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The Riemann mapping theorem

The Riemann mapping theorem

D = {z ∈ C : |z | < 1} is the open unit disc centered at the origin.

Theorem

Let Ω ̸= C be a simply connected region. Then Ω is conformally
equivalent to D. Moreover, the assumption Ω ̸= C is necessary.

Remark

In view of the Liouville theorem, the assumption Ω ̸= C is necessary.
Indeed, if f : C → D is a conformal map, then f is bounded, since
|f (z)| < 1 for all z ∈ C. Hence, by the Liouville theorem f must be
constant, but then it cannot be injective.

However, C and D are homeomorphic. The mapping

C ∋ z 7→ z

1 + |z |
∈ D

is the desired homeomorphism.
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The Runge theorem

Rational functions

Definition

A rational function f is, by definition, a quotient of two polynomials
P and Q, i.e.

f = P/Q.

By the fundamental theorem of algebra every nonconstant polynomial
is a product of factors of degree 1.

Thus, we may assume that P and Q have no such factors in common.

Then f has a pole at each zero of Q (the pole of f has the same
order as the zero of Q).

If we subtract the corresponding principal parts, we obtain a rational
function whose only singularity is at ∞ and which is therefore a
polynomial.
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The Runge theorem

Rational functions

Definition

Every rational function
f = P/Q,

has thus a representation of the form

f (z) = A0(z) +
k∑

j=1

Aj

(
(z − aj)

−1
)
, (*)

where A0,A1, . . . ,Ak are polynomials, A1, . . . ,Ak have no constant
term, and a1, . . . , ak are the distinct zeros of Q;

Representation (*) is called the partial fractions decomposition of
the rational function f .
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The Runge theorem

Sets of oriented intervals

Let Φ be a finite collection of oriented intervals in the plane.

For each point p, let mI (p), [resp. mE (p)] be the number of members
of Φ that have initial point [resp. end point] p. If mI (p) = mE (p) for
every p, we shall say that Φ is balanced.

Construction

If Φ ̸= ∅ is balanced, the following construction can be carried out.

Pick γ1 = [a0, a1] ∈ Φ. Assume k ≥ 1, and assume that distinct
members γ1, . . . , γk of Φ have been chosen in such a way that
γi = [ai−1, ai ] for 1 ≤ i ≤ k . If ak = a0, stop. If ak ̸= a0, and if
precisely r of the intervals γ1, . . . , γk have ak as end point, then only
r − 1 of them have ak as initial point; since Φ is balanced, Φ contains
at least one other interval, say γk+1, whose initial point is ak .

Since Φ is finite, we must return to a0 eventually, say at the nth step.

Then join the intervals γ1, . . . , γn (in this order) to form a closed path.
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The Runge theorem

Sets of oriented intervals

The remaining members of Φ still form a balanced collection to which
the above construction can be applied.

It follows that the members of Φ can be so numbered that they form
finitely many closed paths. The sum of these paths is a cycle.

Hence, we conclude, if Φ = {γ1, . . . , γN} is a balanced collection of
oriented intervals, and if Γ = γ1+̇ · · · +̇γN , then Γ is a cycle.

Theorem

If K ⊂ C is a compact subset of an open set Ω ̸= ∅, then there is a cycle Γ
in Ω \ K such that the Cauchy formula

f (z) =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ (**)

holds for every f ∈ H(Ω) and for every z ∈ K.
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The Runge theorem

Cauchy theorem for compact sets

Proof: Since K is compact and Ω is open, there exists an η > 0 such that
the distance from any point of K to any point outside Ω is at least 2η.

Construct a grid of horizontal and vertical lines in the plane, such
that the distance between any two adjacent horizontal lines is η, and
likewise for the vertical lines.
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The Runge theorem

Cauchy theorem for compact sets

Let Q1, . . . ,Qm be those squares (closed 2-cells) of edge η which are
formed by this grid and which intersect K .

Then Qr ⊂ Ω for r = 1, . . . ,m.

If ar is the center of Qr and ar + b is one of its vertices, let γrk be the
oriented interval

γrk =
[
ar + ikb, ar + ik+1b

]
,

and define

∂Qr = γr1+̇γr2+̇γr3+̇γr4 for r = 1, . . . ,m.
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The Runge theorem

Cauchy theorem for compact sets

It is then easy to check that

Ind∂Qr (α) =

{
1 if α is in the interior of Qr ,

0 if α is not in Qr .

Let Σ be the collection of all γrk with 1 ≤ r ≤ m, and 1 ≤ k ≤ 4. It
is clear that Σ is balanced.

Remove those members of Σ whose opposites also belong to Σ.

Let Φ be the collection of the remaining members of Σ. Then Φ is
balanced. Let Γ be the cycle constructed from Φ.

If an edge E of some Qr intersects K , then the two squares in whose
boundaries E lies intersect K . Hence Σ contains two oriented
intervals which are each other’s opposites and whose range is E .
These intervals do not occur in Φ.

Thus Γ is a cycle in Ω \ K .
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The Runge theorem

Cauchy theorem for compact sets

The construction of Φ from Σ shows also that

IndΓ(α) =
m∑
r=1

Ind∂Qr (α),

if α is not in the boundary of any Qr . Hence, we obtain

IndΓ(α) =

{
1 if α is in the interior of some Qr ,

0 if α lies in no Qr .

If z ∈ K , then z /∈ Γ∗, and z is a limit point of the interior of some
Qr . Since the left side of IndΓ(α) is constant in each component of
the complement of Γ∗, we obtain

IndΓ(z) =

{
1 if z ∈ K ,

0 if z /∈ Ω.

Now (**) follows from the global Cauchy theorem.
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The Runge theorem

Runge’s theorem

Theorem

Suppose K ⊂ C is a compact set and (αj)j∈N is a set which contains one
point in each component of C∞ \ K. If Ω is open, and Ω ⊃ K, and
f ∈ H(Ω), and ε > 0, there exists a rational function R, all of whose poles
lie in the prescribed set (αj)j∈N, such that

|f (z)− R(z)| < ε

for every z ∈ K.

Remark

Note that C∞ \ K has at most countably many components.

Note also that the preassigned point in the unbounded component of
C∞ \ K may very well be ∞; in fact, this happens to be the most
interesting choice.

(MATH 503, FALL 2025) Lecture 15 October 27, 2025 11 / 30



The Runge theorem

Runge’s theorem

Proof: We consider the Banach space C (K ) whose members are the
continuous complex functions on K , with the supremum norm. Let M be
the linear subspace of C (K ) which consists of the restrictions to K of
those rational functions which have all their poles in (αj)j∈N.

The theorem asserts that f is in the closure of M.

As a consequence of the Hahn–Banach theorem, this is equivalent to
saying that every bounded linear functional Λ on C (K ) which
vanishes on M also vanishes at f , i.e.

Λ(f ) = 0.

By the the Riesz representation theorem (it is covered in 502) there
exists a complex Borel measure µ on K such

Λ(f ) =

∫
K
f (x)dµ(x) for every f ∈ C (K ).
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The Runge theorem

Runge’s theorem

Therefore we have to prove the following assertion:

If µ is a complex Borel measure on K such that∫
K
Rdµ = 0 for every R ∈ M,

and if f ∈ H(Ω), then we also have∫
K
fdµ = 0.

So let us assume that µ is a complex Borel measure on K as above,
and define

h(z) =

∫
K

dµ(ζ)

ζ − z
for z ∈ C∞ \ K .

Then h ∈ H(C∞ \ K ). (Why?)
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The Runge theorem

Runge’s theorem

Let Vj be the component of C∞ \ K which contains αj , and suppose
D (αj ; r) ⊂ Vj . If αj ̸= ∞ and if z is fixed in D (αj ; r), then

1

ζ − z
=

1

ζ − αj

1

1− z−αj

ζ−αj

= lim
N→∞

N∑
n=0

(z − αj)
n

(ζ − αj)
n+1

uniformly for ζ ∈ K .

Now observe that

h(z) =

∫
K

dµ(ζ)

ζ − z
= lim

N→∞

N∑
n=0

∫
K

(z − αj)
n

(ζ − αj)
n+1

dµ(ζ) = 0,

since (z − αj)
n (ζ − αj)

−n−1 ∈ M, and
∫
K Rdµ = 0 for every R ∈ M.

Hence h(z) = 0 for all z ∈ D (αj ; r). This implies that h(z) = 0 for
all z ∈ Vj , by the uniqueness theorem.
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The Runge theorem

Runge’s theorem

If αj = ∞, and if z is fixed in D (∞; r), i.e. |z | > r , then

1

ζ − z
= −1

z

1

1− ζ
z

= − lim
N→∞

N∑
n=0

z−n−1ζn

uniformly for ζ ∈ K .

Hence, as before, we deduce that h(z) = 0 in D(∞; r), hence in Vj .

We have thus proved that

h(z) = 0 for z ∈ C∞ \ K .

Now choose a cycle Γ in Ω \ K , as in the previous theorem, then

f (z) =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ

holds for every z ∈ K .
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The Runge theorem

Runge’s theorem

An application of Fubini’s theorem (legitimate, since we are dealing
with Borel measures and continuous functions on compact spaces),
combined with h(z) = 0 for z ∈ C∞ \ K , gives∫

K
f (ζ)dµ(ζ) =

∫
K

[
1

2πi

∫
Γ

f (w)

w − ζ
dw

]
dµ(ζ).

=
1

2πi

∫
Γ
f (w)dw

∫
K

dµ(ζ)

w − ζ

= − 1

2πi

∫
Γ
f (w)h(w)dw = 0,

since h(w) = 0 on Γ∗ ⊂ Ω \ K ⊆ C∞ \ K .

Thus ∫
K
f (ζ)dµ(ζ)

holds for any f ∈ H(Ω), and the proof is complete.
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The Runge theorem

Runge’s theorem (approximation by polynomials)

The following special case is of particular interest.

Theorem

Suppose K ⊂ C is a compact set, C∞ \ K is connected, and f ∈ H(Ω),
where Ω is some open set containing K. Then there is a sequence (Pn)n∈N
of polynomials such that limn→∞ Pn(z) = f (z) uniformly on K.

Proof: Since C∞ \ K has now only one component, we need only one
point αj to apply the previous theorem, and we may take αj = ∞.
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The Runge theorem

Runge’s theorem

Remark

The preceding result is false for every compact K in the plane such
that C∞ \ K is not connected.

Namely, in that case C∞ \ K has a bounded component V . Choose
α ∈ V , set f (z) = (z − α)−1, and let m = max{|z − α| : z ∈ K}.
Suppose that P is a polynomial, such that |P(z)− f (z)| < 1/m for
all z ∈ K . Then

|(z − α)P(z)− 1| < 1 for z ∈ K (A)

In particular, (A) holds if z is in the boundary of V ; since the closure
of V is compact, the maximum modulus theorem shows that (A)
holds for every z ∈ V ; taking z = α, we obtain 1 < 1.

Hence the uniform approximation is not possible.
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The Runge theorem

Runge’s theorem

Recall the following lemma from the previous lecture:

Lemma

Let Ω be an open subset of C. Then there exists a sequence (Kn)n∈N ⊆ Ω
of compact sets such that

Ω =
∞⋃
n=1

Kn and Kn ⊆ intKn+1 for n ∈ N,

where intKn+1 denotes the interior of Kn+1. Further for a compact set
K ⊆ Ω, we have K ⊆ Kn for some n ∈ N.

Remark

From this lemma we can also deduce that every component of C∞ \ Kn

contains a component of C∞ \ Ω for n ∈ N.
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The Runge theorem

Runge’s theorem

This can be seen by recalling that for every n ∈ N, we defined

Kn = D(0, n) ∩ {z ∈ Ω : d(z ,C \ Ω) ≥ 1/n}.

Setting D(∞, n) = {z ∈ C : |z | > n}, we see

Vn = K c
n = D(∞, n) ∪

⋃
a ̸∈Ω

D(a, 1/n).

Therefore, each disc from Vn intersects C∞ \ Ω.
Each disc from Vn is connected, hence each component of Vn

intersects C∞ \ Ω.
Since Vn ⊇ C∞ \ Ω, no component of C∞ \ Ω can intersect two
components of Vn.

Hence, every component of C∞ \ Kn contains a component of
C∞ \ Ω for n ∈ N.
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The Runge theorem

Runge’s theorem

Theorem

Let Ω ⊆ C be an open set, let A be a set which has one point in each
component of C∞ \ Ω, and assume that f ∈ H(Ω). Then:

There is a sequence (Rn)n∈N of rational functions, with poles only in
A, such that limn→∞ Rn = f uniformly on compact subsets of Ω.

In the special case in which C∞ \ Ω is connected, we may take
A = {∞} and thus obtain polynomials Pn such that limn→∞ Pn = f
uniformly on compact subsets of Ω.

Remark

Observe that C∞ \ Ω may have uncountably many components; for
instance, we may have C∞ \ Ω = {∞} ∪ C , where C is a Cantor set.
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The Runge theorem

Runge’s theorem

Proof: Choose a sequence of compact sets (Kn)n∈N in Ω, as in the
previous lemma. Fix n ∈ N, for the moment.

Since each component of C∞ \ Kn contains a component of C∞ \ Ω,
each component of C∞ \ Kn contains a point of A, so the previous
theorem gives us a rational function Rn with poles in A such that

|Rn(z)− f (z)| < 1

n
for all z ∈ Kn.

If now K ⊂ Ω is compact, there exists an N ∈ N such that K ⊂ Kn

for all n ≥ N. It follows from the previous inequality that

|Rn(z)− f (z)| < 1

n
for all z ∈ K , and n ≥ N,

which completes the proof.
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The Runge theorem

Mittag–Leffler theorem

Runge’s theorem will now be used to prove that meromorphic functions
can be constructed with arbitrarily preassigned poles.

Theorem

Suppose Ω ⊆ C is an open set, A ⊂ Ω, and A has no limit point in Ω, and
to each α ∈ A there are associated a positive integer m(α) and a rational
function

Pα(z) =

m(α)∑
j=1

cj ,α(z − α)−j .

Then there exists a meromorphic function f in Ω, whose principal part at
each α ∈ A is Pα and which has no other poles in Ω.

Proof: We choose a sequence (Kn)n∈N of compact sets in Ω, as in the
previous lemma. Then Kn ⊆ intKn+1 for all n ∈ N, and every compact
subset of Ω lies in some Kn, for some n ∈ N. Moreover, every component
of C∞ \ Kn contains a component of C∞ \ Ω.
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The Runge theorem

Mittag–Leffler theorem

Set A1 = A ∩ K1, and An = A ∩ (Kn \ Kn−1) for n ≥ 2.

Since An ⊂ Kn and A has no limit point in Ω (hence none in Kn),
each An is a finite set.

Set
Qn(z) =

∑
α∈An

Pα(z) for n ∈ N.

Since each An is finite, each Qn is a rational function. The poles of
Qn lie in Kn \ Kn−1, for n ≥ 2. In particular, Qn is holomorphic in an
open set containing Kn−1.

It now follows from Runge’s theorem that there exist rational
functions Rn, all of whose poles are in C∞ \ Ω, such that

|Rn(z)− Qn(z)| < 2−n for all z ∈ Kn−1.
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The Runge theorem

Mittag–Leffler theorem

We claim that

f (z) = Q1(z) +
∞∑
n=2

(Qn(z)− Rn(z)) for all z ∈ Ω

has the desired properties.
Fix N ∈ N. On KN , we have

f = Q1 +
N∑

n=2

(Qn − Rn) +
∞∑

N+1

(Qn − Rn) .

Since |Rn(z)− Qn(z)| < 2−n on Kn−1, then each term in the last
sum is less than 2−n on KN ; hence this last series converges uniformly
on KN , to a function which is holomorphic in the interior of KN .
The function f − (Q1 + · · ·+ QN) is holomorphic in the interior of
KN , since the poles of each Rn are outside Ω.
Thus f has precisely the prescribed principal parts in the interior of
KN , and hence in Ω, since N was arbitrary.
(MATH 503, FALL 2025) Lecture 15 October 27, 2025 25 / 30



The Runge theorem

Characterization of simply connectedness

Theorem

For a region Ω ⊆ C, each of the following conditions implies all the others.

(a) Ω is homeomorphic to the open unit disc D.

(b) Ω is simply connected.

(c) Indγ(α) = 0 for every closed path γ in Ω and for every α ∈ C∞ \ Ω.

(d) C∞ \ Ω is connected.

(e) Every f ∈ H(Ω) can be approximated by polynomials, uniformly on compact
subsets of Ω.

(f) For every f ∈ H(Ω) and every closed path γ in Ω we have
∫
γ
f (z)dz = 0.

(g) To every f ∈ H(Ω) corresponds an F ∈ H(Ω) such that F ′ = f .

(h) If f ∈ H(Ω) and 1/f ∈ H(Ω), there exists a g ∈ H(Ω) such that f = exp(g).

(i) If f ∈ H(Ω) and 1/f ∈ H(Ω), there exists a φ ∈ H(Ω) such that f = φ2.
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The Runge theorem

Characterization of simply connectedness

Proof (a) =⇒ (b). To say that Ω is homeomorphic to D means that
there is a continuous one-to-one mapping ψ : Ω → D whose inverse ψ−1 is
also continuous.

If γ is a closed curve in Ω, with parameter interval [0, 1], define

H(s, t) = ψ−1(tψ(γ(s)))

Then H : I 2 → Ω is continuous; H(s, 0) = ψ−1(0) is constant; and
H(s, 1) = γ(s); and H(0, t) = H(1, t) because γ(0) = γ(1).

Thus γ is null-homotopic in Ω, hence Ω is simply connected.

Proof (b) =⇒ (c). If (b) holds then every closed curve Γ in Ω is
null-homotopic, that is, there exists a continuous H : I 2 → Ω such that

H(s, 0) = Γ(s), H(s, 1) = γ(s), for all s ∈ I ,

H(0, t) = H(1, t) for all t ∈ I ,

where γ is a constant curve. Hence Indγ(α) = 0 whenever α ̸∈ Ω.
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The Runge theorem

Characterization of simply connectedness

Recall the following result:

Theorem

If Γ0 and Γ1 are Ω-homotopic closed paths in a region Ω ⊆ C, and if
α /∈ Ω, then

IndΓ1(α) = IndΓ0(α).

Invoking this result, we obtain that IndΓ(α) = Indγ(α) = 0 for α ̸∈ Ω
as desired completing the proof of implication from (b) to (c).

Proof (c) =⇒ (d). Assume (d) is false. Then C∞ \ Ω is a closed subset
of C∞ which is not connected. It follows that C∞ \ Ω is the union of two
nonempty disjoint closed sets H and K .

Let H be the one that contains ∞. Let W be the complement of H,
relative to the plane. Then W = Ω ∪ K . Since K is compact, Cauchy
theorem for compact sets (with f = 1) shows that there is a cycle Γ
in W \ K = Ω such that IndΓ(z) = 1 for z ∈ K .
Since K ̸= ∅, (c) fails, and we are done.
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The Runge theorem

Characterization of simply connectedness

Proof (d) =⇒ (e). This is part follows from Runge’s theorem.
Proof (e) =⇒ (f). Choose f ∈ H(Ω), let γ be a closed path in Ω, and
choose polynomials Pn which converge to f , uniformly on γ∗. Since∫
γ Pn(z)dz = 0 for all n ∈ N, we conclude that (f ) holds.

Proof (f) =⇒ (g). Assume (f ) holds, fix z0 ∈ Ω, and put

F (z) =

∫
Γ(z)

f (ζ)dζ for all z ∈ Ω,

where Γ(z) is any path in Ω from z0 to z .

This defines a function F in Ω. For if Γ1(z) is another path from z0
to z in Ω, then Γ followed by the opposite of Γ1 is a closed path in Ω,
the integral of f over this closed path is 0, so F is well-defined, i.e. F
is not affected if Γ(z) is replaced by Γ1(z).
We now verify that F ′ = f . Fix a ∈ Ω, then there exists an r > 0
such that D(a; r) ⊆ Ω. For z ∈ D(a; r) we can compute F (z) by
integrating f over a path Γ(a), followed by the interval [a, z ].
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The Runge theorem

Characterization of simply connectedness

Hence, for z ∈ D ′(a; r), we have

F (z)− F (a)

z − a
=

1

z − a

∫
[a,z]

f (ζ)dζ,

and the continuity of f at a implies now that F ′(a) = f (a).
Proof (g) =⇒ (h). If f ∈ H(Ω) and f has no zero in Ω, then
f ′/f ∈ H(Ω), and (g) implies that there exists a g ∈ H(Ω) so that
g ′ = f ′/f . We can add a constant to g , so that exp(g (z0)) = f (z0)
for some z0 ∈ Ω. Our choice of g shows that (fe−g )′ = 0 in Ω, hence
fe−g is constant (since Ω is connected), and f = eg .
Proof (h) =⇒ (i). By (h) we have f = eg . Set φ = exp

(
1
2g

)
.

Proof (i) =⇒ (a). If Ω is the whole plane, then Ω is homeomorphic
to D, take z 7→ z/(1 + |z |). If Ω is a proper subregion of the plane
which satisfies (i), then there actually exists a holomorphic
homeomorphism of Ω onto D by the Riemann mapping theorem.
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