

Lecture 9

Infinite series and their properties

MATH 411H, FALL 2025

October 2, 2025

Series

Definition

We say that the series $\sum_{n=1}^{\infty} a_n$ **converges** to $A \in \mathbb{R}$ and write $\sum_{n=1}^{\infty} a_n = A$ if the associated sequence of its **partial sums**

$$s_n = \sum_{k=1}^n a_k = a_1 + \dots + a_n \xrightarrow{n \rightarrow \infty} A.$$

If $(s_n)_{n \in \mathbb{N}}$ diverges the series $\sum_{n=1}^{\infty} a_n$ is said **to diverge**.

Remark

- Saying that the series $\sum_{n=1}^{\infty} a_n$ converges we understand that $|\sum_{k=1}^{\infty} a_k| < \infty$.
- Saying that the series $\sum_{n=1}^{\infty} a_n$ diverges we understand that $|\sum_{k=1}^{\infty} a_k| = \infty$.

Example

Exercise

If $0 \leq x < 1$, then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. If $x \geq 1$, the series diverges.

Solution. If $x < 1$, then

$$s_n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}$$

and the result follows if we let $n \rightarrow \infty$.

For $x \geq 1$ note that

$$\underbrace{1 + 1 + \dots + 1}_n \leq s_n.$$

We have $\lim_{n \rightarrow \infty} n = +\infty$, thus $\lim_{n \rightarrow \infty} s_n = +\infty$.

Example

Exercise

$$\sum_{n=1}^{\infty} \frac{1}{k^2} < \infty.$$

Solution. Because the terms in the sum are all positive the sequence

$$s_n = \sum_{k=1}^n \frac{1}{k^2} \quad \text{is increasing.}$$

We now show that $(s_n)_{n \in \mathbb{N}}$ is bounded.

- The (MCT) will prove that the series converges.

Solution

To prove boundedness of $(s_n)_{n \in \mathbb{N}}$ we note that

$$\begin{aligned}
 s_n &= 1 + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 3} + \frac{1}{4 \cdot 4} + \dots + \frac{1}{n \cdot n} \\
 &< 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{(n-1)n} \\
 &= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) \\
 &= 2 - \frac{1}{n} < 2.
 \end{aligned}$$

Thus the limit $\lim_{n \rightarrow \infty} s_n$ exists. □

- One can also prove that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. **This is also Euler's result.**

An example of a diverging series

Harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

Solution. Note that

$$\begin{aligned}
 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4} \right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \right) + \left(\frac{1}{9} + \dots + \frac{1}{16} \right) + \left(\frac{1}{17} + \dots \right. \\
 \geq 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + 8 \cdot \frac{1}{16} + 16 \cdot \frac{1}{32} + \dots \\
 = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = 1 + \lim_{n \rightarrow \infty} \frac{n}{2} = \infty.
 \end{aligned}$$

Thus $s_n = \sum_{k=1}^n \frac{1}{k} \xrightarrow{n \rightarrow \infty} \infty$.

□

Cauchy Condensation Test

Cauchy Condensation Test

Suppose that $(b_n)_{n \in \mathbb{N}}$ is decreasing and $b_n \geq 0$ for all $n \in \mathbb{N}$. Then the series

$$\sum_{n=1}^{\infty} b_n < \infty \quad \text{converges}$$

iff the series

$$\sum_{n=1}^{\infty} 2^n b_{2^n} < \infty \quad \text{converges.}$$

Proof. Let

$$s_n = b_1 + b_2 + \dots + b_n,$$

$$t_k = b_1 + 2b_2 + \dots + 2^k b_{2^k}.$$

Proof: 1/2

For $n < 2^k$ one has

$$\begin{aligned}s_n &\leq b_1 + \overbrace{b_2 + b_3}^2 + \dots + \overbrace{b_{2^k} + \dots + b_{2^{k+1}-1}}^{2^k} \\ &\leq b_1 + 2b_2 + \dots + 2^k b_{2^k} = t_k.\end{aligned}$$

(*)

so that $s_n \leq t_k$ for $n < 2^k$.

Proof: 2/2

If $n > 2^k$ one has

$$\begin{aligned}s_n &\geq b_1 + b_2 + (b_3 + b_4) + \dots + (b_{2^{k-1}+1} + \dots + b_{2^k}) \\ &\geq \frac{1}{2}b_1 + b_2 + 2b_4 + \dots + 2^{k-1}b_{2^k} = \frac{1}{2}t_k.\end{aligned}$$

(**)

Thus $2s_n \geq t_k$ for $n > 2^k$.

- By (*) and (**) the sequences $(s_n)_{n \in \mathbb{N}}$ and $(t_k)_{k \in \mathbb{N}}$ are either both bounded or both unbounded. □

Corollary

Corollary

The series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} < \infty \quad \text{iff} \quad p > 1$$

Proof. The sequence $b_n = \frac{1}{n^p}$ is decreasing and $b_n \geq 0$ for all $n \in \mathbb{N}$. By the Cauchy condensation test we obtain

$$\sum_{n=1}^{\infty} \frac{1}{n^p} < \infty \iff \sum_{n=1}^{\infty} \frac{2^n}{2^{pn}} < \infty.$$

But the latter converges provided that

$$\sum_{n=1}^{\infty} \frac{2^n}{2^{pn}} = \sum_{n=1}^{\infty} 2^{(1-p)n} = \frac{1}{1 - \frac{1}{2^{p-1}}} < \infty \iff p > 1. \quad \square$$

Series representation of Euler's number

Theorem

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e.$$

Proof. Let $s_n = \sum_{k=0}^n \frac{1}{k!}$. Then

- ① $s_n < s_{n+1}$ for all $n \in \mathbb{N}$,
- ② $s_n = \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \sum_{k=2}^n \frac{1}{k!} < 2 + \sum_{k=2}^n \frac{1}{2^{k-1}} < 3$.

Thus the limit $\lim_{n \rightarrow \infty} s_n$ exists.

Let $t_n = \left(1 + \frac{1}{n}\right)^n$, then $\lim_{n \rightarrow \infty} t_n = e$. By the binomial theorem

$$t_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}.$$

Proof: 1/2

Then

$$\begin{aligned}
 t_n &= \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} \\
 &= \sum_{k=0}^n \frac{n(n-1)\cdots(n-k+1)}{k!} \frac{1}{n^k} \\
 &= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots \\
 &\quad + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \cdots \left(1 - \frac{n-1}{n}\right) = \sum_{k=0}^n \frac{1}{k!} = s_n.
 \end{aligned}$$

Thus

$$e = \lim_{n \rightarrow \infty} t_n \leq \lim_{n \rightarrow \infty} s_n.$$

Proof: 2/2

Next if $n \geq m$

$$t_n \geq 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{m!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{m-1}{n}\right).$$

Let $n \rightarrow \infty$ keeping m fixed, we get

$$e = \lim_{n \rightarrow \infty} t_n \geq \sum_{k=0}^m \frac{1}{k!}.$$

Letting $m \rightarrow \infty$ we see $\lim_{m \rightarrow \infty} s_m \leq e$.

$$\lim_{m \rightarrow \infty} s_m = \lim_{m \rightarrow \infty} \sum_{k=0}^m \frac{1}{k!} = e.$$

This completes the proof of the theorem. □

Remark

We have $s_n = \sum_{k=0}^n \frac{1}{k!} < e$ for all $n \in \mathbb{N}$. Indeed

$$\begin{aligned}
 e - s_n &= \sum_{k=n+1}^{\infty} \frac{1}{k!} = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots \\
 &= \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots \right) \\
 &< \frac{1}{(n+1)!} \left(1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \dots \right) \\
 &\leq \frac{1}{(n+1)!} \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{(n+1)!} \frac{n+1}{n} = \frac{1}{n!n}.
 \end{aligned}$$

Hence we conclude

The error estimate (*)

$$0 < e - s_n < \frac{1}{n!n}.$$

Euler's number e is irrational

Theorem

The Euler number e is irrational.

Proof. Suppose e is rational. Then $e = \frac{p}{q}$ where $p, q \in \mathbb{N}$. By (*) we have

$$0 < q!(e - s_q) < \frac{1}{q}.$$

By our assumption

$$q!e \in \mathbb{N} \quad \text{is an integer.}$$

Since

$$q!s_q = q! \left(1 + 1 + \frac{1}{2!} + \dots + \frac{1}{q!} \right) \in \mathbb{N},$$

we see $q!(e - s_q) \in \mathbb{N}$, but if $q > 1$ and this is impossible since

$$0 < q!(e - s_q) < 1/q < 1.$$

Hence e must be irrational. □

Algebraic limit theorem for series

Algebraic limit theorem for series

If $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$ then

$$\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha A + \beta B.$$

Proof. Let $A_n = \sum_{k=1}^n a_k$ and $B_n = \sum_{k=1}^n b_k$. We know that

$$\lim_{n \rightarrow \infty} A_n = A, \quad \text{and} \quad \lim_{n \rightarrow \infty} B_n = B,$$

so

$$\begin{aligned} \lim_{n \rightarrow \infty} \sum_{k=1}^n (\alpha a_k + \beta b_k) &= \lim_{n \rightarrow \infty} \alpha \sum_{k=1}^n a_k + \beta \sum_{k=1}^n b_k \\ &= \alpha \lim_{n \rightarrow \infty} A_n + \beta \lim_{n \rightarrow \infty} B_n = \alpha A + \beta B. \end{aligned}$$

□

Cauchy Criterion for Series

Theorem

The series $\sum_{k=1}^{\infty} a_k$ converges iff for every $\varepsilon > 0$ there is $N_{\varepsilon} \in \mathbb{N}$ such that whenever $n > m \geq N_{\varepsilon}$ it follows

$$\left| \sum_{k=m+1}^n a_k \right| < \varepsilon.$$

Proof. Let $s_n = \sum_{k=1}^n a_k$ and we show that $(s_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. Observe that whenever $n > m \geq N_{\varepsilon}$ then

$$|s_n - s_m| = \left| \sum_{k=m+1}^n a_k \right| < \varepsilon.$$

We now apply the **Cauchy Criterion for sequences** and we are done. □

Theorem

Theorem

If the series $\sum_{k=1}^{\infty} a_k$ converges then $\lim_{n \rightarrow \infty} a_n = 0$.

Proof. Let $\varepsilon > 0$ be given. Apply the previous theorem with $m = n - 1$, then

$$|a_n| = |s_n - s_{n-1}| < \varepsilon$$

whenever $n > N_{\varepsilon}$, and we are done. □

Remark

But $\lim_{n \rightarrow \infty} a_n = 0$ does not imply $|\sum_{k=1}^{\infty} a_k| < \infty$.

- Consider $a_n = \frac{1}{n}$ $\xrightarrow{n \rightarrow \infty} 0$, but $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$.

Example

Exercise

Determine if the series

$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{1}{n^3}\right)^{n^2}$$

diverges or converges.

Solution. Since $(n^3)_{n \in \mathbb{N}}$ is a subsequence of $(n)_{n \in \mathbb{N}}$ we have

$$\lim_{n \rightarrow \infty} \left(1 - \frac{1}{n^3}\right)^{n^3} = e^{-1},$$

hence $\lim_{n \rightarrow \infty} \left(1 - \frac{1}{n^3}\right)^{n^2} = 1$, and the limit $\lim_{n \rightarrow \infty} (-1)^n \left(1 - \frac{1}{n^3}\right)^{n^2}$ does not exist, so the series **diverges**. □

Comparison test

Comparison test

Assume that sequences $(a_k)_{k \in \mathbb{N}}$ and $(b_k)_{k \in \mathbb{N}}$ satisfy

$$0 \leq a_k \leq b_k \quad \text{for all } k \in \mathbb{N}.$$

- (i) If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
- (ii) If $\sum_{k=1}^{\infty} a_k$ diverges then $\sum_{k=1}^{\infty} b_k$ diverges.

Proof. Both statements follows from the Cauchy Criterion for series:

$$\left| \sum_{k=m+1}^n a_k \right| \leq \left| \sum_{k=m+1}^n b_k \right|.$$

This completes the proof. □

Example

Exercise

Determine if the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + \sqrt{n} + 15}$$

diverges or converges.

Solution. For all $n \in \mathbb{N}$ we have

$$\frac{1}{n^2 + \sqrt{n} + 15} \leq \frac{1}{n^2}, \quad \text{thus}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty,$$

hence

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + \sqrt{n} + 15} < \infty.$$

□

Example

Exercise

Determine if the series

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n} + \sqrt{n} + 1}$$

diverges or converges.

Solution. For all $n \in \mathbb{N}$ we have

$$\frac{1}{\sqrt[3]{n} + \sqrt{n} + 1} \geq \frac{1}{3\sqrt{n}}, \quad \text{thus}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \infty,$$

hence

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n} + \sqrt{n} + 1} = \infty.$$

□

Theorem

Theorem

A series of nonnegative terms $a_k \geq 0$ converges iff its partial sums form a bounded sequence.

Proof. If $\sum_{k=1}^{\infty} a_k < \infty$ one sees that

$$s_N = \sum_{k=1}^N a_k \leq M = \sum_{k=1}^{\infty} a_k < \infty.$$

Conversely, we also know that $s_N \leq s_{N+1} \leq M$ for all $N \in \mathbb{N}$. Then the limit

$$\lim_{N \rightarrow \infty} s_N$$

exists by the (MCT). □

Root test

Root test

Given $\sum_{n=1}^{\infty} a_n$ set

$$\alpha = \limsup_{n \rightarrow \infty} \sqrt[n]{|a_n|}.$$

- (a) If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- (c) If $\alpha = 1$, **no information**.

Proof. If $\alpha < 1$ we can choose β so that $\alpha < \beta < 1$ and the integer $N \in \mathbb{N}$ so that

$$\sqrt[n]{|a_n|} < \beta \quad \text{for all } n \geq N,$$

since

$$\alpha = \inf_{k \geq 1} \sup_{n \geq k} \sqrt[n]{|a_n|} < \beta.$$

Proof

- For $n \geq N$ we have $|a_n| < \beta^n$, but $\beta < 1$, thus $\sum_{n=1}^{\infty} \beta^n$ converges and the comparison test implies that $\sum_{n=1}^{\infty} a_n$ converges as well.
- If $\alpha > 1$ then there is $(n_k)_{k \in \mathbb{N}}$ so that

$$|a_{n_k}|^{1/n_k} \xrightarrow[k \rightarrow \infty]{} \alpha.$$

Hence $|a_n| > 1$ holds for infinitely many values of $n \in \mathbb{N}$, so that the condition $a_n \xrightarrow{n \rightarrow \infty} 0$ necessary for convergence $\sum_{n=1}^{\infty} a_n$ does not hold.

- To prove (c) note that

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \quad \text{and} \quad \sqrt[n]{n} \xrightarrow{n \rightarrow \infty} 1.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty \quad \text{and} \quad \sqrt[n]{n^2} \xrightarrow{n \rightarrow \infty} 1.$$

This completes the proof. □

Examples

Example 1

$$\sum_{n=1}^{\infty} \left(\frac{e}{n}\right)^n < \infty,$$

since

$$\sqrt[n]{\frac{e^n}{n^n}} = \frac{e}{n} \xrightarrow{n \rightarrow \infty} 0.$$

Example 2

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} < \infty,$$

since

$$\sqrt[n]{\frac{n^2}{2^n}} \xrightarrow{n \rightarrow \infty} \frac{1}{2}.$$

Ratio test

Ratio test

The series $\sum_{n=1}^{\infty} a_n$

- (a) converges if $\limsup_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$,
- (b) diverges if $\left| \frac{a_{n+1}}{a_n} \right| > 1$ for all $n \geq n_0$ for some fixed $n_0 \in \mathbb{N}$.

Proof. If (a) holds we can find $\beta < 1$ and $n \in \mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| < \beta \quad \text{for all } n \geq N.$$

Proof

- In particular, for $p \in \mathbb{N}$, one has

$$\begin{aligned}
 |a_{n+p}| &= |a_{n+p-1}| \frac{|a_{n+p}|}{|a_{n+p-1}|} \\
 &< \beta |a_{n+p-1}| \\
 &< \beta^2 |a_{n+p-2}| < \dots < \\
 &< \beta^p |a_n|.
 \end{aligned}$$

- Thus $|a_{N+p}| < \beta^p |a_N|$ and

$$|a_n| < |a_N| \beta^{-N} \beta^n \quad \text{for all } n \geq N.$$

- The claim follows from the comparison test since $\sum_{n=1}^{\infty} \beta^n < \infty$ whenever $\beta < 1$.
- If $|a_{n+1}| \geq |a_n|$ for $n \geq n_0$ then $a_n \xrightarrow{n \rightarrow \infty} 0$ does not hold. □

Remark and example

Remark

As before $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = 1$ is useless:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \quad \text{and} \quad \frac{a_{n+1}}{a_n} = \frac{n}{n+1} \xrightarrow{n \rightarrow \infty} 1,$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty \quad \text{and} \quad \frac{a_{n+1}}{a_n} = \left(\frac{n}{n+1} \right)^2 \xrightarrow{n \rightarrow \infty} 1.$$

Example

$\sum_{n=1}^{\infty} \frac{n!}{n^n} < \infty$, since

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} = \frac{(n+1)n^n}{(n+1)^{n+1}} = \left(\frac{n}{n+1} \right)^n \xrightarrow{n \rightarrow \infty} \frac{1}{e} < 1.$$