xp— Xp—1 . nk
[im —— = |im

n=00Yn — ¥Yn-1 n—oo pk+1 — (n - 1)k+1 .
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Example 2/2

Using the binomial theorem we get

k+1
(n - l)k-‘rl — i <k + 1) nm(_l)k-i-l—m

m
m=0

k—1
k+1
— k+1_ k 1 k m_l k+1—m
Pkt )n+m§jo( MTLEY

So we have
li n* l n*
m = lim

e kT — (n— 1)k+1 LU (k +1)nk — an 10 (k+1) m(—1)k+1-m

- n||—>n<1>o k=+1 k=1 (k+1\ m—k —1)k+1-m
( + ) Zm:O( m )n ( )

B 1
-~ (k+1)

U
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Application

Proposition
Let (an)nen and (bp)nen be two sequences such that
Q@ b,>0,neNand lim b, =400,
n—oo
a

Q lm =g

n—oo

then
. ai+...+ap
im —m8M8 ———

oo by + ...+ b, &

Proof. We apply Stolz's theorem with x, = a; + ...+ a, and
Yn = b1 + ...+ b,. Then the assumptions of the Stolz theorem are
satisfied as yp+1 — ¥n = bpt1 > 0 and y, > b, both diverge to +o00, and

. Xn — Xp—1 .
lim ——— = lim — =g.
n—00 Y — Yn_1 n—oo by,

Therefore lim ? = g and the proof is finished.
n—oo /n
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Euler’s number

Euler's sequences: 1/4

Consider two sequences (ap)nen and (bp)nen defined by

1 n 1 n+1
an—<1+>, bn:<1+> forall neN
n n

We have the following properties.
@ Observe that a, < b, for all n € N. Indeed,

1 n 1 n+1
an<1+n> <<1+n> :bn7

since1<1—|—%foralln6N.
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Euler’'s number

Euler's sequences: 2/4

@ The sequence (ap)nen is strictly increasing, i.e.
an < apy1 forall neNlN.

Proof. By the geometric-arithmetic mean inequality Gp4+1 < Apt1

(which is strict unless x; = xp = ... = xp+1) with
1
x3=1 and X2:X3:...:X,,+1:1—|-E,
we obtain
N\ 114 1
Gy = 1+ = < — N7 = = Ani1.
il (( +n)> n+1 +n+1 il
Thus

1 n 1 n+1
a,,z(l—l—n) <<1+n+1> = adn+1-
L]
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Euler’'s number

Euler's sequences: 3/4

© The sequence (bp)nen is strictly decreasing, i.e.

bpy1 < b, forall neN.

Proof. By the harmonic-geometric mean inequality Hy+1 < Gpa1

(which is strict unless x; = xp = ... = xp+1) with
1 n
X1 an X2 = X3 Xp41 = + — 1 1
Then

thus
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Euler's sequences: 4/4

Collecting (1),(2),(3) we have
2=a<ap<apt1 < bpr1 < by, <by=4 forall n>2.

Thus the limits lim,_ o ap and lim,_ b, exist and
. . 1 . 1 ) .
lim b= Ilim (14+—-)a,={ lim (14— ( lim a,,) = lim a,.
n—o00 n—oo n n—oo n n—oo n—oo

Euler number

The limit of the sequences (a)nen and (bp)nen is called the Euler

number
1 n 1 n+1
lim <1+> = lim <1+> =e~2,718....
n—o0 n n—o00 n
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Euler’s number

Euler's number - fact

Fact

If limp—oo @n = +00 or limp_yo0 @an = —00, then

1\
lim (1 + ) =e.
n—oo an

Proof. Let lim,_,~ an = +00 and consider b, = [a,|. Then
b, < a, < b, +1, hence

b a bp+1
1 n 1\ 1\™
1 1 1 .
<+bn+1> <<+3n> <<+bn>
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Proof: 1/3

By the squeeze theorem it suffices to prove that

1 bn 1 bp+1
n||—>n<1>o(1+bn+]_> :n||—>r20(1+[)n) =€

1\
i <1+bn> -

@ If (by)nen were increasing then as a subsequence of (n),cn we could

or even

. 1 bn . . 1\n
conclude lim,_ (1 + b = e, since lim,_ (1 + ;) = e.

@ But we only know that lim,_, o by = +00. It does not mean that
(bn)nen is increasing.
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Proof: 2/3

Let £ > 0 be given. Since limp_,o (1 + %)n — e we can find N. € N so

that n > NE implies
1 n
(1 + ) —e
n

But lim o0 by = +00 thus we can find N € N so that n > N. implies
b, > Nc. In particular, we conclude that

bn
‘<1+bln> —e

1P
lim (1 + > =e.
n—o0 b,

an
Consequently, lim,_ (1 + ain) = e as liMmp_so an = +00.
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Proof: 3/3

Moreover,
1\
lim (1—) =e 1
n—00 an
because
1\
lim (1—) = lim ————— .
n—o0 an n—00 (1+ 1 ) e
this implies

1\
lim <1 + ) =e if
n—00 a

n
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Euler’s number

Example

Exercise

Find limp_0 (14 £)*".

Solution. Since (2n)pen is a subsequence of (n),cn we have

1 2n
lim (1 + ) = e.
n—o0 2n
Therefore,

1 4n 1 2n 1 2n
lim (1 + ) = ( lim (1 + ) ) ( lim (l + ) )
n—o0 2n n—00 2n n—o0 2n

O
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Euler’s number

Example
Exercise

) ) 1 4n’+1
Find limyo0 (14 247)

Solution. Since (n? + 1) e is a subsequence of (n),en we have

1 n?24+1
nll>nc]>o<1+n2+1> - ¢

Therefore,

1\ 1\
. . L . L _ 4
_<nll—>n;o<1+n2+1> ) <n||—>n;o<1+n2+1> > e. U
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Upper and lower limits

Upper and lower limits

o We write that s, ;=52 + oo if for every M > 0 there is n € N such

that n > N implies s, > M.

e Similarly, s, ;5= — oo if for every M > 0 there is an integer N € N

such that n > N implies s, < —M.

Upper limit and lower limit
Let (sn)nen be a sequence of real numbers.

@ The upper limit is defined by

limsups, = inf sups,.
n—00 k>1 n>k

@ The lower limit is defined by

liminf s, = sup inf s,.
n—o00 k>1 n>k
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Proposition

Proposition

For a sequence (sp)neny C R, the upper and lower limits always exist.

Proof. Let ax = sup,>, sp. Then ay 1 < o and

limsups, = inf sups, = Iim « ossible infinite!).
n%oop n ) n>‘l)< n . am k (p )
- (MCT)

If Bk = inf >k sp, then B < Biy1 and

liminfs, =supinfs, = Iim ossible infinite!l) [.
oo n k>€ >k n . , n—)ooﬁk (p )

(MCT)
Remark

We always have By = inf,>k sy < sup,>x Sp = ak. Thus

liminfa, = lim G, < lim a) = limsups,.
n—o00 k—o00 k— o0 n—o00
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Examples 1/3

Example 1

Consider a, = (—1)"ZHL. |et

ﬂ,,:sup{(—l)”n+1,(—1)”+1n+2 }’

n n+1""

then

%1 if nis even,
ﬁn - n+2 .

] if nis odd.

Thus lim,_ s Bn = 1. Therefore

limsupa, = 1.
n—o0o

Similarly

liminfa, = —1.
n—oo
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Upper and lower limits

Examples 2/3

Example 2
Let
0 if nis odd,
ap =
1if nis even.
Then
Bn=sup{am : m>n}=1,
ap =inf{a, : m>n}=0.
Therefore

limsupa, =1,

n—oo
liminfa, =0.
n—oo
.
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Examples 3/3

Example 3

Let a, = % Then

S|

1
Bn:sup{m : mzn}:

so limp_ o Bn = 0. Similarly

1
oz,,:inf{ : mzn}zo,
m

so lim,_ oy, = 0. Thus

limsup a, = liminfa, = 0.
n—00 n—=oo

(MATH 411H, FALL 2025) Lecture 8 September 29, 2025 23 /32



Upper and lower limits

Accumulation points of a sequence

Definition

Let (sn)nen be a sequence of real numbers. We say that x € RU {£o0} is

an accumulation point of (s,)nen if

S k—)ooX

for some subsequence (sp, )ken.

Theorem

Let (sn)nen be a sequence of real numbers. Let E be the set of all
accumulation points of (sp)nen. Then

limsups, =s* =supE,
n—o0

liminfs, =s, =inf E.
n—o0
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Proof: Case 1

Suppose that

limsup s, = 400,

n—oo
thus
inf sup s, = +o0,
k>1 p>k
so

sups, = +oo forall keN.
n>k

Hence there is (nk)ken so that

lim s, = 4o0.
k—o00

this gives s* = sup E = 4o00.
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Proof: Case 2

Suppose that

limsup s, = —o0,
n—oo
SO
lim sups, = —oc.
k—+00 n>k

This means that for every M > 0 there is N € N so that k > N implies

sups, < —M.
n>k

Hence s, < —M for all n > N, i.e.

lim s, = —o0.
n—oo

So E ={—o0} and s* =sup E = —o0. O
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Proof: Case 3

Claim:

Assume that limsup,_,.,sn = L and L € R. Then
@ supE <L,

@ LeE,

which implies s* = sup E = L.

Remark:

This gives a stronger conclusion

limsups, =sup E = maxE.
n—oo
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Proof: Case 3 proof of property (a): 1/2

@ Suppose that L < sup E. Thus there is x € E such that
L < x<supE,

and there exists a sequence (sp,)jen so that lim;_, sp, = x, i.e. for
every € > 0 there exists Ky € N so that

Jj = Ko implies |[sp, — x| <e.

@ In particular, taking ¢ = %L we obtain that
x+ L .
5 =x—¢e<s, foral j> Ko

@ Since limsup,,_,, sp = infx>15up,>, sp = L we obtain that for every
€ > 0 there is K. € N so that

k> K. implies L <sups,<L+e.
n>k
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Proof: Case 3 proof of property (a): 2/2

Taking € = %L we obtain
x4+ L
supsp, < L+¢e = .
n>k 2

Thus picking jo > Ko so that nj; > K. we obtain

< L+ x
Snfo S nS>LI}[I<) Sp < T < Snfo’

which is impossible. Thus (a) must be true, i.e.

supE < L.
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Proof: Case 3 proof of property (b): 1/2

@ We now construct (sp)jen such that lim;_ s, = L.
@ Since limsup,,_,, sp = infx>15up,>y Sp = L then for any € > 0 there
is K. € N so that k > K. implies

(*)

L<sups, <L+e.
n>k

o Let £ =1 and let Ky € N so that (*) holds. Then there is n; € N
such that
L-—1<sups,—1<s, < sups,<L+1.
n>Ki n>Ki
@ Suppose that we have constructed inductively a sequence
ny < nmp < ...< njsuch that

1 1
L— - S Snj S L + .
J J
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Proof: Case 3 proof of property (b): 2/2

@ We now construct nj 1. Set e = —L= in (*) which yields a

7+
corresponding Ky (j41) € N. Let K; = max(nj, Ki/(j+1)) + 1. Using
(*) we see

LS supsp <L+ —
n>K; Jt+1

and we find nj; ;1 > Rj > n; such that

1 1
L———<supsy— = <sp, <sups, <L+-—

Jj+1 n>K; j+1 n>K; Jj+1
hence
lim s, = L.
J—)OO
and we are done. O
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Proposition

Proposition
A sequence (sp)nen is convergent and has a limit L € RU {fo00} iff

liminfs, = limsup s,.
h—oo n—o0

Proof. If lim,_,o s, = L, then E = {L} thus s* = s, = L and by the
previous theorem

liminfs, = limsups, = L.
n—oo n—00
Conversely, if liminf,_ s, = limsup,_,., sn = L, then

ax = inf s, < s <sups, = By
n>k n>k

and limy_ o o = limg_ o Bk = L, thus lim, oo s, = L. ]
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