

Lecture 14

The Riemann mapping theorem

MATH 503, FALL 2025

October 23, 2025

The Riemann mapping theorem

- $D = \{z \in \mathbb{C} : |z| < 1\}$ is the open unit disc centered at the origin.

Theorem

Let $\Omega \neq \mathbb{C}$ be a simply connected region. Then Ω is conformally equivalent to D . Moreover, the assumption $\Omega \neq \mathbb{C}$ is necessary.

Remark

- In view of the Liouville theorem, the assumption $\Omega \neq \mathbb{C}$ is necessary. Indeed, if $f : \mathbb{C} \rightarrow D$ is a conformal map, then f is bounded, since $|f(z)| < 1$ for all $z \in \mathbb{C}$. Hence, by the Liouville theorem f must be constant, but then it cannot be injective.
- However, \mathbb{C} and D are homeomorphic. The mapping

$$\mathbb{C} \ni z \mapsto \frac{z}{1 + |z|} \in D$$

is the desired homeomorphism.

Simple topological lemma

Lemma

Let Ω be an open subset of \mathbb{C} . Then there exists a sequence $(K_n)_{n \in \mathbb{N}} \subseteq \Omega$ of compact sets such that

$$\Omega = \bigcup_{n=1}^{\infty} K_n \quad \text{and} \quad K_n \subseteq \text{int } K_{n+1} \quad \text{for } n \in \mathbb{N},$$

where $\text{int } K_{n+1}$ denotes the interior of K_{n+1} . Further for a compact set $K \subseteq \Omega$, we have $K \subseteq K_n$ for some $n \in \mathbb{N}$.

Proof: For $n \in \mathbb{N}$, let

$$K_n = \overline{D}(0, n) \cap \{z \in \Omega : d(z, \mathbb{C} \setminus \Omega) \geq 1/n\}.$$

- It is clear that $K_n \subseteq \Omega$ and it is bounded.
- Each K_n is closed and consequently compact.
- Moreover, $K_n \subseteq K_{n+1}$ for $n \in \mathbb{N}$.

Simple topological lemma

- We prove that $K_n \subseteq \text{int } K_{n+1}$. Taking $r = \frac{1}{n} - \frac{1}{n+1}$, it suffices to show

$$D(z, r) \subseteq K_{n+1} \quad \text{for } z \in K_n.$$

- Let $z \in K_n$ and $\zeta \in D(z, r)$. Then

$$|\zeta - z| < \frac{1}{n} - \frac{1}{n+1} \quad \text{and} \quad |z - a| \geq \frac{1}{n} \quad \text{for } a \notin \Omega.$$

- Therefore for $a \notin \Omega$, we have

$$|\zeta - a| \geq |z - a| - |\zeta - z| \geq \frac{1}{n} - \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{n+1}.$$

- This implies $\zeta \in K_{n+1}$, since $|\zeta| < |z| + \frac{1}{n} \leq n + \frac{1}{n} \leq n + 1$.
- Hence $K_n \subseteq \text{int } K_{n+1}$ for $n \in \mathbb{N}$ and $K_1 \subseteq K_2 \subseteq K_3 \subseteq \dots$
- We observe that $\bigcup_{n=1}^{\infty} K_n \subseteq \Omega$, since each $K_n \subseteq \Omega$.
- For the reverse inclusion, let $z \in \Omega$ and $M \in \mathbb{N}$ be so that $|z| \leq M$. Since Ω is open, there exists $\rho > 0$ such that $D(z, \rho) \subseteq \Omega$. Let $N \in \mathbb{N}$ be the least integer greater than or equal to $\max(M, \rho^{-1})$.

Simple topological lemma

- Then $|z| \leq M \leq N$ and for $a \notin \Omega$ we have $|z - a| \geq \rho \geq \frac{1}{N}$. Therefore $z \in K_N$ and thus $\Omega \subseteq \bigcup_{n=1}^{\infty} K_n$, hence $\Omega = \bigcup_{n=1}^{\infty} K_n$.
- We also have a stronger result $\Omega = \bigcup_{n=1}^{\infty} \text{int } K_n$.
- Indeed, since $K_n \subseteq \text{int } K_{n+1}$, we have

$$\Omega \subseteq \bigcup_{n=1}^{\infty} K_n \subseteq \bigcup_{n=2}^{\infty} \text{int } K_n \subseteq \bigcup_{n=1}^{\infty} \text{int } K_n \subseteq \Omega.$$

- Let K be a compact subset of Ω . Then

$$K \subseteq \bigcup_{n=1}^{\infty} \text{int } K_n$$

is an open cover of K . Therefore, $K \subseteq \bigcup_{n=1}^P \text{int } K_n$ for some $P \in \mathbb{N}$.

- Thus

$$K \subseteq K_1 \cup K_2 \cup \dots \cup K_P = K_P.$$

□

Hurwitz lemma

Lemma

Let $\Omega \subseteq \mathbb{C}$ be a region and $(f_n)_{n \in \mathbb{N}}$ be a sequence such that $f_n \in H(\Omega)$ converges uniformly on compact subsets of Ω . Assume that f_n is one-to-one for any $n \in \mathbb{N}$. Then the limit function $f = \lim_{n \rightarrow \infty} f_n$ is either constant or one-to-one on Ω .

Proof: Note that $f \in H(\Omega)$. (**Why?**)

- Assume that f is not one-to-one, then there exist $z_1, z_2 \in \Omega$ such that $z_1 \neq z_2$ with $f(z_1) = f(z_2)$.
- For $n \in \mathbb{N}$, we define $g_n \in H(\Omega)$, and $g \in H(\Omega)$ by setting

$$g_n(z) = f_n(z) - f_n(z_1), \quad \text{and} \quad g(z) = f(z) - f(z_1).$$

Then $g(z_2) = 0$ and also $g_n(z_2) \neq 0$, since f_n is one-to-one.

- Further, we may suppose that g is not constant in Ω otherwise f is constant in Ω and the assertion follows.

Hurwitz lemma

- Since the zeros of g are isolated, there is $r > 0$ so that $|z_1 - z_2| > r$ and $g(z) \neq 0$ whenever $z \in \Omega$ satisfies $0 < |z - z_2| \leq r$.
- Let γ be a circle centered at z_2 with radius r . Then there exists $\delta > 0$ such that $|g(z)| > \delta$ for $z \in \gamma^*$.
- By the uniform convergence there exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$, we have

$$|g_n(z) - g(z)| < \frac{\delta}{2} \quad \text{uniformly for any } z \in \gamma^*.$$

- Therefore for $z \in \gamma^*$, we have

$$|g_n(z)| \geq |g(z)| - |g_n(z) - g(z)| \geq \delta - \frac{\delta}{2} = \frac{\delta}{2}.$$

- Now we see that $\frac{1}{g_n(z)}$ converges uniformly to $\frac{1}{g(z)}$ on γ^* . Also $g'_n(z)$ converges uniformly to $g'(z)$ on γ^* .

Hurwitz lemma

- Hence

$$\lim_{n \rightarrow \infty} \frac{g'_n(z)}{g_n(z)} = \frac{g'(z)}{g(z)}$$

uniformly on γ^* .

- We observe that $\frac{g'_n(z)}{g_n(z)} \in H(\overline{D}(z_2, r))$. Now by the Cauchy theorem we obtain that

$$0 = \frac{1}{2\pi i} \int_{\gamma} \frac{g'_n(z)}{g_n(z)} dz \quad \text{for } n \in \mathbb{N}.$$

- Consequently, by the argument principle

$$0 = \lim_{n \rightarrow \infty} \frac{1}{2\pi i} \int_{\gamma} \frac{g'_n(z)}{g_n(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz = N_g \geq 1.$$

- This is a contradiction completing the proof of Hurwitz lemma. □

Normal families of analytic functions

Definition

- (i) Let $\Omega \subseteq \mathbb{C}$ be a region and \mathcal{F} be a family of analytic functions in Ω . Thus \mathcal{F} is a sub-family of $H(\Omega)$. Further \mathcal{F} is called a **normal family** if every sequence of elements of \mathcal{F} contains a subsequence which converges uniformly on compact subsets of Ω .
- (ii) \mathcal{F} is **uniformly bounded** on compact subsets of Ω if for every compact subset K of Ω there exists $M = M(K)$ such that

$$|f(z)| \leq M \quad \text{for } f \in \mathcal{F}, z \in K.$$

- (iii) The family \mathcal{F} is called **equicontinuous** on compact subsets of Ω if for $\varepsilon > 0$ and compact subset $K \subseteq \Omega$ there exists $\delta > 0$ depending only on ε and K such that $|f(z_1) - f(z_2)| < \varepsilon$ for $f \in \mathcal{F}$ and $z_1, z_2 \in K$ satisfying $|z_1 - z_2| < \delta$.

Montel lemma

Remark

- The limit of the subsequence in the above definition (i) belongs to $H(\Omega)$ but it **need not belong** to \mathcal{F} .

Lemma

Let \mathcal{F} be a family of $H(\Omega)$ with $\Omega \subseteq \mathbb{C}$ region. Assume that \mathcal{F} is uniformly bounded on compact subsets of Ω . Then \mathcal{F} is a normal family.

Proof: We show that \mathcal{F} is equicontinuous on compact subsets of Ω .

- By the topological lemma, there exists a sequence of compact sets $(K_n)_{n \in \mathbb{N}} \subseteq \Omega$ such that $K_n \subseteq \text{int } K_{n+1}$ for $n \in \mathbb{N}$ that satisfies

$$\Omega = \bigcup_{n=1}^{\infty} K_n.$$

Also, every compact subset of Ω is contained in K_n for some $n \in \mathbb{N}$.

Montel lemma

- Let $n \in \mathbb{N}$. Since K_n is compact, $(\text{int } K_{n+1})^c$ is closed and

$$K_n \cap (\text{int } K_{n+1})^c = \emptyset,$$

- We can also find $\delta_n > 0$ such that

$$|z_1 - z_2| > 2\delta_n \quad \text{for} \quad z_1 \in K_n, \quad z_2 \notin \text{int } K_{n+1}.$$

- Thus

$$\overline{D}(z, 2\delta_n) \subseteq \text{int } K_{n+1} \subseteq K_{n+1} \quad \text{for} \quad z \in K_n.$$

- Let $z' \in K_n$, and $z'' \in K_n$ with $|z' - z''| < \delta_n$.
- Let γ be a circle centered at z' and with radius $2\delta_n$.
- Thus z'' lies inside the circle γ and $\gamma^* \subseteq K_{n+1}$.

Montel lemma

- Let $f \in \mathcal{F}$, then by the Cauchy integral formula

$$\begin{aligned} f(z') - f(z'') &= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left(\frac{1}{\zeta - z'} - \frac{1}{\zeta - z''} \right) d\zeta \\ &= \frac{z' - z''}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z')(\zeta - z'')} d\zeta. \end{aligned}$$

- If $|z' - z''| < \delta_n$, we observe that

$$|\zeta - z'| = 2\delta_n \quad \text{and} \quad |\zeta - z''| = |\zeta - z' + z' - z''| > 2\delta_n - \delta_n = \delta_n.$$

- Since \mathcal{F} is uniformly bounded on compact subsets of Ω , there exists a constant $M(K_{n+1})$ depending only on K_{n+1} such that

$$|f(z') - f(z'')| < \frac{|z' - z''|}{2\pi} \frac{4\pi\delta_n}{2\delta_n^2} M(K_{n+1}) = \frac{M(K_{n+1})}{\delta_n} |z' - z''|.$$

- The above inequality holds for all $f \in \mathcal{F}$ and $z', z'' \in K_n$ whenever $|z' - z''| < \delta_n$.

Montel lemma

- Let $\varepsilon > 0$ and set

$$\delta = \delta(n) = \frac{\varepsilon \delta_n}{\varepsilon + M(K_{n+1})} < \delta_n.$$

- Then for $|z' - z''| < \delta$, we have

$$\frac{M(K_{n+1})}{\delta_n} |z' - z''| < \frac{M(K_{n+1})}{\delta_n} \delta = \frac{\varepsilon M(K_{n+1})}{\varepsilon + M(K_{n+1})} < \varepsilon.$$

- Therefore we have

$$|f(z') - f(z'')| < \varepsilon \tag{*}$$

for $f \in \mathcal{F}$ and $z', z'' \in K_n$ and $|z' - z''| < \delta$.

- Thus the family \mathcal{F} is equicontinuous on compact subsets of Ω , since every compact subset K of Ω is contained in K_n for some $n \in \mathbb{N}$, and therefore $(*)$ holds for all $f \in \mathcal{F}$ and $z', z'' \in K$ so that $|z' - z''| < \delta$.

Montel lemma

- Let $(f_m)_{m \in \mathbb{N}} \subseteq \mathcal{F}$. We show that it has a subsequence which converges uniformly on compact subsets of Ω .
- Let E be a countable dense set of Ω .
- For example, we take E to be the set of all points of Ω with rational coordinates. We arrange the elements of E as $w_1, w_2, w_3, w_4, \dots$
- Since $(f_m(w_1))_{m \in \mathbb{N}}$ is a bounded sequence by assumption on \mathcal{F} , the sequence $(f_m)_{m \in \mathbb{N}}$ has a subsequence $(f_{m1})_{m \in \mathbb{N}}$ so that $(f_{m1}(w_1))_{m \in \mathbb{N}}$ converges. Here, we have used the Bolzano–Weierstrass theorem.
- Similarly, the sequence $(f_{m1})_{m \in \mathbb{N}}$ has a subsequence $(f_{m2})_{m \in \mathbb{N}}$ such that $(f_{m2}(w_2))_{m \in \mathbb{N}}$ converges.
- Proceeding recursively, we see that for $i \in \mathbb{N}$ there is a subsequence $(f_{mi})_{i \in \mathbb{N}}$ of $(f_{m,i-1})_{i \in \mathbb{N}}$ such that $(f_{mi}(w_i))_{i \in \mathbb{N}}$ converges.
- Here we write f_{m0} for f_m .
- Now the diagonal sequence $(f_{mm})_{m \in \mathbb{N}}$ converges at all $w \in E$.
- We show that $(f_{mm})_{m \in \mathbb{N}}$ converges uniformly on K_n for any $n \in \mathbb{N}$.

Montel lemma

- Then the diagonal sequence $(f_{mm})_{m \in \mathbb{N}}$ converges uniformly on all compact subsets K of Ω since $K \subseteq K_n$ for some $n \in \mathbb{N}$.
- For $n \in \mathbb{N}$ and $\delta = \delta(n)$ as above, we have

$$K_n \subseteq \bigcup_{z \in K_n} D(z, \delta).$$

- Then

$$K_n \subseteq \bigcup_{z \in E \cap K_n} D(z, \delta),$$

since $E \cap K_n$ is dense in K_n . Since K_n is compact, we observe that the above open cover admits a finite subcover.

- Thus there exist $z_1, z_2, \dots, z_p \in E \cap K_n$ such that

$$K_n \subseteq D(z_1, \delta) \cup D(z_2, \delta) \cup \dots \cup D(z_p, \delta).$$

Montel lemma

- For $\varepsilon > 0$, there exists M depending only on ε and K_n such that

$$|f_{rr}(z_i) - f_{ss}(z_i)| \leq \varepsilon$$

for $r \geq M, s \geq M$ and $1 \leq i \leq p$.

- Let $z \in K_n$. Then $z \in D(z_i, \delta)$ for some i with $1 \leq i \leq p$.
- Further, by the equicontinuity, we have

$$\begin{aligned} & |f_{rr}(z) - f_{ss}(z)| \\ & \leq |f_{rr}(z) - f_{rr}(z_i)| + |f_{rr}(z_i) - f_{ss}(z_i)| + |f_{ss}(z) - f_{ss}(z_i)| \\ & < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon \end{aligned}$$

wherever $r \geq M, s \geq M$. Thus $(f_{mm})_{m \in \mathbb{N}}$ converges uniformly on K_n .

- Since every compact subset of Ω is contained in K_n for some $n \in \mathbb{N}$, we conclude that $(f_{mm})_{m \in \mathbb{N}}$ converges uniformly on compact subsets of Ω . This completes the proof of Montel's lemma. □

Proof of the Riemann mapping theorem

Proof: Assume that $\Omega \neq \mathbb{C}$ is a simply connected region. Let $z_0 \in \Omega$ and define

$$\Sigma = \{\psi \in H(\Omega) : \psi \text{ is one-to-one on } \Omega \text{ and } \psi(\Omega) \subseteq D\}.$$

Our aim is to prove that Σ contains an element which is onto.

- In fact, we will show that for $\psi \in \Sigma$, which is not onto D , there exists $\psi_1 \in \Sigma$ such that

$$|\psi'_1(z_0)| > |\psi'(z_0)|. \quad (*)$$

- Next we consider

$$\eta = \sup \{ |\psi'(z_0)| : \psi \in \Sigma \}, \quad (**)$$

and we will prove that the supremum is assumed for some $\psi_0 \in \Sigma$.

- Then it will be clear that ψ_0 has to be an onto function. Otherwise, if ψ_0 is not onto D then there is $\psi_1 \in \Sigma$ satisfying (*). Hence, by (**), we have $\eta = |\psi'_0(z_0)| < |\psi'_1(z_0)| \leq \eta$, which is impossible.

The proof will consist of a few steps.

Proof of the Riemann mapping theorem

Step 1. We first prove that $\Sigma \neq \emptyset$.

- From Lecture 8 we know that if $\Omega \subseteq \mathbb{C}$ is a simply connected region, then for every closed curve Γ in Ω we have

$$\text{Ind}_\Gamma(\alpha) = 0 \quad \text{whenever} \quad \alpha \notin \Omega.$$

- From Lecture 9, we know that the latter is equivalent to the statement that for every $f \in H(\Omega)$ satisfying $1/f \in H(\Omega)$ there exists $g \in H(\Omega)$ such that $f = g^2$.
- Since $\Omega \neq \mathbb{C}$, let $w_0 \in \mathbb{C}$ such that $w_0 \notin \Omega$. Consider

$$f(z) = z - w_0.$$

- We observe that $f \in H(\Omega)$ and f has no zero in Ω since $w_0 \notin \Omega$.
- Thus $1/f \in H(\Omega)$. Therefore, there exists $g \in H(\Omega)$ such that

$$f(z) = g^2(z) \quad \text{for} \quad z \in \Omega.$$

Proof of the Riemann mapping theorem

- Let $a \in \Omega$. By open mapping theorem, we observe that $g(\Omega)$ is open containing $g(a)$.
- Therefore there exists $r > 0$ such that

$$D(g(a), r) \subseteq g(\Omega).$$

- Now we show that $D(-g(a), r) \cap g(\Omega) = \emptyset$. Suppose there exists $z_1 \in \Omega$ such that $g(z_1) \in D(-g(a), r)$. Thus

$$|g(z_1) + g(a)| < r \iff |-g(z_1) - g(a)| < r$$

- Then

$$-g(z_1) \in D(g(a), r) \subseteq g(\Omega).$$

- Therefore there exists $z_2 \in \Omega$ such that $-g(z_1) = g(z_2)$.
- By squaring both sides of this equation, we derive that

$$z_1 - w_0 = f(z_1) = (-g(z_1))^2 = (g(z_2))^2 = f(z_2) = z_2 - w_0$$

implying $z_1 = z_2$. Thus $g(z_1) = 0$, and consequently $z_1 - w_0 = 0$.

Proof of the Riemann mapping theorem

- This is a contradiction since $z_1 \in \Omega$ and $w_0 \notin \Omega$. Hence,

$$D(-g(a), r) \cap g(\Omega) = \emptyset.$$

- Now we consider

$$\psi(z) = \frac{r}{g(z) + g(a)} \quad \text{for } z \in \Omega.$$

- We observe that $\psi(z) \in H(\Omega)$ and $|\psi(z)| \leq 1$ for $z \in \Omega$, since

$$|g(z) + g(a)| \geq r \quad \text{for } z \in \Omega.$$

- In fact $|\psi(z)| < 1$ for $z \in \Omega$ by the maximum modulus principle.
- Further $\psi \in H(\Omega)$ and is one-to-one on Ω , since $\psi(z') = \psi(z'')$ implies $g^2(z') = g^2(z'')$, and therefore $z' = z''$.
- Hence $\psi \in \Sigma$ as desired.

Proof of the Riemann mapping theorem

Step 2. We will show that if $\psi \in \Sigma$ and $\psi(\Omega)$ is a proper subset of D , then there exists $\psi_1 \in \Sigma$ satisfying

$$|\psi'_1(z_0)| > |\psi'(z_0)|. \quad (*)$$

- Fix $\psi \in \Sigma$. Since $\psi(\Omega)$ is a proper subset of D , there exists $\alpha \in D$ such that $\alpha \notin \psi(\Omega)$. We consider $\phi_\alpha \circ \psi$, where

$$\phi_\alpha(w) = \frac{w - \alpha}{1 - \bar{\alpha}w}.$$

- We recall that ϕ_α is an automorphism of D . For $z \in \Omega$, observe that

$$\phi_\alpha \circ \psi(z) = \phi_\alpha(\psi(z)) = \frac{\psi(z) - \alpha}{1 - \bar{\alpha}\psi(z)} = 0$$

only when $\psi(z) = \alpha$ which is not the case since $\alpha \notin \psi(\Omega)$.

Proof of the Riemann mapping theorem

- Therefore $\phi_\alpha \circ \psi \in H(\Omega)$ has no zero in Ω . Then, there exists $g \in H(\Omega)$ such that

$$g^2(z) = \phi_\alpha \circ \psi(z) \quad \text{for } z \in \Omega.$$

- By writing $s(w) = w^2$ for $w \in D$, we rewrite the last equation as

$$s \circ g = \phi_\alpha \circ \psi \quad \text{in } \Omega.$$

- If $g(z_1) = g(z_2)$ for $z_1, z_2 \in \Omega$, then $\psi(z_1) = \psi(z_2)$, since ϕ_α is one-to-one. Therefore, g is one-to-one, and $g \in \Sigma$.

- Let

$$\psi_1 = \phi_\beta \circ g \quad \text{with} \quad g(z_0) = \beta.$$

- Observe that

$$\psi_1(z_0) = \phi_\beta(g(z_0)) = \phi_\beta(\beta) = 0.$$

Proof of the Riemann mapping theorem

- Hence,

$$\psi = \phi_{-\alpha} \circ s \circ g = \phi_{-\alpha} \circ s \circ \phi_{-\beta} \circ \psi_1 = F \circ \psi_1,$$

where

$$F = \phi_{-\alpha} \circ s \circ \phi_{-\beta}.$$

- By the chain rule and $\psi_1(z_0) = 0$, we have

$$\psi'(z_0) = F'(\psi_1(z_0)) \psi_1'(z_0) = F'(0) \psi_1'(z_0).$$

- Inequality (*) will follow if we show that $|F'(0)| < 1$, since

$$|\psi'(z_0)| = |F'(0)| |\psi_1'(z_0)|.$$

- Recall the following lemma from the previous lecture.

Proof of the Riemann mapping theorem

Lemma

Let f be non-constant and analytic in D , and satisfy $|f(z)| < 1$ for $z \in D$. Let $w \in D$ with $f(w) = a$. Then

$$|f'(w)| \leq \frac{1 - |a|^2}{1 - |w|^2}.$$

Moreover equality occurs only when

$$f = \phi_{-a} \circ (c\phi_w) \text{ in } D,$$

for some constant c whose absolute value is 1.

- We observe that $F(D) \subseteq D$, and let $F(0) = a$. Then by the lemma with $w = 0$, we have

$$|F'(0)| \leq 1 - |a|^2.$$

Proof of the Riemann mapping theorem

- Suppose that $|F'(0)| = 1$. Then $a = 0$ and by the second part of the previous lemma, we conclude with $w = 0$ that $F(z) = \lambda z$ for $z \in D$ where λ is a constant of absolute value 1.
- This is not possible since F is not one-to-one as $s(w) = w^2$ is not one-to-one. Hence $|F'(0)| < 1$ and the proof of (*) is complete.

Step 3. In this step we finish the proof. In Step 1, we have proved that $\Sigma \neq \emptyset$, hence we can define

$$\eta = \sup \{ |\psi'(z_0)| : \psi \in \Sigma \}, \quad (**)$$

- By the inverse mapping theorem we have $|\psi'(z_0)| > 0$ for every $\psi \in \Sigma$. Hence $\eta > 0$.
- There exists a sequence $(\psi_n)_{n \in \mathbb{N}} \subseteq \Sigma$ such that

$$\lim_{n \rightarrow \infty} |\psi'_n(z_0)| = \eta > 0.$$

Proof of the Riemann mapping theorem

- We observe that $|\psi(z)| < 1$ for $\psi \in \Sigma$.
- In particular, Σ is uniformly bounded on compact subsets of Ω .
- Therefore Σ is a normal family by Montel's lemma.
- Hence the above sequence $(\psi_n)_{n \in \mathbb{N}} \subseteq \Sigma$ has a subsequence which we denote again by $(\psi_n)_{n \in \mathbb{N}} \subseteq \Sigma$, and which converges uniformly on compact subsets of Ω satisfying

$$\lim_{n \rightarrow \infty} |\psi'_n(z_0)| = \eta > 0.$$

- Let

$$\lim_{n \rightarrow \infty} \psi_n(z) = h(z) \quad \text{for } z \in \Omega$$

converge uniformly on compact subsets of Ω . Then $h \in H(\Omega)$.

- Further

$$\lim_{n \rightarrow \infty} \psi'_n(z) = h'(z) \quad \text{for } z \in \Omega$$

converges uniformly on compact subsets Ω .

Proof of the Riemann mapping theorem

- Therefore

$$\lim_{n \rightarrow \infty} |\psi'_n(z_0)| = |h'(z_0)|,$$

which implies

$$|h'(z_0)| = \eta > 0.$$

- Hence h cannot be constant, otherwise we would have $\eta = 0$.
- Therefore $|h(z)| < 1$ for $z \in \Omega$ by the maximum modulus principle, in other words

$$h(\Omega) \subseteq D.$$

- By the Hurwitz lemma h must be also one-to-one, thus $h \in \Sigma$ and is the maximizer for $(**)$ as desired.
- Hence $h(\Omega) = D$ as it was explained by combining $(*)$ and $(**)$ at the beginning of the proof.
- This completes the proof of the Riemann mapping theorem. □