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The Riemann mapping theorem

e D={zeC:|z| <1} is the open unit disc centered at the origin.

Theorem

Let Q # C be a simply connected region. Then S is conformally
equivalent to D. Moreover, the assumption Q # C is necessary.

Remark
@ In view of the Liouville theorem, the assumption Q # C is necessary.
Indeed, if f : C — D is a conformal map, then f is bounded, since
|f(z)| < 1 for all z € C. Hence, by the Liouville theorem f must be
constant, but then it cannot be injective.

@ However, C and D are homeomorphic. The mapping

Coz— eD

z

1+ |z|
is the desired homeomorphism.
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The Riemann mapping theorem

Simple topological lemma

Lemma

Let Q be an open subset of C. Then there exists a sequence (Kp)nen C Q
of compact sets such that

Q=|JK, and K,CintKnyy for neN,
n=1

where int K11 denotes the interior of K,1. Further for a compact set
K C Q, we have K C K, for some n € N.

Proof: For n € N, let
K,=D(0,n)N{z€Q:d(z,C\Q)>1/n}.

@ It is clear that K, C Q and it is bounded.
@ Each K, is closed and consequently compact.
@ Moreover, K, C K41 for n € N.
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Simple topological lemma

@ We prove that K, C int K,,;1. Taking r = % - nil’

D(z,r) C Khpy1 for z € K,.

it suffices to show

o Let z€ K, and ( € D(z,r). Then
1 1 1
’C_Z|<E_n7_|_1 and ‘2_3’2E for a¢ Q.

Therefore for a ¢ Q, we have

\C—a|z\z—ay_yg_z|21_<1_ 1 >: 1

n n n+1 n+1

This implies ¢ € Kny1, since [(| < |zl + 1 <n+l<n+1

Hence K, CintK,y1 forne Nand K1 C Ko, C K3 C ...

We observe that |J72 ; K, C €, since each K, C Q.

For the reverse inclusion, let z € Q and M € N be so that |z| < M.
Since Q is open, there exists p > 0 such that D(z,p) C Q. Let N € N
be the least integer greater than or equal to max(M, p~1).
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The Riemann mapping theorem

Simple topological lemma

o Then |z| <M < N and for a ¢ Q we have |z —a| > p > 1.
Therefore z € Ky and thus Q C |J72; Kp, hence Q = 2, K.

e We also have a stronger result Q = [J77 ; int K.
@ Indeed, since K, C int K11, we have

QQGKnQGintKnQ GintKnQQ.

n=1 n=2 n=1

@ Let K be a compact subset of Q. Then

K C GintKn

n=1

is an open cover of K. Therefore, K C Ule int K, for some P € N.
@ Thus
KCKiUKyU...UKp = Kp. ]
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The Riemann mapping theorem

Hurwitz lemma

Lemma

Let Q C C be a region and (f,)nen be a sequence such that f, € H(Q2)
converges uniformly on compact subsets of Q2. Assume that f, is

one-to-one for any n € N. Then the limit function f = lim,_, f, is either
constant or one-to-one on ).

Proof: Note that f € H(Q). (Why?)

@ Assume that f is not one-to-one, then there exist z;, zp € Q such that
71 # zp with f (z1) = f (z2).

e For n € N, we define g, € H(Q2), and g € H(Q2) by setting
gn(z) = fa(z) — fo(z1), and g(z)="f(z)—f(z1).

Then g (z2) =0 and also g, (z2) # 0, since f, is one-to-one.

@ Further, we may suppose that g is not constant in € otherwise f is
constant in € and the assertion follows.
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The Riemann mapping theorem

Hurwitz lemma

@ Since the zeros of g are isolated, there is r > 0 so that |z; — z| > r
and g(z) # 0 whenever z € Q satisfies 0 < |z — z| < r.

@ Let v be a circle centered at z» with radius r. Then there exists § > 0
such that |g(z)| > d for z € v*.

@ By the uniform convergence there exists ng € N such that for every
n > ng, we have

*

J
lgn(z) — g(2)| < 5 uniformly for any z € v*.

@ Therefore for z € v*, we have

18n(2)] > 18(2)] — lgn(2) — g(2)] > 6 — g _ g

@ Now we see that ( y converges uniformly to ( y on v*. Also gn(z)
converges unlformly to g’(z) on v*.
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The Riemann mapping theorem

Hurwitz lemma

@ Hence
L a(2) _g)
n— gn(z)  g(2)

uniformly on ~*.

e We observe that % € H(D(z2,r)). Now by the Cauchy theorem

we obtain that

or né&eN.

il 5
L v 8
o Consequently, by the argument principle

1 ! 1 !
0= lim — g"(z)dz:,/g(z)dz:NgZL
n—oo 27i |, gn(z) 2mi J,

@ This is a contradiction completing the proof of Hurwitz lemma.
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The Riemann mapping theorem

Normal families of analytic functions

Definition

(i)

(i)

(iii)

Let Q C C be a region and F be a family of analytic functions in €.
Thus F is a sub-family of H(2). Further F is called a normal family
if every sequence of elements of F contains a subsequence which
converges uniformly on compact subsets of €.

F is uniformly bounded on compact subsets of Q if for every
compact subset K of Q there exists M = M(K) such that

f(z)| <M for feF, zeK.

The family F is called equicontinuous on compact subsets of € if
for £ > 0 and compact subset K C Q there exists § > 0 depending
only on € and K such that |f (z1) — f ()| < e for f € F and
71,2 € K satisfying |z1 — z| < 0.
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Montel lemma

Remark

@ The limit of the subsequence in the above definition (i) belongs to
H(2) but it need not belong to F.

Lemma

Let F be a family of H(Q2) with Q C C region. Assume that F is
uniformly bounded on compact subsets of Q2. Then F is a normal family.

Proof: We show that F is equicontinuous on compact subsets of €.

@ By the topological lemma, there exists a sequence of compact sets
(Kn)nen C Q such that K, C int K41 for n € N that satisfies

2 ke
n=1

Also, every compact subset of Q is contained in K,, for some n € N.
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Montel lemma

@ Let n € N. Since K, is compact, (int K,11)¢ is closed and
Ky N (int Kpp1)€ =0,
@ We can also find §, > 0 such that
|z1 — 22| > 20, for z1 € Ky, zo¢ intKnppq.

@ Thus

D (z,26,) CintKpp1 C Kpyr  for  z € K,
e Let Z/ € K, and Z" € K,, with |2/ — 2| < §,,.
@ Let v be a circle centered at z’ and with radius 24,.
@ Thus Z” lies inside the circle v and v* C K, 1.
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The Riemann mapping theorem

Montel lemma

o Let f € F, then by the Cauchy integral formula

f(z')—f(z')-zﬂ,/ It _Z,— )¢

L - z’) sz)"f

o If |2/ — 2| < d,,, we observe that
o "e__ / / " .
‘C—z‘_2(5n and }C—z‘_‘g—z+z—z‘>25n—5n—5n.
@ Since F is uniformly bounded on compact subsets of 2, there exists a
constant M (K,+1) depending only on K, ;1 such that
/ !
7z — 7" 4né, M (Kn+1)
f(Z)—f (2" <7| = "=\,
‘ ( ) ( )‘ o 25% ’7""1) on ‘ ‘
@ The above inequality holds for all f € F and Z/, 2" € K, whenever
|2/ — 2" < 6,
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The Riemann mapping theorem

Montel lemma

@ Let £ > 0 and set

€dn

0=4(n) = T M(Koid)

< 0,.

@ Then for |2/ — 2’| < 4, we have

M (Kn+1)
dn

//| < M(Kn+1)5 _ EM(KH-H)
5,7 €+M(Kn+]_)

/
|Z—Z

@ Therefore we have
f(Z) - ()] <e (*)
for f € F and Z/,2" € K,, and |2/ — 2| < 6.

@ Thus the family F is equicontinuous on compact subsets of 2, since
every compact subset K of Q is contained in K, for some n € N, and
therefore (*) holds for all f € F and z/,z" € K so that |2/ — 2| < §.
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The Riemann mapping theorem

Montel lemma

o Let (fm)men € F. We show that it has a subsequence which
converges uniformly on compact subsets of €.

@ Let E be a countable dense set of 2.

@ For example, we take E to be the set of all points of € with rational
coordinates. We arrange the elements of E as wy, wo, ws, wy, .. ..

@ Since (fm (w1))men is a bounded sequence by assumption on F, the
sequence (fm)men has a subsequence (fm1)men so that (fm1 (Wi1))men
converges. Here, we have used the Bolzano—Weierstrass theorem.

e Similarly, the sequence (fm1)men has a subsequence (f2)men such
that (fm2 (W2))men converges.

@ Proceeding recursively, we see that for i € N there is a subsequence
(fmi)ien of (fm,i—1)ien such that (fpn; (w;))ien converges.

@ Here we write f,0 for fo,.

@ Now the diagonal sequence (fm)men converges at all w € E.

We show that (fm)men converges uniformly on K, for any n € N.
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The Riemann mapping theorem

Montel lemma

@ Then the diagonal sequence (f;m)men converges uniformly on all
compact subsets K of 2 since K C K,, for some n € N.

@ For n € N and § = 6(n) as above, we have

Ko C | J D(z,9).

zeKn

@ Then

KnC |J D(z.9),
zeENK,

since E N K, is dense in K. Since K, is compact, we observe that
the above open cover admits a finite subcover.

@ Thus there exist z1,z2,...,2, € E N K, such that
Kn € D(z1,6) UD (22,0)U---UD(2p,9).
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The Riemann mapping theorem

Montel lemma

@ For £ > 0, there exists M depending only on € and K, such that
[ (zi) — fss (zi)| < €

forr>M,s>Mand1<i<p.
o Let z € K. Then z € D(z;,9) for some i with 1 < i < p.
@ Further, by the equicontinuity, we have

|frr(2) — fss(2))
< |fir(2) = fur (20)| + |for (20) — s (20)| + |fss(2) — fss (20)]
<et+et+e=3

wherever r > M, s > M. Thus (fmm)men converges uniformly on Kj,.
@ Since every compact subset of € is contained in K, for some n € N,

we conclude that (f;m)men converges uniformly on compact subsets

of Q. This completes the proof of Montels’ lemma. O
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Proof: Assume that Q2 = C is a simply connected region. Let z5 € Q and
define

Y = {¢) € H(Q) : ¢ is one-to-one on Q and ¥(2) C D}.

Our aim is to prove that X contains an element which is onto.
@ In fact, we will show that for ¢ € ¥, which is not onto D, there exists
11 € X such that
|41 (20)] > ¢ (20)] - (*)

@ Next we consider

n=sup{|¢/(20)|: v e}, (**)

and we will prove that the supremum is assumed for some g € X.

@ Then it will be clear that 1)y has to be an onto function. Otherwise, if
g is not onto D then there is 1)1 € ¥ satisfying (*). Hence, by (**),
we have n = |9 (20)| < ¢} (20)] < n, which is impossible.

The proof will consist of a few steps.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Step 1. We first prove that ¥ # ().
@ From Lecture 8 we know that if Q C C is a simply connected region,
then for every closed curve I in © we have

Indr(or) =0 whenever o & Q.

@ From Lecture 9, we know that the latter is equivalent to the
statement that for every f € H(Q) satisfying 1/f € H(Q) there exists
g € H(Q) such that f = g2.

@ Since Q # C, let wp € C such that wy ¢ Q. Consider

f(z) =z — w.

o We observe that f € H(2) and f has no zero in Q since wy ¢ Q.
@ Thus 1/f € H(Q2). Therefore, there exists g € H(Q2) such that

f(z) = g%(z) for zeQ.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

@ Let a € Q. By open mapping theorem, we observe that g(2) is open
containing g(a).
@ Therefore there exists r > 0 such that
D(g(a),r) < ().
e Now we show that D(—g(a),r) N g(2) = 0. Suppose there exists
71 € Q such that g (z1) € D(—g(a),r). Thus
lg(z1)+g(al<r <« [-g(a)-glal<r
@ Then
—g(z1) € D(g(a), r) < g(Q).
@ Therefore there exists zy € Q such that —g (z1) = g (22).
@ By squaring both sides of this equation, we derive that
2 —w = f(z) = (-g(2))" = (g(2))* = f(22) = 22 — wo
implying z1 = z>. Thus g (z1) = 0, and consequently z; — wp = 0.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

e This is a contradiction since z; € Q and wy ¢ €. Hence,

D(-g(a),r)ng(©2) = 0.

@ Now we consider
r

P(z) = 2(2) 1 20) for zeQ.

@ We observe that ¥(z) € H(Q2) and |¢(z)| < 1 for z € Q, since
lg(z) +g(a)|>r for zeQ.

e In fact |¢(z)| < 1 for z € Q by the maximum modulus principle.
e Further 1) € H(Q2) and is one-to-one on , since v (z') = ¢ (Z")
implies g2 (z') = g?(2"), and therefore 2/ = z".
@ Hence ¢ € X as desired.
Lecture 14 October 23, 2025 20/27



The Riemann mapping theorem

Proof of the Riemann mapping theorem

Step 2. We will show that if ¢ € ¥ and () is a proper subset of D,
then there exists 11 € ¥ satisfying

¥ (20)] > [t (0] - (*)

e Fix ¢ € . Since 1(Q) is a proper subset of D, there exists a« € D
such that a ¢ ¥(Q2). We consider ¢, o ¥, where

w—«

Pa(w) =

Cl1—aw’

o We recall that ¢, is an automorphism of D. For z € Q, observe that

600 0(z) = 9n(U()) = {5 =0

only when v(z) = « which is not the case since o ¢ ().
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

@ Therefore ¢, 0 ) € H(Q2) has no zero in Q. Then, there exists
g € H(Q) such that

g%(2) = paoh(z) for zeQ.
By writing s(w) = w? for w € D, we rewrite the last equation as
sog=¢ga01% in Q.

If g(z1) = g (z) for z1,z € Q, then ¢ (z1) = ¢ (z2), since ¢4 is
one-to-one. Therefore, g is one-to-one, and g € ¥.

o Let

Y1 =¢gog with g(z)=75

Observe that
Y1 (20) = ¢p (g (20)) = ¢5(B) = 0.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

@ Hence,

YV=¢_qo0s0g=0¢_q0s0¢_gorh=For,
where
F=¢_qo0s0¢_g.
@ By the chain rule and 91 () = 0, we have
V' (20) = F' (¢1 (20)) ¥ (20) = F'(0)3)1 (20) -
@ Inequality (*) will follow if we show that |F’(0)] < 1, since

¥ (20)| = [F(0)] [¥1 (20)]

@ Recall the following lemma from the previous lecture.
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Proof of the Riemann mapping theorem

Lemma

Let f be non-constant and analytic in D, and satisfy |f(z)| < 1 for z € D.
Let w € D with f(w) = a. Then

1— |a|?
! < -
’ (w)] < 1— |w|?

Moreover equality occurs only when
f=¢_s0(cow) in D,

for some constant ¢ whose absolute value is 1.

o We observe that F(D) C D, and let F(0) = a. Then by the lemma
with w = 0, we have

|F/(0)| <1—1af.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

@ Suppose that |F’(0)| = 1. Then a = 0 and by the second part of the
previous lemma, we conclude with w = 0 that F(z) = Az for z € D
where \ is a constant of absolute value 1.

@ This is not possible since F is not one-to-one as s(w) = w
one-to-one. Hence |F’(0)| < 1 and the proof of (*) is complete.
Step 3. In this step we finish the proof. In Step 1, we have proved that

Y # (), hence we can define

n=sup{|¢/(20)|: v eX}, (**)

2 is not

@ By the inverse mapping theorem we have |1’ (zp)| > 0 for every
¥ € ¥. Hence n > 0.
@ There exists a sequence (1)nen € X such that

Tim [y, (20)] =1 > 0.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

We observe that [1(z)| < 1 for ¢ € ¥.

In particular, ¥ is uniformly bounded on compact subsets of €2.
Therefore ¥ is a normal family by Montel's lemma.

Hence the above sequence (¢,)neny € X has a subsequence which we
denote again by (¢n)nen € X, and which converges uniformly on
compact subsets of Q satisfying

Jim |47, (20)| =71 >0.
o Let
nli_)m Yn(z) = h(z) for z€Q

converge uniformly on compact subsets of Q. Then h € H(Q).
o Further
lim ¢/ (z) =H(z) for z€Q
n—oo
converges uniformly on compact subsets €.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

@ Therefore
im [y, (20)| = | (0)]

which implies
‘h’ (zo)’ =n>0.
@ Hence h cannot be constant, otherwise we would have n = 0.

@ Therefore |h(z)| < 1 for z € Q by the maximum modulus principle, in

other words
h(2) C D.

@ By the Hurwitz lemma h must be also one-to-one, thus h € ¥ and is
the maximizer for (**) as desired.

@ Hence h(Q2) = D as it was explained by combining (*) and (**) at
the beginning of the proof.

@ This completes the proof of the Riemann mapping theorem. Ol
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