
Lecture 8
Stolz theorem and Euler’s number

Upper and lower limits

MATH 411H, FALL 2025

September 29, 2025

(MATH 411H, FALL 2025) Lecture 8 September 29, 2025 1 / 32



Stolz theorem and applications

Stolz theorem

Stolz theorem

Let (xn)n∈N, (yn)n∈N be two sequences so that

(i) (yn)n∈N strictly increases to +∞, i.e. yn < yn+1 for all n ∈ N and

lim
n→∞

yn = +∞.

(ii) Also we have

lim
n→∞

xn − xn−1

yn − yn−1
= a,

then
lim
n→∞

xn
yn

= a.

Remark: It is a prototype of a l’Hôpital’s rule.
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Stolz theorem and applications

Proof: 1/3

Without loss of generality we may assume that yn > 0, since lim
n→∞

yn = +∞
and thus we have yn > 0 for large n ∈ N.
Since lim

n→∞
xn−xn−1

yn−yn−1
= a, there is M > 0 such that for n ≥ M we have

a− ε

2
<

xn − xn−1

yn − yn−1
< a+

ε

2
.

So for n ≥ M we have(
a− ε

2

)
(yn − yn−1) <xn − xn−1<

(
a+

ε

2

)
(yn − yn−1).

Summing now from k = M to k = n for any n ≥ M we get(
a− ε

2

)
(yn − yM−1) =

n∑
k=M

(
a− ε

2

)
(yk − yk−1) <

n∑
k=M

(xk − xk−1)

= xn − xM−1<

n∑
k=M

(
a+

ε

2

)
(yk − yk−1) =

(
a+

ε

2

)
(yn − yM−1).

since the above sums are telescoping.
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Stolz theorem and applications

Proof: 2/3

Therefore dividing by yn − yM−1 for any n ≥ M we obtain

a− ε

2
<

xn − xM−1

yn − yM−1
< a+

ε

2
.

So ∣∣∣xn − xM−1

yn − yM−1
− a
∣∣∣ < ε

2
for n ≥ M.

Observe that∣∣∣xn
yn

−
(
1− yM−1

yn

)xn − xM−1

yn − yM−1

∣∣∣ = ∣∣∣xn
yn

− xn − xM−1

yn

∣∣∣ = ∣∣∣xM−1

yn

∣∣∣,
so the triangle inequality gives us for n ≥ M the inequalities∣∣∣xn
yn

− a
∣∣∣ ≤ ∣∣∣xn

yn
−
(
1− yM−1

yn

)xn − xM−1

yn − yM−1

∣∣∣+ ∣∣∣(1− yM−1

yn

)xn − xM−1

yn − yM−1
− a
∣∣∣

≤
∣∣∣xM−1

yn

∣∣∣+ ∣∣∣(1− yM−1

yn

)∣∣∣∣∣∣xn − xM−1

yn − yM−1
− a
∣∣∣+ |a|yM−1

yn

<
ε

2
+

|xM−1|+ |a|yM−1

yn
.
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Stolz theorem and applications

Proof: 3/3

So for n ≥ M we have∣∣∣xn
yn

− a
∣∣∣ < ε

2
+

|xM−1|+ |a|yM−1

yn
.

Since lim
n→∞

yn = +∞, we may choose N ≥ M such that for n ≥ N we have

|xM−1|+ |a|yM−1

yn
<

ε

2
.

Therefore for n ≥ N we get ∣∣∣xn
yn

− a
∣∣∣ < ε

and the proof is finished.
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Stolz theorem and applications

Example 1/2

Exercise

Let k ∈ N be fixed. Find the limit

lim
n→∞

1k + . . .+ nk

nk+1
.

Proof. We apply Stolz’s theorem with

xn = 1k + . . .+ nk , yn = nk+1.

Observe that (yn)n∈N is strictly increasing and lim
n→∞

yn = +∞. Therefore

it suffices to compute

lim
n→∞

xn − xn−1

yn − yn−1
= lim

n→∞

nk

nk+1 − (n − 1)k+1
.
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Stolz theorem and applications

Example 2/2

Using the binomial theorem we get

(n − 1)k+1 =
k+1∑
m=0

(
k + 1

m

)
nm(−1)k+1−m

= nk+1 − (k + 1)nk +
k−1∑
m=0

(
k + 1

m

)
nm(−1)k+1−m

So we have

lim
n→∞

nk

nk+1 − (n − 1)k+1
= lim

n→∞

nk

(k + 1)nk −
∑k−1

m=0

(k+1
m

)
nm(−1)k+1−m

= lim
n→∞

1

(k + 1)−
∑k−1

m=0

(k+1
m

)
nm−k(−1)k+1−m

=
1

(k + 1)
.
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Stolz theorem and applications

Application

Proposition

Let (an)n∈N and (bn)n∈N be two sequences such that

1 bn > 0, n ∈ N and lim
n→∞

bn = +∞,

2 lim
n→∞

an
bn

= g .

then

lim
n→∞

a1 + . . .+ an
b1 + . . .+ bn

= g .

Proof. We apply Stolz’s theorem with xn = a1 + . . .+ an and
yn = b1 + . . .+ bn. Then the assumptions of the Stolz theorem are
satisfied as yn+1 − yn = bn+1 > 0 and yn ≥ bn both diverge to +∞, and

lim
n→∞

xn − xn−1

yn − yn−1
= lim

n→∞

an
bn

= g .

Therefore lim
n→∞

xn
yn

= g and the proof is finished.
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Euler’s number

Euler’s sequences: 1/4

Consider two sequences (an)n∈N and (bn)n∈N defined by

an =

(
1 +

1

n

)n

, bn =

(
1 +

1

n

)n+1

for all n ∈ N

We have the following properties.

1 Observe that an < bn for all n ∈ N. Indeed,

an =

(
1 +

1

n

)n

<

(
1 +

1

n

)n+1

= bn,

since 1 < 1 + 1
n for all n ∈ N.
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Euler’s number

Euler’s sequences: 2/4

2 The sequence (an)n∈N is strictly increasing, i.e.

an < an+1 for all n ∈ N.

Proof. By the geometric-arithmetic mean inequality Gn+1 < An+1

(which is strict unless x1 = x2 = . . . = xn+1) with

x1 = 1 and x2 = x3 = . . . = xn+1 = 1 +
1

n
,

we obtain

Gn+1 =

((
1 +

1

n

)n)1/(n+1)

<
1 + n

(
1 + 1

n

)
n + 1

= 1 +
1

n + 1
= An+1.

Thus

an =

(
1 +

1

n

)n

<

(
1 +

1

n + 1

)n+1

= an+1.
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Euler’s number

Euler’s sequences: 3/4

3 The sequence (bn)n∈N is strictly decreasing, i.e.

bn+1 < bn for all n ∈ N.

Proof. By the harmonic-geometric mean inequality Hn+1 < Gn+1

(which is strict unless x1 = x2 = . . . = xn+1) with

x1 = 1 and x2 = x3 = . . . = xn+1 = 1 +
1

n − 1
=

n

n − 1
.

Then

Hn+1 =
n + 1

1 + n n−1
n

<

(
1 +

1

n − 1

)n/(n+1)

= Gn+1,

thus

bn =

(
1 +

1

n

)n+1

<

(
1 +

1

n − 1

)n

= bn−1.
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Euler’s number

Euler’s sequences: 4/4

Collecting (1),(2),(3) we have

2 = a1 < an < an+1 < bn+1 < bn < b1 = 4 for all n ≥ 2.

Thus the limits limn→∞ an and limn→∞ bn exist and

lim
n→∞

bn = lim
n→∞

(
1 +

1

n

)
an =

(
lim
n→∞

(
1 +

1

n

))(
lim
n→∞

an
)
= lim

n→∞
an.

Euler number

The limit of the sequences (an)n∈N and (bn)n∈N is called the Euler
number

lim
n→∞

(
1 +

1

n

)n

= lim
n→∞

(
1 +

1

n

)n+1

= e ≃ 2, 718 . . . .
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Euler’s number

Euler’s number - fact

Fact

If limn→∞ an = +∞ or limn→∞ an = −∞, then

lim
n→∞

(
1 +

1

an

)an

= e.

Proof. Let limn→∞ an = +∞ and consider bn = ⌊an⌋. Then
bn ≤ an < bn + 1, hence(

1 +
1

bn + 1

)bn

<

(
1 +

1

an

)an

<

(
1 +

1

bn

)bn+1

.
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Euler’s number

Proof: 1/3

By the squeeze theorem it suffices to prove that

lim
n→∞

(
1 +

1

bn + 1

)bn

= lim
n→∞

(
1 +

1

bn

)bn+1

= e

or even

lim
n→∞

(
1 +

1

bn

)bn

= e.

If (bn)n∈N were increasing then as a subsequence of (n)n∈N we could

conclude limn→∞

(
1 + 1

bn

)bn
= e, since limn→∞

(
1 + 1

n

)n
= e.

But we only know that limn→∞ bn = +∞. It does not mean that
(bn)n∈N is increasing.
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Euler’s number

Proof: 2/3

Let ε > 0 be given. Since limn→∞
(
1 + 1

n

)n
= e we can find Ñε ∈ N so

that n ≥ Ñε implies ∣∣∣∣(1 + 1

n

)n

− e

∣∣∣∣ < ε.

But limn→∞ bn = +∞ thus we can find Nε ∈ N so that n ≥ Nε implies
bn ≥ Ñε. In particular, we conclude that∣∣∣∣∣

(
1 +

1

bn

)bn

− e

∣∣∣∣∣ < ε

for all n ≥ Nε and thus

lim
n→∞

(
1 +

1

bn

)bn

= e.

Consequently, limn→∞

(
1 + 1

an

)an
= e as limn→∞ an = +∞.
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Euler’s number

Proof: 3/3

Moreover,

lim
n→∞

(
1− 1

an

)an

= e−1,

because

lim
n→∞

(
1− 1

an

)an

= lim
n→∞

1(
1 + 1

an−1

)an =
1

e
.

this implies

lim
n→∞

(
1 +

1

an

)an

= e if lim
n→∞

an = −∞.
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Euler’s number

Example

Exercise

Find limn→∞
(
1 + 1

2n

)4n
.

Solution. Since (2n)n∈N is a subsequence of (n)n∈N we have

lim
n→∞

(
1 +

1

2n

)2n

= e.

Therefore,

lim
n→∞

(
1 +

1

2n

)4n

=

(
lim
n→∞

(
1 +

1

2n

)2n
)(

lim
n→∞

(
1 +

1

2n

)2n
)

= e · e = e2.
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Euler’s number

Example

Exercise

Find limn→∞

(
1 + 1

n2+1

)4n2+1
.

Solution. Since (n2 + 1)n∈N is a subsequence of (n)n∈N we have

lim
n→∞

(
1 +

1

n2 + 1

)n2+1

= e.

Therefore,

lim
n→∞

(
1 +

1

n2 + 1

)4n2+1

=

(
lim
n→∞

(
1 +

1

n2 + 1

)n2+1
)4(

lim
n→∞

(
1 +

1

n2 + 1

)−3
)

= e4.
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Upper and lower limits

Upper and lower limits

We write that sn −−−→n→∞ +∞ if for every M > 0 there is n ∈ N such
that n ≥ N implies sn ≥ M.

Similarly, sn −−−→n→∞ −∞ if for every M > 0 there is an integer N ∈ N
such that n ≥ N implies sn ≤ −M.

Upper limit and lower limit

Let (sn)n∈N be a sequence of real numbers.

The upper limit is defined by

lim sup
n→∞

sn = inf
k≥1

sup
n≥k

sn.

The lower limit is defined by

lim inf
n→∞

sn = sup
k≥1

inf
n≥k

sn.
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Upper and lower limits

Proposition

Proposition

For a sequence (sn)n∈N ⊂ R, the upper and lower limits always exist.

Proof. Let αk = supn≥k sn. Then αk+1 ≤ αk and

lim sup
n→∞

sn = inf
k≥1

sup
n≥k

sn =︸︷︷︸
(MCT )

lim
n→∞

αk (possible infinite!).

If βk = infn≥k sn, then βk ≤ βk+1 and

lim inf
n→∞

sn = sup
k≥1

inf
n≥k

sn =︸︷︷︸
(MCT )

lim
n→∞

βk (possible infinite!) .

Remark

We always have βk = infn≥k sn ≤ supn≥k sn = αk . Thus

lim inf
n→∞

an = lim
k→∞

βk ≤ lim
k→∞

αk = lim sup
n→∞

sn.
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Upper and lower limits

Examples 1/3

Example 1

Consider an = (−1)n n+1
n . Let

βn = sup

{
(−1)n

n + 1

n
, (−1)n+1 n + 2

n + 1
, . . .

}
,

then

βn =

{
n+1
n if n is even,

n+2
n+1 if n is odd.

Thus limn→∞ βn = 1. Therefore

lim sup
n→∞

an = 1.

Similarly
lim inf
n→∞

an = −1.
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Upper and lower limits

Examples 2/3

Example 2

Let

an =

{
0 if n is odd,

1 if n is even.

Then

βn = sup {am : m ≥ n} = 1,

αn = inf{am : m ≥ n} = 0.

Therefore

lim sup
n→∞

an = 1,

lim inf
n→∞

an = 0.
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Upper and lower limits

Examples 3/3

Example 3

Let an = 1
n . Then

βn = sup

{
1

m
: m ≥ n

}
=

1

n
,

so limn→∞ βn = 0. Similarly

αn = inf

{
1

m
: m ≥ n

}
= 0,

so limn→∞ αn = 0. Thus

lim sup
n→∞

an = lim inf
n→∞

an = 0.
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Upper and lower limits

Accumulation points of a sequence

Definition

Let (sn)n∈N be a sequence of real numbers. We say that x ∈ R ∪ {±∞} is
an accumulation point of (sn)n∈N if

snk −−−→
k→∞x

for some subsequence (snk )k∈N.

Theorem

Let (sn)n∈N be a sequence of real numbers. Let E be the set of all
accumulation points of (sn)n∈N. Then

lim sup
n→∞

sn = s∗ = supE ,

lim inf
n→∞

sn = s∗ = inf E .
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Upper and lower limits

Proof: Case 1

Suppose that
lim sup
n→∞

sn = +∞,

thus
inf
k≥1

sup
n≥k

sn = +∞,

so

sup
n≥k

sn = +∞ for all k ∈ N.

Hence there is (nk)k∈N so that

lim
k→∞

snk = +∞.

this gives s∗ = supE = +∞.

(MATH 411H, FALL 2025) Lecture 8 September 29, 2025 25 / 32



Upper and lower limits

Proof: Case 2

Suppose that
lim sup
n→∞

sn = −∞,

so
lim
k→∞

sup
n≥k

sn = −∞.

This means that for every M > 0 there is N ∈ N so that k ≥ N implies

sup
n≥k

sn ≤ −M.

Hence sn ≤ −M for all n ≥ N, i.e.

lim
n→∞

sn = −∞.

So E = {−∞} and s∗ = supE = −∞.
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Upper and lower limits

Proof: Case 3

Claim:

Assume that lim supn→∞ sn = L and L ∈ R. Then
(a) supE ≤ L,

(b) L ∈ E ,

which implies s∗ = supE = L.

Remark:

This gives a stronger conclusion

lim sup
n→∞

sn = supE = maxE .
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Upper and lower limits

Proof: Case 3 proof of property (a): 1/2

Suppose that L < supE . Thus there is x ∈ E such that

L < x ≤ supE ,

and there exists a sequence (snj )j∈N so that limj→∞ snj = x , i.e. for
every ε > 0 there exists K0 ∈ N so that

j ≥ K0 implies |snj − x | < ε.

In particular, taking ε = x−L
2 we obtain that

x + L

2
= x − ε < snj for all j ≥ K0.

Since lim supn→∞ sn = infk≥1 supn≥k sn = L we obtain that for every
ε > 0 there is Kε ∈ N so that

k ≥ Kε implies L ≤ sup
n≥k

sn < L+ ε.
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Upper and lower limits

Proof: Case 3 proof of property (a): 2/2

Taking ε = x−L
2 we obtain

sup
n≥k

sn < L+ ε =
x + L

2
.

Thus picking j0 ≥ K0 so that nj0 ≥ Kε we obtain

snj0 ≤ sup
n≥Kε

sn <
L+ x

2
< snj0 ,

which is impossible. Thus (a) must be true, i.e.

supE ≤ L.
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Upper and lower limits

Proof: Case 3 proof of property (b): 1/2

We now construct (snj )j∈N such that limj→∞ snj = L.
Since lim supn→∞ sn = infk≥1 supn≥k sn = L then for any ε > 0 there
is Kε ∈ N so that k ≥ Kε implies

(*)

L ≤ sup
n≥k

sn < L+ ε.

Let ε = 1 and let K1 ∈ N so that (*) holds. Then there is n1 ∈ N
such that

L− 1 ≤ sup
n≥K1

sn − 1 < sn1 < sup
n≥K1

sn < L+ 1.

Suppose that we have constructed inductively a sequence
n1 < n2 < . . . < nj such that

L− 1

j
≤ snj ≤ L+

1

j
.
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Upper and lower limits

Proof: Case 3 proof of property (b): 2/2

We now construct nj+1. Set ε =
1

j+1 in (*) which yields a

corresponding K1/(j+1) ∈ N. Let K̃j = max(nj ,K1/(j+1)) + 1. Using
(*) we see

L ≤ sup
n≥K̃j

sn < L+
1

j + 1

and we find nj+1 > K̃j > nj such that

L− 1

j + 1
≤ sup

n≥K̃j

sn −
1

j + 1
< snj+1 ≤ sup

n≥K̃j

sn < L+
1

j + 1

hence
lim
j→∞

snj = L.

and we are done.
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Upper and lower limits

Proposition

Proposition

A sequence (sn)n∈N is convergent and has a limit L ∈ R ∪ {±∞} iff

lim inf
n→∞

sn = lim sup
n→∞

sn.

Proof. If limn→∞ sn = L, then E = {L} thus s∗ = s∗ = L and by the
previous theorem

lim inf
n→∞

sn = lim sup
n→∞

sn = L.

Conversely, if lim infn→∞ sn = lim supn→∞ sn = L, then

αk = inf
n≥k

sn ≤ sk ≤ sup
n≥k

sn = βk

and limk→∞ αk = limk→∞ βk = L, thus limn→∞ sn = L.
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