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Series

Series

Definition

We say that the series
∑∞

n=1 an converges to A ∈ R and write∑∞
n=1 an = A if the associated sequence of its partial sums

sn =
n∑

k=1

ak = a1 + . . .+ an −−−→n→∞ A.

If (sn)n∈N diverges the series
∑∞

n=1 an is said to diverge.

Remark

Saying that the series
∑∞

n=1 an converges we understand that
|
∑∞

k=1 ak | < ∞.

Saying that the series
∑∞

n=1 an diverges we understand that
|
∑∞

k=1 ak | = ∞.
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Series

Example

Exercise

If 0 ≤ x < 1, then
∑∞

n=0 x
n = 1

1−x . If x ≥ 1, the series diverges.

Solution. If x < 1, then

sn =
n∑

k=0

xk =
1− xn+1

1− x

and the result follows if we let n → ∞.

For x ≥ 1 note that
1 + 1 + . . .+ 1︸ ︷︷ ︸

n

≤ sn.

We have limn→∞ n = +∞, thus limn→∞ sn = +∞.
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Series

Example

Exercise
∞∑
n=1

1

k2
< ∞.

Solution. Because the terms in the sum are all positive the sequence

sn =
n∑

k=1

1

k2
is increasing.

We now show that (sn)n∈N is bounded.

The (MCT) will prove that the series converges.
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Series

Solution

To prove boundedness of (sn)n∈N we note that

sn = 1 +
1

2 · 2
+

1

3 · 3
+

1

4 · 4
+ . . .+

1

n · n
< 1 +

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ . . .+

1

(n − 1)n

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ . . .+

(
1

n − 1
− 1

n

)
= 2− 1

n
< 2.

Thus the limit limn→∞ sn exists.

One can also prove that
∑∞

n=1
1
n2

= π2

6 . This is also Euler’s result.
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Series

An example of a diverging series

Harmonic series
∞∑
n=1

1

n
= ∞.

Solution. Note that

1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ . . .+

1

16

)
+

(
1

17
+ . . .

≥ 1 +
1

2
+ 2 · 1

4
+ 4 · 1

8
+ 8 · 1

16
+ 16 · 1

32
+ . . .

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+ . . . = 1 + lim

n→∞

n

2
= ∞.

Thus sn =
∑n

k=1
1
k

−−−→n→∞ ∞.
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Series

Cauchy Condensation Test

Cauchy Condensation Test

Suppose that (bn)n∈N is decreasing and bn ≥ 0 for all n ∈ N. Then the
series

∞∑
n=1

bn < ∞ converges

iff the series
∞∑
n=1

2nb2n < ∞ converges.

Proof. Let
sn = b1 + b2 + . . .+ bn,

tk = b1 + 2b2 + . . .+ 2kb2k .
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Series

Proof: 1/2

For n < 2k one has

sn ≤ b1 +

2︷ ︸︸ ︷
b2 + b3+ . . .+

2k︷ ︸︸ ︷
b2k + . . .+ b2k+1−1

≤ b1 + 2b2 + . . .+ 2kb2k = tk .

(*)

so that sn ≤ tk for n < 2k .
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Series

Proof: 2/2

If n > 2k one has

sn ≥ b1 + b2 + (b3 + b4) + . . .+ (b2k−1+1 + . . .+ b2k )

≥ 1

2
b1 + b2 + 2b4 + . . .+ 2k−1b2k =

1

2
tk .

(**)

Thus 2sn ≥ tk for n > 2k .

By (*) and (**) the sequences (sn)n∈N and (tk)k∈N are either both
bounded or both unbounded.
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Series

Corollary

Corollary

The series
∞∑
n=1

1

np
< ∞ iff p > 1

Proof. The sequence bn = 1
np is decreasing and bn ≥ 0 for all n ∈ N. By

the Cauchy condensation test we obtain

∞∑
n=1

1

np
< ∞ ⇐⇒

∞∑
n=1

2n

2pn
< ∞.

But the latter converges provided that

∞∑
n=1

2n

2pn
=

∞∑
n=1

2(1−p)n =
1

1− 1
2p−1

< ∞ ⇐⇒ p > 1.
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Euler’s number revised

Series representation of Euler’s number

Theorem
∞∑
n=0

1

n!
= e.

Proof. Let sn =
∑n

k=0
1
k! . Then

1 sn < sn+1 for all n ∈ N,
2 sn =

∑n
k=0

1
k! = 1 + 1 +

∑n
k=2

1
k! < 2 +

∑
k=2

1
2k−1 < 3.

Thus the limit limn→∞ sn exists.

Let tn =
(
1 + 1

n

)n
, then limn→∞ tn = e. By the binomial theorem

tn =

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk
.
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Euler’s number revised

Proof: 1/2

Then

tn =

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk

=
n∑

k=0

n(n − 1) · · · (n − k + 1)

k!

1

nk

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . .

+
1

n!

(
1− 1

n

)(
1− 2

n

)
· . . . ·

(
1− n − 1

n

)
=

n∑
k=0

1

k!
= sn.

Thus

e = lim
n→∞

tn ≤ lim
n→∞

sn.
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Euler’s number revised

Proof: 2/2

Next if n ≥ m

tn ≥ 1+1+
1

2!

(
1− 1

n

)
+ . . .+

1

m!

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− m − 1

n

)
.

Let n → ∞ keeping m fixed, we get

e = lim
n→∞

tn ≥
m∑

k=0

1

k!
.

Letting m → ∞ we see limm→∞ sm ≤ e.

lim
m→∞

sm = lim
m→∞

m∑
k=0

1

k!
= e.

This completes the proof of the theorem.
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Euler’s number revised

Remark

We have sn =
∑n

k=0
1
k! < e for all n ∈ N. Indeed

e − sn =
∞∑

k=n+1

1

k!
=

1

(n + 1)!
+

1

(n + 2)!
+ . . .

=
1

(n + 1)!

(
1 +

1

n + 2
+

1

(n + 2)(n + 3)
+ . . .

)
<

1

(n + 1)!

(
1 +

1

n + 1
+

1

(n + 1)2
+ . . .

)
≤ 1

(n + 1)!

1

1− 1
n+1

=
1

(n + 1)!

n + 1

n
=

1

n!n
.

Hence we conclude

The error estimate (*)

0 < e − sn <
1

n!n
.
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Euler’s number revised

Euler’s number e is irrational

Theorem

The Euler number e is irrational.

Proof. Suppose e is rational. Then e = p
q where p, q ∈ N. By (*) we have

0 < q!(e − sq) <
1

q
.

By our assumption
q!e ∈ N is an integer.

Since

q!sq = q!

(
1 + 1 +

1

2!
+ . . .+

1

q!

)
∈ N,

we see q!(e − sq) ∈ N, but if q > 1 and this is impossible since

0 < q!(e − sq) < 1/q < 1.

Hence e must be irrational.
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Properties of series

Algebraic limit theorem for series

Algebraic limit theorem for series

If
∑∞

k=1 ak = A and
∑∞

k=1 bk = B then

∞∑
k=1

(αak + βbk) = αA+ βB.

Proof. Let An =
∑n

k=1 ak and Bn =
∑n

k=1 bk . We know that

lim
n→∞

An = A, and lim
n→∞

Bn = B,

so

lim
n→∞

n∑
k=1

(αak + βbk) = lim
n→∞

α
n∑

k=1

ak + β
n∑

k=1

bk

= α lim
n→∞

An + β lim
n→∞

Bn = αA+ βB.
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Properties of series

Cauchy Criterion for Series

Theorem

The series
∑∞

k=1 ak converges iff for every ε > 0 there is Nε ∈ N such that
whenever n > m ≥ Nε it follows∣∣∣∣∣

n∑
k=m+1

ak

∣∣∣∣∣ < ε.

Proof. Let sn =
∑n

k=1 ak and we show that (sn)n∈N is a Cauchy
sequence. Observe that whenever n > m ≥ Nε then

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε.

We now apply the Cauchy Criterion for sequences and we are done.
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Properties of series

Theorem

Theorem

If the series
∑∞

k=1 ak converges then limn→∞ an = 0.

Proof. Let ε > 0 be given. Apply the previous theorem with m = n − 1,
then

|an| = |sn − sn−1| < ε

whenever n > Nε, and we are done.

Remark

But limn→∞ an = 0 does not imply |
∑∞

k=1 ak | < ∞.

Consider an = 1
n

−−−→n→∞ 0, but
∑∞

n=1
1
n = ∞.
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Properties of series

Example

Exercise

Determine if the series

∞∑
n=1

(−1)n
(
1− 1

n3

)n2

diverges or converges.

Solution. Since (n3)n∈N is a subsequence of (n)n∈N we have

lim
n→∞

(
1− 1

n3

)n3

= e−1,

hence limn→∞
(
1− 1

n3

)n2
= 1, and the limit limn→∞(−1)n

(
1− 1

n3

)n2
does

not exist, so the series diverges.
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Properties of series

Comparison test

Comparison test

Assume that sequences (ak)k∈N and (bk)k∈N satisfy

0 ≤ ak ≤ bk for all k ∈ N.

(i) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

(ii) If
∑∞

k=1 ak diverges then
∑∞

k=1 bk diverges.

Proof. Both statements follows from the Cauchy Criterion for series:∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=m+1

bk

∣∣∣∣∣ .
This completes the proof.
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Properties of series

Example

Exercise

Determine if the series
∞∑
n=1

1

n2 +
√
n + 15

diverges or converges.

Solution. For all n ∈ N we have
1

n2 +
√
n + 15

≤ 1

n2
, thus

∞∑
n=1

1

n2
< ∞,

hence
∞∑
n=1

1

n2 +
√
n + 15

< ∞.
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Properties of series

Example

Exercise

Determine if the series
∞∑
n=1

1
3
√
n +

√
n + 1

diverges or converges.

Solution. For all n ∈ N we have
1

3
√
n +

√
n + 1

≥ 1

3
√
n
, thus

∞∑
n=1

1√
n
= ∞,

hence
∞∑
n=1

1
3
√
n +

√
n + 1

= ∞.
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Properties of series

Theorem

Theorem

A series of nonnegative terms ak ≥ 0 converges iff its partial sums form a
bounded sequence.

Proof. If
∑∞

k=1 ak < ∞ one sees that

sN =
N∑

k=1

ak ≤ M =
∞∑
k=1

ak < ∞.

Conversely, we also know that sN ≤ sN+1 ≤ M for all N ∈ N. Then the
limit

lim
N→∞

sN

exists by the (MCT).
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Root and ratio test

Root test

Root test

Given
∑∞

n=1 an set

α = lim sup
n→∞

n
√

|an|.

(a) If α < 1, then
∑∞

n=1 an converges.

(b) If α > 1, then
∑∞

n=1 an diverges.

(c) If α = 1, no information.

Proof. If α < 1 we can choose β so that α < β < 1 and the integer
N ∈ N so that

n
√
|an| < β for all n ≥ N,

since
α = inf

k≥1
sup
n≥k

n
√
|an| < β.
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Root and ratio test

Proof

For n ≥ N we have |an| < βn, but β < 1, thus
∑∞

n=1 β
n converges

and the comparision test implies that
∑∞

n=1 an converges as well.

If α > 1 then there is (nk)k∈N so that

|ank |
1/nk −−−→

k→∞ α.

Hence |an| > 1 holds for infinitely many values of n ∈ N, so that the
condition an −−−→n→∞ 0 necessary for convergence

∑∞
n=1 an does not hold.

To prove (c) note that

∞∑
n=1

1

n
= ∞ and n

√
n −−−→n→∞ 1.

∞∑
n=1

1

n2
< ∞ and

n
√
n2 −−−→n→∞ 1.

This completes the proof.
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Root and ratio test

Examples

Example 1

∞∑
n=1

(e
n

)n
< ∞,

since
n

√
en

nn
=

e

n
−−−→n→∞ 0.

Example 2

∞∑
n=1

n2

2n
< ∞,

since
n

√
n2

2n
−−−→n→∞

1

2
.
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Root and ratio test

Ratio test

Ratio test

The series
∑∞

n=1 an

(a) converges if lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1,

(b) diverges if
∣∣∣an+1

an

∣∣∣ > 1 for all n ≥ n0 for some fixed n0 ∈ N.

Proof. If (a) holds we can find β < 1 and n ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ < β for all n ≥ N.
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Root and ratio test

Proof

In particular, for p ∈ N, one has

|an+p| = |an+p−1|
|an+p|
|an+p−1|

< β|an+p−1|
< β2|an+p−2| < . . . <

< βp|an|.

Thus |aN+p| < βp|aN | and

|an| < |aN |β−Nβn for all n ≥ N.

The claim follows from the comparison test since
∑∞

n=1 β
n < ∞

whenever β < 1.

If |an+1| ≥ |an| for n ≥ n0 then an −−−→n→∞ 0 does not hold.
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Root and ratio test

Remark and example

Remark

As before limn→∞
an+1

an
= 1 is useless:

∞∑
n=1

1

n
= ∞ and

an+1

an
=

n

n + 1
−−−→n→∞ 1,

∞∑
n=1

1

n2
< ∞ and

an+1

an
=

(
n

n + 1

)2

−−−→n→∞ 1.

Example∑∞
n=1

n!
nn < ∞, since

an+1

an
=

(n + 1)!

(n + 1)n+1

nn

n!
=

(n + 1)nn

(n + 1)n+1
=

(
n

n + 1

)n

−−−→n→∞
1

e
< 1.

(MATH 411H, FALL 2025) Lecture 9 October 2, 2025 29 / 29


	Series
	Euler's number revised
	Properties of series
	Root and ratio test

