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The Fourier transform

Functions with moderate decrease

Definition

For each a > 0 we denote by Fa the class of all functions f that satisfy the
following two conditions:

(i) The function f is holomorphic in the horizontal strip

Sa = {z ∈ C : | Im(z)| < a}.

(ii) There exists a constant A > 0 such that

|f (x + iy)| ≤ A

1 + x2
for all x ∈ R and |y | < a.

In other words, Fa consists of those holomorphic functions on Sa that are
of moderate decay on each horizontal line Im(z) = y , uniformly for all
y ∈ (−a, a).
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The Fourier transform

Functions with moderate decrease

Example

For example,
f (z) = e−πz2

belongs to Fa for all a > 0.

Also, the function

f (z) =
1

π

c

c2 + z2

which has simple poles at z = ±ci , belongs to Fa for all 0 < a < c .

Another example is provided by

f (z) = 1/ coshπz ,

which belongs to Fa whenever |a| < 1/2.
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The Fourier transform

Functions with moderate decrease

Remarks

Note also that a simple application of the Cauchy integral formula
shows that if f ∈ Fa, then for every n ∈ N, the nth derivative of f
belongs to Fb for all b with 0 < b < a. It is a simple exercise.

Finally, we denote by F the class of all functions that belong to Fa for
some a > 0. In other words, we can write F =

⋃
a>0 Fa.

The condition of moderate decrease can be weakened somewhat by
replacing the order of decrease of

A

1 + x2
by

A

1 + |x |1+ε

for any ε > 0. One can observe that many of the results below remain
unchanged with this less restrictive condition.
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The Fourier transform

Fourier transform

Theorem

If f belongs to the class Fa for some a > 0, then

|f̂ (ξ)| ≤ Be−2πb|ξ|,

for any 0 ≤ b < a, where

f̂ (ξ) =

∫
R
e−2πixξf (x)dx .

Proof: The case b = 0 simply says that f̂ is bounded. Indeed, we have

|f̂ (ξ)| ≤
∫
R
|f (x)|dx ≤

∫
R

A

1 + x2
dx .

Hence we can take B = Aπ and we are done.

(MATH 503, FALL 2025) Lecture 12 October 16, 2025 5 / 24



The Fourier transform

Fourier transform

Now suppose 0 < b < a and assume first that ξ > 0. The main step
consists of shifting the contour of integration, that is the real line,
down by b.

More precisely, consider the function g(z) = f (z)e−2πizξ as well as
the contour
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The Fourier transform

Fourier transform

We claim that as R tends to infinity, the integrals of g over the two
vertical sides converge to zero.

For example, the integral over the vertical segment on the left can be
estimated by∣∣∣∣∫ −R

−R−ib
g(z)dz

∣∣∣∣ ≤ ∫ b

0

∣∣∣f (−R − it)e−2πi(−R−it)ξ
∣∣∣ dt

≤
∫ b

0

A

R2
e−2πtξdt

= O
(
1/R2

)
.

Thus

lim
R→∞

∣∣∣∣∫ −R

−R−ib
g(z)dz

∣∣∣∣ = 0.

A similar estimate for the other side proves our claim.
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The Fourier transform

Fourier transform

Therefore, by Cauchy’s theorem applied to the large rectangle, we
find in the limit as R tends to infinity that

f̂ (ξ) =

∫ ∞

−∞
f (x − ib)e−2πi(x−ib)ξdx ,

which leads to the estimate

|f̂ (ξ)| ≤
∫ ∞

−∞

A

1 + x2
e−2πbξdx ≤ Be−2πbξ,

where B = Aπ.

A similar argument for ξ < 0, but this time shifting the real line up by
b, allows us to finish the proof of the theorem.
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The Fourier transform

Fourier inversion formula

Remark

The previous result says that whenever f ∈ F, then f̂ has rapid decay
at infinity.

We remark that the further we can extend f (that is, the larger a ),
then the larger we can choose b, hence the better the decay.

It is possible to describe those f for which f̂ has the ultimate decay
condition: compact support.

Theorem

If f ∈ F, then the Fourier inversion holds, namely

f (x) =

∫ ∞

−∞
f̂ (ξ)e2πixξdξ for all x ∈ R.
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The Fourier transform

Fourier inversion formula

Lemma

If A > 0 and B ∈ R, then∫ ∞

0
e−(A+iB)ξdξ =

1

A+ iB
.

Proof: Since A > 0 and B ∈ R, we have
∣∣e−(A+iB)ξ

∣∣ = e−Aξ, and the
integral converges. By definition∫ ∞

0
e−(A+iB)ξdξ = lim

R→∞

∫ R

0
e−(A+iB)ξdξ.

However, ∫ R

0
e−(A+iB)ξdξ =

[
−e−(A+iB)ξ

A+ iB

]R
0

,

which tends to 1/(A+ iB) as R tends to infinity.
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The Fourier transform

Fourier inversion formula

Proof: We can now prove the inversion theorem.

Once again, the sign of ξ matters, so we begin by writing∫ ∞

−∞
f̂ (ξ)e2πixξdξ =

∫ 0

−∞
f̂ (ξ)e2πixξdξ +

∫ ∞

0
f̂ (ξ)e2πixξdξ.

For the second integral we argue as follows. Say f ∈ Fa and choose
0 < b < a. Arguing as the proof of the previous theorem (changing
the contour of integration), we get

f̂ (ξ) =

∫ ∞

−∞
f (u − ib)e−2πi(u−ib)ξdu,

so that with an application of the lemma and the convergence of the
integration in ξ, we find
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The Fourier transform

Fourier inversion formula

∫ ∞

0
f̂ (ξ)e2πixξdξ =

∫ ∞

0

∫ ∞

−∞
f (u − ib)e−2πi(u−ib)ξe2πixξdudξ

=

∫ ∞

−∞
f (u − ib)

∫ ∞

0
e−2πi(u−ib−x)ξdξdu

=

∫ ∞

−∞
f (u − ib)

1

2πb + 2πi(u − x)
du

=
1

2πi

∫ ∞

−∞

f (u − ib)

u − ib − x
du

=
1

2πi

∫
L1

f (ζ)

ζ − x
dζ,

where L1 denotes the line {u − ib : u ∈ R} traversed from left to right. (In
other words, L1 is the real line shifted down by b.)
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The Fourier transform

Fourier inversion formula

For the integral when ξ < 0, a similar calculation gives∫ 0

−∞
f̂ (ξ)e2πixξdξ = − 1

2πi

∫
L2

f (ζ)

ζ − x
dζ,

where L2 is the real line shifted up by b, with orientation from left to
right. Now given x ∈ R, consider the contour γR :
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The Fourier transform

Fourier inversion formula

The function f (ζ)/(ζ − x) has a simple pole at x with residue f (x),
so the residue formula gives

f (x) =
1

2πi

∫
γR

f (ζ)

ζ − x
dζ.

Letting R tend to infinity, one checks easily that the integral over the
vertical sides goes to 0 and therefore, combining with the previous
results, we get

f (x) =
1

2πi

∫
L1

f (ζ)

ζ − x
dζ − 1

2πi

∫
L2

f (ζ)

ζ − x
dζ

=

∫ ∞

0
f̂ (ξ)e2πixξdξ +

∫ 0

−∞
f̂ (ξ)e2πixξdξ

=

∫ ∞

−∞
f̂ (ξ)e2πixξdξ,

and the theorem is proved.
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The Fourier transform

Poisson summation formula

Theorem

If f ∈ F, then ∑
n∈Z

f (n) =
∑
n∈Z

f̂ (n).

Proof: Say f ∈ Fa and choose some b satisfying 0 < b < a.

The function
1

e2πiz − 1

has simple poles with residue 1/(2πi) at the integers.

Thus
f (z)

e2πiz − 1

has simple poles at the integers n ∈ Z, with residues f (n)/2πi .
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The Fourier transform

Poisson summation formula

We may therefore apply the residue formula to the contour γN :

where N is an integer.
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The Fourier transform

Poisson summation formula

This yields ∑
|n|≤N

f (n) =

∫
γN

f (z)

e2πiz − 1
dz .

Letting N tend to infinity, and recalling that f has moderate decrease,
we see that the sum converges to∑

n∈Z
f (n).

Also that the integral over the vertical segments goes to 0.

Therefore, in the limit we get∑
n∈Z

f (n) =

∫
L1

f (z)

e2πiz − 1
dz −

∫
L2

f (z)

e2πiz − 1
dz , (*)

where L1 and L2 are the real line shifted down and up by b,
respectively.
(MATH 503, FALL 2025) Lecture 12 October 16, 2025 17 / 24



The Fourier transform

Poisson summation formula

Now we use the fact that if |w | > 1, then

1

w − 1
= w−1

∞∑
n=0

w−n

to see that on L1 (where
∣∣e2πiz ∣∣ > 1 ) we have

1

e2πiz − 1
= e−2πiz

∞∑
n=0

e−2πinz .

Also if |w | < 1, then

1

w − 1
= −

∞∑
n=0

wn

so that on L2 we have

1

e2πiz − 1
= −

∞∑
n=0

e2πinz .
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The Fourier transform

Poisson summation formula

Substituting these observations in (*) we find that

∑
n∈Z

f (n) =

∫
L1

f (z)

(
e−2πiz

∞∑
n=0

e−2πinz

)
dz +

∫
L2

f (z)

( ∞∑
n=0

e2πinz

)
dz

=
∞∑
n=0

∫
L1

f (z)e−2πi(n+1)zdz +
∞∑
n=0

∫
L2

f (z)e2πinzdz

=
∞∑
n=0

∫ ∞

−∞
f (x)e−2πi(n+1)xdx +

∞∑
n=0

∫ ∞

−∞
f (x)e2πinxdz

=
∞∑
n=0

f̂ (n + 1) +
∞∑
n=0

f̂ (−n) =
∑
n∈Z

f̂ (n),

where we have shifted L1 and L2 back to the real line according to
equation and its analogue for the shift down.
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The Fourier transform

Theta function

First, we recall that the function e−πx2 was its own Fourier transform:∫ ∞

−∞
e−πx2e−2πixξdx = e−πξ2 .

For fixed values of t > 0 and a ∈ R, the change of variables

x 7→ t1/2(x + a)

in the above integral shows that the Fourier transform of the function
f (x) = e−πt(x+a)2 is

f̂ (ξ) = t−1/2e−πξ2/te2πiaξ.

Applying the Poisson summation formula to the pair f and f̂ (which
belong to F ) provides the following relation:

∞∑
n=−∞

e−πt(n+a)2 =
∞∑

n=−∞
t−1/2e−πn2/te2πina. (**)
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The Fourier transform

Theta function

This identity has noteworthy consequences. For instance, the special
case a = 0 is the transformation law for a version of the “theta
function”: if we define ϑ for t > 0 by the series

ϑ(t) =
∞∑

n=−∞
e−πn2t ,

then the relation (**) says precisely that

ϑ(t) = t−1/2ϑ(1/t) for t > 0.

This equation will be used to derive the key functional equation of the
Riemann zeta function, and this leads to its analytic continuation.
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The Fourier transform

Example

For another application of the Poisson summation formula we recall
that the function 1/ coshπx was also its own Fourier transform:∫ ∞

−∞

e−2πixξ

coshπx
dx =

1

coshπξ
.

This implies that if t > 0 and a ∈ R, then the Fourier transform of
the function

f (x) = e−2πiax/ cosh(πx/t),

is
f̂ (ξ) = t/ cosh(π(ξ + a)t),

and the Poisson summation formula yields

∞∑
n=−∞

e−2πian

cosh(πn/t)
=

∞∑
n=−∞

t

cosh(π(n + a)t)
.
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The Fourier transform

Paley–Wiener type theorem

Theorem

Suppose f̂ satisfies the decay condition

|f̂ (ξ)| ≤ Ae−2πa|ξ|

for some constants a,A > 0. Then f (x) is the restriction to R of a
function f (z) holomorphic in the strip

Sb = {z ∈ C : | Im(z)| < b},

for any 0 < b < a.

Proof: Define

fn(z) =

∫ n

−n
f̂ (ξ)e2πiξzdξ

and note that fn is entire. (Why?)
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The Fourier transform

Paley–Wiener type theorem

Observe also that f (z) may be defined for all z in the strip Sb by

f (z) =

∫ ∞

−∞
f̂ (ξ)e2πiξzdξ,

because the integral converges absolutely by our assumption on f̂ : it
is majorized by

A

∫ ∞

−∞
e−2πa|ξ|e2πb|ξ|dξ,

which is finite if b < a.

Moreover, for z ∈ Sb, we have

|f (z)− fn(z)| ≤ A

∫
|ξ|≥n

e−2πa|ξ|e2πb|ξ|dξ −−−→n→∞ 0,

and thus the sequence (fn)n∈N converges to f uniformly in Sb, which,
proves the theorem. (Why?)
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