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The Fourier transform

Functions with moderate decrease

Definition

For each a > 0 we denote by §, the class of all functions f that satisfy the
following two conditions:

(i) The function f is holomorphic in the horizontal strip
S;={zeC:|Im(z2)| < a}.

(i) There exists a constant A > 0 such that

If(x +iy)| <

A
T2 forall xeR and |y|<a.

In other words, §, consists of those holomorphic functions on S, that are

of moderate decay on each horizontal lineIm(z) = y, uniformly for all
y € (*aa a)'
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The Fourier transform

Functions with moderate decrease

Example
@ For example, ,
f(z)=eT
belongs to §, for all a > 0.
@ Also, the function )

c
f(z) = ————=
(2) mc2 4 72

which has simple poles at z = £ci/, belongs to §, for all 0 < a < c.

@ Another example is provided by

f(z) =1/coshrz,

which belongs to §, whenever |a| < 1/2.
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The Fourier transform

Functions with moderate decrease

Remarks

@ Note also that a simple application of the Cauchy integral formula
shows that if f € §,, then for every n € N, the nth derivative of f
belongs to § for all b with 0 < b < a. It is a simple exercise.

o Finally, we denote by § the class of all functions that belong to §, for
some a > 0. In other words, we can write § = Ua>0 5a.

@ The condition of moderate decrease can be weakened somewhat by
replacing the order of decrease of

A b A
1+ 7 1+ |x|1+e

for any € > 0. One can observe that many of the results below remain
unchanged with this less restrictive condition.
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The Fourier transform

Fourier transform

Theorem

If f belongs to the class §, for some a > 0, then

(&) < Be 2K,

for any 0 < b < a, where

f(&) = /R e 2 f (x)dx.

Proof: The case b = 0 simply says that f is bounded. Indeed, we have

2 A
7(©) </R|f(x)|dx</Rl+X2dx.

Hence we can take B = Am and we are done.
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The Fourier transform

Fourier transform

@ Now suppose 0 < b < a and assume first that £ > 0. The main step
consists of shifting the contour of integration, that is the real line,

down by b.
o More precisely, consider the function g(z) = f(z)e 2"?¢ as well as
the contour

—R—ib R—1ib
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The Fourier transform

Fourier transform

@ We claim that as R tends to infinity, the integrals of g over the two

vertical sides converge to zero.

@ For example, the integral over the vertical segment on the left can be

estimated by

-R b ] )
‘/ g(z)dz S/ ’f(—R— it)e2mi(=R=it)¢| ¢
—R—ib 0

b
A —2m
S /0 ﬁe tgdt

/RRib g(Z)dz

@ A similar estimate for the other side proves our claim.
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The Fourier transform

Fourier transform

@ Therefore, by Cauchy's theorem applied to the large rectangle, we
find in the limit as R tends to infinity that

f(&) = / f(x — ib)e 2mx=) gy,

—00

which leads to the estimate

a o0 A
|f(§)‘ S/ 7e727rb§dx < Bef27rb£7

Coo 1+ X2
where B = Ar.
@ A similar argument for £ < 0, but this time shifting the real line up by
b, allows us to finish the proof of the theorem. O
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The Fourier transform

Fourier inversion formula

Remark
@ The previous result says that whenever f € §, then f has rapid decay
at infinity.
@ We remark that the further we can extend f (that is, the larger a ),
then the larger we can choose b, hence the better the decay.

o It is possible to describe those f for which # has the ultimate decay
condition: compact support.

Theorem
If f € §, then the Fourier inversion holds, namely

f(x) = / f(&)e*™™ede  forall x€R.
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The Fourier transform

Fourier inversion formula

Lemma
If A> 0 and B € R, then

~(A+iB)E g — =
/0 € ds A+ iB’

Proof: Since A > 0 and B € R, we have !e_(AJF"B)g} = e, and the
integral converges. By definition

00 . R .

/ e_(A+IB)€d§ — lim / e_(A+’B)§d£.
0 R—o00 0
However,
o—(A+iB)E
A+ B

0

which tends to 1/(A + iB) as R tends to infinity.
Lecture 12 October 16, 2025
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The Fourier transform

Fourier inversion formula

Proof: We can now prove the inversion theorem.
@ Once again, the sign of £ matters, so we begin by writing

0o 0 -
/ f(g)e27rix£d§:/ f'\(g)e27rixédé~_|_/ f(£)€2ﬂ—iX£d§.

0

@ For the second integral we argue as follows. Say f € §, and choose
0 < b < a. Arguing as the proof of the previous theorem (changing
the contour of integration), we get

f(&) = / f(u— ib)e =)y,

—0o0

so that with an application of the lemma and the convergence of the
integration in &, we find
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The Fourier transform

Fourier inversion formula

/ f’:\(é-)eZWixfdg — / / f(U . ib)e—27rl'(u—ib)§e27rix§dud§
0 0 —o0
= / f(u— ib) / e 2milu=ib=x)¢ g gy
0

o0 1
= f(u—ib d
/_Oo Chll )27rb—|—27ri(u—x) Y

:1./00 flu—ib)

2mi J_o U —ib—x

1 f(<)

_277TI L1C_X

dg,

where L; denotes the line {u — ib: u € R} traversed from left to right. (In
other words, L; is the real line shifted down by b.)
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The Fourier transform

Fourier inversion formula
@ For the integral when £ < 0, a similar calculation gives
0
2 ; 1 f
/ f(g)e2ﬂ'lx§d§ — _ (g)
—0o0

% Ly C— X
where L, is the real line shifted up by b, with orientation from left to
right. Now given x € R, consider the contour ~g:

dg,

R
—R+ib R+ib

—R—1ib R—ib
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The Fourier transform

Fourier inversion formula

@ The function f({)/(¢ — x) has a simple pole at x with residue f(x),
so the residue formula gives

=50 | -x

o Letting R tend to infinity, one checks easily that the integral over the
vertical sides goes to 0 and therefore, combining with the previous
results, we get

g L[ FQg 1 Q)

1 f(¢)

dc.

=5 - — d
27 LIC—X 27 L2€—X C
) . 0o .
= [ RO [ Hoea
0 00
— [ #oema
and the theorem is proved. []
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The Fourier transform

Poisson summation formula

Theorem
If f € §, then

> f(n) =) f(n).

nez neZ

Proof: Say f € §, and choose some b satisfying 0 < b < a.
@ The function

1
e2miz _ ]
has simple poles with residue 1/(27/i) at the integers.

@ Thus
f(2)
e2miz _ ]
has simple poles at the integers n € Z, with residues f(n)/2mi.
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The Fourier transform

Poisson summation formula

@ We may therefore apply the residue formula to the contour yp:

TN
—N — 5 +ib N+ 5 +ib
~N-1|-N -1 0] 1 N |N+1
—N—%—ib N+ 3 —ib

where N is an integer.
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The Fourier transform

Poisson summation formula

@ This yields
f'
> f(n / #dz.
e ™Iz __ 1
[n|<N N
Letting NV tend to infinity, and recalling that f has moderate decrease,
we see that the sum converges to

> f(n)

neZ
@ Also that the integral over the vertical segments goes to 0.
@ Therefore, in the limit we get
f f
> rn) = [ M) g, / M) g, *)
e2miz _ 1 e2miz _ ]
neZ L L2

where L; and L, are the real line shifted down and up by b,
respectively.
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The Fourier transform

Poisson summation formula

@ Now we use the fact that if |w| > 1, then
1 [o.¢]
-1 —n
—=w w
w—1 ;)
to see that on Ly (where ]ez’”z‘ > 1) we have
1 (o]
_ 27z —2minz
e2miz 1 € Z e :
n=0
e Also if |w| < 1, then
1 =
_— = w
w—1 nz_(:)
so that on L, we have
1 o
_ 2minz
e2miz _ 1 - Z;) e :
n=
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The Fourier transform

Poisson summation formula

@ Substituting these observations in (*) we find that

Z f(n) = /1 f(z) <e_27riz Z e_27“'”z> dz + /L2 f(z) (nz_(:) eZWinz) dz

nezZ L n=0

:Z/ f(z)e—27ri(n+1)zdz+Z/ f(Z)GZﬂinzdz

n=0""L1 n—0" L2

— Z/ f(X)e—27ri(n+1)de+Z/ f(X)e27rinde
n=0" "> n=0" ">

=> fln+1)+ > F(=n) =) f(n),
n=0 n=0

nez

where we have shifted L1 and Ly back to the real line according to
equation and its analogue for the shift down. Ol
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Theta function

X

. . 2 . .
@ First, we recall that the function e~ was its own Fourier transform:

o 2 i 2
/ e X e—27rledX — e—ﬂ'{ )

— 00

o For fixed values of t > 0 and a € R, the change of variables
x — tY2(x + a)

in the above integral shows that the Fourier transform of the function
f(x) = e mtOxta) i

f(f) _ t71/2e77r£2/te27ria£'

@ Applying the Poisson summation formula to the pair f and f (which
belong to § ) provides the following relation:

00 00
Z e—7rt(n+a)2: Z t—1/2€—7rn2/t627rina. (**)

n=—0o0 n=—0o0
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The Fourier transform

Theta function

@ This identity has noteworthy consequences. For instance, the special
case a = 0 is the transformation law for a version of the “theta
function”: if we define ¢ for t > 0 by the series

o0
I()= > e
n=—o0
then the relation (**) says precisely that

I(t) =t~ Y29(1/t) for t>0.

@ This equation will be used to derive the key functional equation of the
Riemann zeta function, and this leads to its analytic continuation.
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The Fourier transform

Example

@ For another application of the Poisson summation formula we recall
that the function 1/ cosh wx was also its own Fourier transform:

0o e—27rix£ 1
/ e =
oo COsh Tx cosh ¢
@ This implies that if t > 0 and a € R, then the Fourier transform of

the function .
f(x) = e 2™/ cosh(mx/t),

f(€) = t/ cosh(m(& + a)t),
and the Poisson summation formula yields
& —2mian OO t

n; cosh(rn/t) n;oo cosh(m(n + a)t)’

—0o0
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Paley—Wiener type theorem

Theorem
Suppose f satisfies the decay condition

7(€)] < Ae~2m2kl

for some constants a, A > 0. Then f(x) is the restriction to R of a
function f(z) holomorphic in the strip

Sp={z€C:|Im(z)| < b},

forany 0 < b < a.

Proof: Define

and note that f, is entire. (Why")
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Paley—Wiener type theorem

@ Observe also that f(z) may be defined for all z in the strip Sp, by

flz) = /_ " Be)eied,

~

because the integral converges absolutely by our assumption on f: it
is majorized by

o0
A/ E.*?ﬂéllé\e2ﬂb|£|d§7
—00

which is finite if b < a.
@ Moreover, for z € S, we have

1£(2) — fo(2)] < A / e 2mll2mblel g 0,
[€]>n

and thus the sequence (f;)qen converges to f uniformly in Sp, which,
proves the theorem. (Why?) O
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