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The Riemann mapping theorem

The Riemann mapping theorem

D = {z ∈ C : |z | < 1} is the open unit disc centered at the origin.

Theorem

Let Ω ̸= C be a simply connected region. Then Ω is conformally
equivalent to D. Moreover, the assumption Ω ̸= C is necessary.

Remark

In view of the Liouville theorem, the assumption Ω ̸= C is necessary.
Indeed, if f : C → D is a conformal map, then f is bounded, since
|f (z)| < 1 for all z ∈ C. Hence, by the Liouville theorem f must be
constant, but then it cannot be injective.

However, C and D are homeomorphic. The mapping

C ∋ z 7→ z

1 + |z |
∈ D

is the desired homeomorphism.
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The Riemann mapping theorem

Simple topological lemma

Lemma

Let Ω be an open subset of C. Then there exists a sequence (Kn)n∈N ⊆ Ω
of compact sets such that

Ω =
∞⋃
n=1

Kn and Kn ⊆ intKn+1 for n ∈ N,

where intKn+1 denotes the interior of Kn+1. Further for a compact set
K ⊆ Ω, we have K ⊆ Kn for some n ∈ N.

Proof: For n ∈ N, let

Kn = D(0, n) ∩ {z ∈ Ω : d(z ,C \ Ω) ≥ 1/n}.

It is clear that Kn ⊆ Ω and it is bounded.
Each Kn is closed and consequently compact.
Moreover, Kn ⊆ Kn+1 for n ∈ N.
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The Riemann mapping theorem

Simple topological lemma

We prove that Kn ⊆ intKn+1. Taking r = 1
n −

1
n+1 , it suffices to show

D(z , r) ⊆ Kn+1 for z ∈ Kn.

Let z ∈ Kn and ζ ∈ D(z , r). Then

|ζ − z | < 1

n
− 1

n + 1
and |z − a| ≥ 1

n
for a /∈ Ω.

Therefore for a /∈ Ω, we have

|ζ − a| ≥ |z − a| − |ζ − z | ≥ 1

n
−
(
1

n
− 1

n + 1

)
=

1

n + 1
.

This implies ζ ∈ Kn+1, since |ζ| < |z |+ 1
n ≤ n + 1

n ≤ n + 1.
Hence Kn ⊆ intKn+1 for n ∈ N and K1 ⊆ K2 ⊆ K3 ⊆ . . ..
We observe that

⋃∞
n=1 Kn ⊆ Ω, since each Kn ⊆ Ω.

For the reverse inclusion, let z ∈ Ω and M ∈ N be so that |z | ≤ M.
Since Ω is open, there exists ρ > 0 such that D(z , ρ) ⊆ Ω. Let N ∈ N
be the least integer greater than or equal to max(M, ρ−1).
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The Riemann mapping theorem

Simple topological lemma

Then |z | ≤ M ≤ N and for a /∈ Ω we have |z − a| ≥ ρ ≥ 1
N .

Therefore z ∈ KN and thus Ω ⊆
⋃∞

n=1 Kn, hence Ω =
⋃∞

n=1 Kn.

We also have a stronger result Ω =
⋃∞

n=1 intKn.

Indeed, since Kn ⊆ intKn+1, we have

Ω ⊆
∞⋃
n=1

Kn ⊆
∞⋃
n=2

intKn ⊆
∞⋃
n=1

intKn ⊆ Ω.

Let K be a compact subset of Ω. Then

K ⊆
∞⋃
n=1

intKn

is an open cover of K . Therefore, K ⊆
⋃P

n=1 intKn for some P ∈ N.
Thus

K ⊆ K1 ∪ K2 ∪ . . . ∪ KP = KP .
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The Riemann mapping theorem

Hurwitz lemma

Lemma

Let Ω ⊆ C be a region and (fn)n∈N be a sequence such that fn ∈ H(Ω)
converges uniformly on compact subsets of Ω. Assume that fn is
one-to-one for any n ∈ N. Then the limit function f = limn→∞ fn is either
constant or one-to-one on Ω.

Proof: Note that f ∈ H(Ω). (Why?)

Assume that f is not one-to-one, then there exist z1, z2 ∈ Ω such that
z1 ̸= z2 with f (z1) = f (z2).

For n ∈ N, we define gn ∈ H(Ω), and g ∈ H(Ω) by setting

gn(z) = fn(z)− fn (z1) , and g(z) = f (z)− f (z1) .

Then g (z2) = 0 and also gn (z2) ̸= 0, since fn is one-to-one.

Further, we may suppose that g is not constant in Ω otherwise f is
constant in Ω and the assertion follows.
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The Riemann mapping theorem

Hurwitz lemma

Since the zeros of g are isolated, there is r > 0 so that |z1 − z2| > r
and g(z) ̸= 0 whenever z ∈ Ω satisfies 0 < |z − z2| ≤ r .

Let γ be a circle centered at z2 with radius r . Then there exists δ > 0
such that |g(z)| > δ for z ∈ γ∗.

By the uniform convergence there exists n0 ∈ N such that for every
n ≥ n0, we have

|gn(z)− g(z)| < δ

2
uniformly for any z ∈ γ∗.

Therefore for z ∈ γ∗, we have

|gn(z)| ≥ |g(z)| − |gn(z)− g(z)| ≥ δ − δ

2
=
δ

2
.

Now we see that 1
gn(z)

converges uniformly to 1
g(z) on γ∗. Also g ′

n(z)

converges uniformly to g ′(z) on γ∗.
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The Riemann mapping theorem

Hurwitz lemma

Hence

lim
n→∞

g ′
n(z)

gn(z)
=

g ′(z)

g(z)

uniformly on γ∗.

We observe that g ′
n(z)

gn(z)
∈ H

(
D (z2, r)

)
. Now by the Cauchy theorem

we obtain that

0 =
1

2πi

∫
γ

g ′
n(z)

gn(z)
dz for n ∈ N.

Consequently, by the argument principle

0 = lim
n→∞

1

2πi

∫
γ

g ′
n(z)

gn(z)
dz =

1

2πi

∫
γ

g ′(z)

g(z)
dz = Ng ≥ 1.

This is a contradiction completing the proof of Hurwitz lemma.
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The Riemann mapping theorem

Normal families of analytic functions

Definition

(i) Let Ω ⊆ C be a region and F be a family of analytic functions in Ω.
Thus F is a sub-family of H(Ω). Further F is called a normal family
if every sequence of elements of F contains a subsequence which
converges uniformly on compact subsets of Ω.

(ii) F is uniformly bounded on compact subsets of Ω if for every
compact subset K of Ω there exists M = M(K ) such that

|f (z)| ≤ M for f ∈ F , z ∈ K .

(iii) The family F is called equicontinuous on compact subsets of Ω if
for ε > 0 and compact subset K ⊆ Ω there exists δ > 0 depending
only on ε and K such that |f (z1)− f (z2)| < ε for f ∈ F and
z1, z2 ∈ K satisfying |z1 − z2| < δ.
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The Riemann mapping theorem

Montel lemma

Remark

The limit of the subsequence in the above definition (i) belongs to
H(Ω) but it need not belong to F .

Lemma

Let F be a family of H(Ω) with Ω ⊆ C region. Assume that F is
uniformly bounded on compact subsets of Ω. Then F is a normal family.

Proof: We show that F is equicontinuous on compact subsets of Ω.

By the topological lemma, there exists a sequence of compact sets
(Kn)n∈N ⊆ Ω such that Kn ⊆ intKn+1 for n ∈ N that satisfies

Ω =
∞⋃
n=1

Kn.

Also, every compact subset of Ω is contained in Kn for some n ∈ N.
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The Riemann mapping theorem

Montel lemma

Let n ∈ N. Since Kn is compact, (intKn+1)
c is closed and

Kn ∩ (intKn+1)
c = ∅,

We can also find δn > 0 such that

|z1 − z2| > 2δn for z1 ∈ Kn, z2 /∈ intKn+1.

Thus
D (z , 2δn) ⊆ intKn+1 ⊆ Kn+1 for z ∈ Kn.

Let z ′ ∈ Kn, and z ′′ ∈ Kn with |z ′ − z ′′| < δn.

Let γ be a circle centered at z ′ and with radius 2δn.

Thus z ′′ lies inside the circle γ and γ∗ ⊆ Kn+1.
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The Riemann mapping theorem

Montel lemma

Let f ∈ F , then by the Cauchy integral formula

f
(
z ′
)
− f

(
z ′′
)
=

1

2πi

∫
γ
f (ζ)

(
1

ζ − z ′
− 1

ζ − z ′′

)
dζ

=
z ′ − z ′′

2πi

∫
γ

f (ζ)

(ζ − z ′) (ζ − z ′′)
dζ.

If |z ′ − z ′′| < δn, we observe that∣∣ζ − z ′
∣∣ = 2δn and

∣∣ζ − z ′′
∣∣ = ∣∣ζ − z ′ + z ′ − z ′′

∣∣ > 2δn−δn = δn.

Since F is uniformly bounded on compact subsets of Ω, there exists a
constant M (Kn+1) depending only on Kn+1 such that∣∣f (z ′)− f

(
z ′′
)∣∣ < |z ′ − z ′′|

2π

4πδn
2δ2n

M (Kn+1) =
M (Kn+1)

δn

∣∣z ′ − z ′′
∣∣ .

The above inequality holds for all f ∈ F and z ′, z ′′ ∈ Kn whenever
|z ′ − z ′′| < δn.
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The Riemann mapping theorem

Montel lemma

Let ε > 0 and set

δ = δ(n) =
εδn

ε+M (Kn+1)
< δn.

Then for |z ′ − z ′′| < δ, we have

M (Kn+1)

δn

∣∣z ′ − z ′′
∣∣ < M (Kn+1)

δn
δ =

εM (Kn+1)

ε+M (Kn+1)
< ε.

Therefore we have ∣∣f (z ′)− f
(
z ′′
)∣∣ < ε (*)

for f ∈ F and z ′, z ′′ ∈ Kn and |z ′ − z ′′| < δ.

Thus the family F is equicontinuous on compact subsets of Ω, since
every compact subset K of Ω is contained in Kn for some n ∈ N, and
therefore (*) holds for all f ∈ F and z ′, z ′′ ∈ K so that |z ′ − z ′′| < δ.
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The Riemann mapping theorem

Montel lemma

Let (fm)m∈N ⊆ F . We show that it has a subsequence which
converges uniformly on compact subsets of Ω.

Let E be a countable dense set of Ω.

For example, we take E to be the set of all points of Ω with rational
coordinates. We arrange the elements of E as w1,w2,w3,w4, . . ..

Since (fm (w1))m∈N is a bounded sequence by assumption on F , the
sequence (fm)m∈N has a subsequence (fm1)m∈N so that (fm1 (w1))m∈N
converges. Here, we have used the Bolzano–Weierstrass theorem.

Similarly, the sequence (fm1)m∈N has a subsequence (fm2)m∈N such
that (fm2 (w2))m∈N converges.

Proceeding recursively, we see that for i ∈ N there is a subsequence
(fmi )i∈N of (fm,i−1)i∈N such that (fmi (wi ))i∈N converges.

Here we write fm0 for fm.

Now the diagonal sequence (fmm)m∈N converges at all w ∈ E .

We show that (fmm)m∈N converges uniformly on Kn for any n ∈ N.
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The Riemann mapping theorem

Montel lemma

Then the diagonal sequence (fmm)m∈N converges uniformly on all
compact subsets K of Ω since K ⊆ Kn for some n ∈ N.
For n ∈ N and δ = δ(n) as above, we have

Kn ⊆
⋃
z∈Kn

D(z , δ).

Then
Kn ⊆

⋃
z∈E∩Kn

D(z , δ),

since E ∩ Kn is dense in Kn. Since Kn is compact, we observe that
the above open cover admits a finite subcover.

Thus there exist z1, z2, . . . , zp ∈ E ∩ Kn such that

Kn ⊆ D (z1, δ) ∪ D (z2, δ) ∪ · · · ∪ D (zp, δ) .
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The Riemann mapping theorem

Montel lemma

For ε > 0, there exists M depending only on ε and Kn such that

|frr (zi )− fss (zi )| ≤ ε

for r ≥ M, s ≥ M and 1 ≤ i ≤ p.

Let z ∈ Kn. Then z ∈ D (zi , δ) for some i with 1 ≤ i ≤ p.

Further, by the equicontinuity, we have

|frr (z)− fss(z)|
≤ |frr (z)− frr (zi )|+ |frr (zi )− fss (zi )|+ |fss(z)− fss (zi )|
< ε+ ε+ ε = 3ε

wherever r ≥ M, s ≥ M. Thus (fmm)m∈N converges uniformly on Kn.

Since every compact subset of Ω is contained in Kn for some n ∈ N,
we conclude that (fmm)m∈N converges uniformly on compact subsets
of Ω. This completes the proof of Montels’ lemma.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Proof: Assume that Ω ̸= C is a simply connected region. Let z0 ∈ Ω and
define

Σ = {ψ ∈ H(Ω) : ψ is one-to-one on Ω and ψ(Ω) ⊆ D}.

Our aim is to prove that Σ contains an element which is onto.

In fact, we will show that for ψ ∈ Σ, which is not onto D, there exists
ψ1 ∈ Σ such that ∣∣ψ′

1 (z0)
∣∣ > ∣∣ψ′ (z0)

∣∣ . (*)

Next we consider

η = sup
{∣∣ψ′ (z0)

∣∣ : ψ ∈ Σ
}
, (**)

and we will prove that the supremum is assumed for some ψ0 ∈ Σ.

Then it will be clear that ψ0 has to be an onto function. Otherwise, if
ψ0 is not onto D then there is ψ1 ∈ Σ satisfying (*). Hence, by (**),
we have η = |ψ′

0 (z0)| < |ψ′
1 (z0)| ≤ η, which is impossible.

The proof will consist of a few steps.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Step 1. We first prove that Σ ̸= ∅.
From Lecture 8 we know that if Ω ⊆ C is a simply connected region,
then for every closed curve Γ in Ω we have

IndΓ(α) = 0 whenever α ̸∈ Ω.

From Lecture 9, we know that the latter is equivalent to the
statement that for every f ∈ H(Ω) satisfying 1/f ∈ H(Ω) there exists
g ∈ H(Ω) such that f = g2.

Since Ω ̸= C, let w0 ∈ C such that w0 /∈ Ω. Consider

f (z) = z − w0.

We observe that f ∈ H(Ω) and f has no zero in Ω since w0 /∈ Ω.

Thus 1/f ∈ H(Ω). Therefore, there exists g ∈ H(Ω) such that

f (z) = g2(z) for z ∈ Ω.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Let a ∈ Ω. By open mapping theorem, we observe that g(Ω) is open
containing g(a).

Therefore there exists r > 0 such that

D(g(a), r) ⊆ g(Ω).

Now we show that D(−g(a), r) ∩ g(Ω) = ∅. Suppose there exists
z1 ∈ Ω such that g (z1) ∈ D(−g(a), r). Thus

|g (z1) + g(a)| < r ⇐⇒ |−g (z1)− g(a)| < r

Then
−g (z1) ∈ D(g(a), r) ⊆ g(Ω).

Therefore there exists z2 ∈ Ω such that −g (z1) = g (z2).

By squaring both sides of this equation, we derive that

z1 − w0 = f (z1) = (−g (z1))
2 = (g (z2))

2 = f (z2) = z2 − w0

implying z1 = z2. Thus g (z1) = 0, and consequently z1 − w0 = 0.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

This is a contradiction since z1 ∈ Ω and w0 /∈ Ω. Hence,

D(−g(a), r) ∩ g(Ω) = ∅.

Now we consider

ψ(z) =
r

g(z) + g(a)
for z ∈ Ω.

We observe that ψ(z) ∈ H(Ω) and |ψ(z)| ≤ 1 for z ∈ Ω, since

|g(z) + g(a)| ≥ r for z ∈ Ω.

In fact |ψ(z)| < 1 for z ∈ Ω by the maximum modulus principle.

Further ψ ∈ H(Ω) and is one-to-one on Ω, since ψ (z ′) = ψ (z ′′)
implies g2 (z ′) = g2 (z ′′), and therefore z ′ = z ′′.

Hence ψ ∈ Σ as desired.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Step 2. We will show that if ψ ∈ Σ and ψ(Ω) is a proper subset of D,
then there exists ψ1 ∈ Σ satisfying∣∣ψ′

1 (z0)
∣∣ > ∣∣ψ′ (z0)

∣∣ . (*)

Fix ψ ∈ Σ. Since ψ(Ω) is a proper subset of D, there exists α ∈ D
such that α /∈ ψ(Ω). We consider ϕα ◦ ψ, where

ϕα(w) =
w − α

1− αw
.

We recall that ϕα is an automorphism of D. For z ∈ Ω, observe that

ϕα ◦ ψ(z) = ϕα(ψ(z)) =
ψ(z)− α

1− αψ(z)
= 0

only when ψ(z) = α which is not the case since α /∈ ψ(Ω).
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Therefore ϕα ◦ ψ ∈ H(Ω) has no zero in Ω. Then, there exists
g ∈ H(Ω) such that

g2(z) = ϕα ◦ ψ(z) for z ∈ Ω.

By writing s(w) = w2 for w ∈ D, we rewrite the last equation as

s ◦ g = ϕα ◦ ψ in Ω.

If g (z1) = g (z2) for z1, z2 ∈ Ω, then ψ (z1) = ψ (z2), since ϕα is
one-to-one. Therefore, g is one-to-one, and g ∈ Σ.

Let
ψ1 = ϕβ ◦ g with g (z0) = β.

Observe that

ψ1 (z0) = ϕβ (g (z0)) = ϕβ(β) = 0.

(MATH 503, FALL 2025) Lecture 14 October 23, 2025 22 / 27



The Riemann mapping theorem

Proof of the Riemann mapping theorem

Hence,

ψ = ϕ−α ◦ s ◦ g = ϕ−α ◦ s ◦ ϕ−β ◦ ψ1 = F ◦ ψ1,

where
F = ϕ−α ◦ s ◦ ϕ−β.

By the chain rule and ψ1 (z0) = 0, we have

ψ′ (z0) = F ′ (ψ1 (z0))ψ
′
1 (z0) = F ′(0)ψ′

1 (z0) .

Inequality (*) will follow if we show that |F ′(0)| < 1, since∣∣ψ′ (z0)
∣∣ = ∣∣F ′(0)

∣∣ ∣∣ψ′
1 (z0)

∣∣ .
Recall the following lemma from the previous lecture.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Lemma

Let f be non-constant and analytic in D, and satisfy |f (z)| < 1 for z ∈ D.
Let w ∈ D with f (w) = a. Then

∣∣f ′(w)
∣∣ ≤ 1− |a|2

1− |w |2
.

Moreover equality occurs only when

f = ϕ−a ◦ (cϕw ) in D,

for some constant c whose absolute value is 1.

We observe that F (D) ⊆ D, and let F (0) = a. Then by the lemma
with w = 0, we have ∣∣F ′(0)

∣∣ ≤ 1− |a|2.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

Suppose that |F ′(0)| = 1. Then a = 0 and by the second part of the
previous lemma, we conclude with w = 0 that F (z) = λz for z ∈ D
where λ is a constant of absolute value 1.

This is not possible since F is not one-to-one as s(w) = w2 is not
one-to-one. Hence |F ′(0)| < 1 and the proof of (*) is complete.

Step 3. In this step we finish the proof. In Step 1, we have proved that
Σ ̸= ∅, hence we can define

η = sup
{∣∣ψ′ (z0)

∣∣ : ψ ∈ Σ
}
, (**)

By the inverse mapping theorem we have |ψ′ (z0)| > 0 for every
ψ ∈ Σ. Hence η > 0.

There exists a sequence (ψn)n∈N ⊆ Σ such that

lim
n→∞

∣∣ψ′
n (z0)

∣∣ = η > 0.
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The Riemann mapping theorem

Proof of the Riemann mapping theorem

We observe that |ψ(z)| < 1 for ψ ∈ Σ.

In particular, Σ is uniformly bounded on compact subsets of Ω.

Therefore Σ is a normal family by Montel’s lemma.

Hence the above sequence (ψn)n∈N ⊆ Σ has a subsequence which we
denote again by (ψn)n∈N ⊆ Σ, and which converges uniformly on
compact subsets of Ω satisfying

lim
n→∞

∣∣ψ′
n (z0)

∣∣ = η > 0.

Let
lim
n→∞

ψn(z) = h(z) for z ∈ Ω

converge uniformly on compact subsets of Ω. Then h ∈ H(Ω).

Further
lim
n→∞

ψ′
n(z) = h′(z) for z ∈ Ω

converges uniformly on compact subsets Ω.
(MATH 503, FALL 2025) Lecture 14 October 23, 2025 26 / 27



The Riemann mapping theorem

Proof of the Riemann mapping theorem

Therefore
lim
n→∞

∣∣ψ′
n (z0)

∣∣ = ∣∣h′ (z0)∣∣ ,
which implies ∣∣h′ (z0)∣∣ = η > 0.

Hence h cannot be constant, otherwise we would have η = 0.

Therefore |h(z)| < 1 for z ∈ Ω by the maximum modulus principle, in
other words

h(Ω) ⊆ D.

By the Hurwitz lemma h must be also one-to-one, thus h ∈ Σ and is
the maximizer for (**) as desired.

Hence h(Ω) = D as it was explained by combining (*) and (**) at
the beginning of the proof.

This completes the proof of the Riemann mapping theorem.
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