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The Riemann mapping theorem

e D={zeC:|z| <1} is the open unit disc centered at the origin.

Theorem

Let Q # C be a simply connected region. Then S is conformally
equivalent to D. Moreover, the assumption Q # C is necessary.

Remark
@ In view of the Liouville theorem, the assumption Q # C is necessary.
Indeed, if f : C — D is a conformal map, then f is bounded, since
|f(z)| < 1 for all z € C. Hence, by the Liouville theorem f must be
constant, but then it cannot be injective.

@ However, C and D are homeomorphic. The mapping

Coz— eD

z

1+ |z|
is the desired homeomorphism.
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The Runge theorem

Rational functions

Definition
@ A rational function f is, by definition, a quotient of two polynomials
P and Q, i.e.

f="pP/Q.

@ By the fundamental theorem of algebra every nonconstant polynomial
is a product of factors of degree 1.

@ Thus, we may assume that P and @ have no such factors in common.

@ Then f has a pole at each zero of Q (the pole of f has the same
order as the zero of Q).

@ If we subtract the corresponding principal parts, we obtain a rational
function whose only singularity is at oo and which is therefore a
polynomial.
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The Runge theorem

Rational functions

Definition
@ Every rational function

f=P/Q,

has thus a representation of the form

f(2) +2A (z-a)7). (*)

where Ag, A1, ..., Ak are polynomials, A, ..., Ax have no constant
term, and ai, ..., ax are the distinct zeros of Q;

@ Representation (*) is called the partial fractions decomposition of
the rational function 7.
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The Runge theorem

Sets of oriented intervals

@ Let ® be a finite collection of oriented intervals in the plane.

@ For each point p, let m(p), [resp. me(p)] be the number of members
of ® that have initial point [resp. end point] p. If m;(p) = me(p) for
every p, we shall say that ¢ is balanced.

Construction
If ® £ () is balanced, the following construction can be carried out.

@ Pick y1 = [ag, a1] € ®. Assume k > 1, and assume that distinct

members v1,...,7x of ® have been chosen in such a way that
vi = [ai—1,ai] for 1 < i < k. If ax = ag, stop. If ax # ag, and if
precisely r of the intervals 71, ...,vx have ax as end point, then only

r — 1 of them have ay as initial point; since ® is balanced, ¢ contains
at least one other interval, say 7,11, whose initial point is ak.
@ Since ® is finite, we must return to ag eventually, say at the nth step.
@ Then join the intervals 71, ..., v, (in this order) to form a closed path.
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The Runge theorem

Sets of oriented intervals

@ The remaining members of ® still form a balanced collection to which
the above construction can be applied.

o |t follows that the members of ® can be so numbered that they form
finitely many closed paths. The sum of these paths is a cycle.

@ Hence, we conclude, if ® = {~1,...,yn} is a balanced collection of
oriented intervals, and if [ = ~1+- -+, then I is a cycle.
Theorem

If K C C is a compact subset of an open set Q) # (), then there is a cycle I
in Q\ K such that the Cauchy formula

- L [

_277'” rC—Z

d¢ (**)

holds for every f € H(2) and for every z € K.
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The Runge theorem

Cauchy theorem for compact sets

Proof: Since K is compact and Q is open, there exists an 17 > 0 such that
the distance from any point of K to any point outside 2 is at least 27.
@ Construct a grid of horizontal and vertical lines in the plane, such
that the distance between any two adjacent horizontal lines is 1, and
likewise for the vertical lines.
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The Runge theorem

Cauchy theorem for compact sets

o Let Q1,..., Qm be those squares (closed 2-cells) of edge n which are
formed by this grid and which intersect K.

@ Then Q, CQforr=1,...,m.
o If a, is the center of Q, and a, + b is one of its vertices, let v, be the
oriented interval

Yrk = |:ar + ikb; ar + ik+1b] 5
and define

0Q, = 'le"i”)/r2"i_'7r3"i_7r4 for r= L...,m.
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The Runge theorem

Cauchy theorem for compact sets

@ It is then easy to check that

1 if «is in the interior of @y,
0 ifaisnotin Q.

Indaq, (a) = {

@ Let > be the collection of all v, with 1 <r<m,and 1 < k <4, It
is clear that X is balanced.

@ Remove those members of ¥ whose opposites also belong to X.

o Let ® be the collection of the remaining members of .. Then ® is
balanced. Let I' be the cycle constructed from &.

o If an edge E of some @, intersects K, then the two squares in whose
boundaries E lies intersect K. Hence X contains two oriented
intervals which are each other's opposites and whose range is E.
These intervals do not occur in .

@ Thus I is a cycle in Q\ K.
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Cauchy theorem for compact sets

@ The construction of ® from X shows also that

Indr (@) =) " Indag, (),
r=1
if « is not in the boundary of any Q,. Hence, we obtain
1 if ais in the interior of some Q,,
Indr(a) = o
0 if o liesin no Q,.

o If z€ K, then z ¢ T*, and z is a limit point of the interior of some
Qr. Since the left side of Indr(«) is constant in each component of
the complement of I'*, we obtain

1 ifzeK,
Indr(z) = {o ifz¢0Q

e Now (**) follows from the global Cauchy theorem. O
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Runge's theorem

Theorem

Suppose K C C is a compact set and («)jen is a set which contains one
point in each component of Co, \ K. If Q is open, and Q D K, and

f € H(Q), and € > 0, there exists a rational function R, all of whose poles
lie in the prescribed set (c)jen, such that

If(z) — R(z)| <e

for every z € K.

Remark
@ Note that C \ K has at most countably many components.

@ Note also that the preassigned point in the unbounded component of

Cx \ K may very well be oo; in fact, this happens to be the most
interesting choice.
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The Runge theorem

Runge's theorem

Proof: We consider the Banach space C(K) whose members are the
continuous complex functions on K, with the supremum norm. Let M be
the linear subspace of C(K) which consists of the restrictions to K of
those rational functions which have all their poles in (a;j)jen.

@ The theorem asserts that f is in the closure of M.

@ As a consequence of the Hahn—Banach theorem, this is equivalent to
saying that every bounded linear functional A on C(K) which
vanishes on M also vanishes at f, i.e.

A(f) = 0.

@ By the the Riesz representation theorem (it is covered in 502) there
exists a complex Borel measure ;1 on K such

/\(f):/Kf(x)d,u(x) for every f € C(K).
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The Runge theorem

Runge's theorem

Therefore we have to prove the following assertion:

o If 1 is a complex Borel measure on K such that
/ Rdy=0 forevery ReM,
K
and if f € H(Q2), then we also have

/ fdu = 0.
K

@ So let us assume that p is a complex Borel measure on K as above,
and define

h(z) = /K Z’“‘_(CZ) for z€Co\K.

@ Then h € H(Cx \ K). (Why?)
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The Runge theorem

Runge's theorem

@ Let V; be the component of C \ K which contains «;, and suppose
D(aj;r) C V;. If aj # oo and if z is fixed in D (oj; r), then

11 1 A )"
C—Oéj

C—ajl- = ((— )

uniformly for ¢ € K.

@ Now observe that

i) = /K Zu— z N-mz/ - %3+1 dp(¢) =0,

since (z —a;)" (¢ — )"t € M, and [« Rdp =0 for every R € M.
@ Hence h(z) =0 for all z € D («j; r). This implies that h(z) = 0 for
all z € Vj}, by the uniqueness theorem.
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The Runge theorem

Runge's theorem
o If oj = o0, and if z is fixed in D (oc0;r), i.e. |z| > r, then

N
1 1 1
e — i o gim S e
(—z Zl—% N—o0 £

uniformly for ¢ € K.
@ Hence, as before, we deduce that h(z) =0 in D(o0; r), hence in V;.
@ We have thus proved that

h(z) =0 for ze€Cx\K.

@ Now choose a cycle ' in Q \ K, as in the previous theorem, then

f(z) = % /r Cf(f)zdg

holds for every z € K.
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The Runge theorem

Runge's theorem

@ An application of Fubini's theorem (legitimate, since we are dealing
with Borel measures and continuous functions on compact spaces),
combined with h(z) =0 for z € C, \ K, gives

| ©duo) = | [;T / mdw} dp(©).
_ 1 f(w)dw/ Q)
K

2w Jr

W_
1
=5 rf(w)h(w)dW—O,
since h(w) =0on * C Q\ K C Cqx \ K.

@ Thus
/ F(O)d(Q)
K

holds for any f € H(Q2), and the proof is complete. O
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The Runge theorem

Runge’s theorem (approximation by polynomials)

The following special case is of particular interest.

Theorem

Suppose K C C is a compact set, Co, \ K is connected, and f € H(Q),
where € is some open set containing K. Then there is a sequence (Pp)nen
of polynomials such that limp_,o Pn(z) = f(z) uniformly on K.

Proof: Since C \ K has now only one component, we need only one
point «; to apply the previous theorem, and we may take a; = oc.

(MATH 503, FALL 2025) Lecture 15 October 27, 2025 17 /30



Runge's theorem

Remark

@ The preceding result is false for every compact K in the plane such
that C \ K is not connected.

@ Namely, in that case Co, \ K has a bounded component V. Choose
a€V, set f(z)=(z—a)™ ! and let m=max{|z—al:z € K}.

@ Suppose that P is a polynomial, such that |P(z) — f(z)| < 1/m for
all z€ K. Then

(z—a)P(z)—1 <1 for zeK (A)

@ In particular, (A) holds if z is in the boundary of V; since the closure
of V is compact, the maximum modulus theorem shows that (A)
holds for every z € V; taking z = «, we obtain 1 < 1.

@ Hence the uniform approximation is not possible.
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The Runge theorem

Runge's theorem

Recall the following lemma from the previous lecture:

Lemma

Let Q be an open subset of C. Then there exists a sequence (Kp)neny C Q
of compact sets such that

oo
Q=|JKy and K,CintKy1 for neN,
n=1

where int K11 denotes the interior of K,y1. Further for a compact set
K C Q, we have K C K, for some n € N.

Remark

From this lemma we can also deduce that every component of C, \ K,
contains a component of Co, \ Q for n € N.
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Runge's theorem

@ This can be seen by recalling that for every n € N, we defined
K,=D(0,n)N{z€Q:d(z,C\Q)>1/n}.
e Setting D(oo0,n) = {z € C: |z| > n}, we see

V, = K = D(oo,n)U | ] D(a,1/n).
agQ
@ Therefore, each disc from V, intersects C \ Q.

@ Each disc from V,, is connected, hence each component of V,,
intersects Co \ Q.

@ Since V,, D Cx \ Q, no component of C, \ Q can intersect two
components of V,,.

@ Hence, every component of C \ K, contains a component of
Coo \ 2 for n € N.
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Runge's theorem

Theorem

Let Q C C be an open set, let A be a set which has one point in each
component of C, \ Q, and assume that f € H(Q2). Then:

@ There is a sequence (R,)nen of rational functions, with poles only in
A, such that lim,_, R, = f uniformly on compact subsets of €.

@ In the special case in which C, \ Q is connected, we may take

A = {00} and thus obtain polynomials P, such that lim,_ oo P, = f
uniformly on compact subsets of Q.

Remark

@ Observe that C, \ Q may have uncountably many components; for
instance, we may have Co, \ Q = {o0} U C, where C is a Cantor set.
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The Runge theorem

Runge's theorem

Proof: Choose a sequence of compact sets (K;,)nen in €2, as in the
previous lemma. Fix n € N, for the moment.

@ Since each component of C, \ K, contains a component of C, \ €,
each component of Co, \ K, contains a point of A, so the previous
theorem gives us a rational function R, with poles in A such that

Ro(2) = F(2)] < % forall  ze K,

o If now K C Q is compact, there exists an N € N such that K C K,
for all n > N. It follows from the previous inequality that

1
|R,,(z)—f(z)|<; forall ze K, and n> N,

which completes the proof. O
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Mittag—Leffler theorem

Runge's theorem will now be used to prove that meromorphic functions
can be constructed with arbitrarily preassigned poles.

Theorem

Suppose Q2 C C is an open set, A C €2, and A has no limit point in €, and
to each a € A there are associated a positive integer m(«) and a rational
function

m(c)
Po(2) =D Galz—a)™.
j=1

Then there exists a meromorphic function f in S, whose principal part at
each o € A is P, and which has no other poles in ).

Proof: We choose a sequence (Kj,)nen of compact sets in Q, as in the
previous lemma. Then K, C int K41 for all n € N, and every compact
subset of € lies in some K,,, for some n € N. Moreover, every component
of Co \ Ki contains a component of Cy \ Q.
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Mittag—Leffler theorem

e Set A1 =ANK;j, and A, = AN (K, \ Kp—1) for n > 2.

@ Since A, C K, and A has no limit point in Q (hence none in K,),
each A, is a finite set.

@ Set
Qn(z) = Z Py(z) for neN.

CveAn

@ Since each A, is finite, each @, is a rational function. The poles of
Qn lie in K, \ K,—1, for n > 2. In particular, Q, is holomorphic in an
open set containing K,_1.

@ It now follows from Runge's theorem that there exist rational
functions R,, all of whose poles are in C \ €, such that

|Rn(z) — Qn(z)] < 27" forall ze K,_1.
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Mittag—Leffler theorem

o We claim that
f(z) = Qu(2) + > (Qn(2) = Ra(2)) forall zeQ
n=2

has the desired properties.
@ Fix N € N. On Ky, we have

N o0
F=Q+> (Qn—Ra)+ > (Qn—Rn).
n=2 N-+1
e Since |Ry(z) — Qn(z)| < 27" on Kp_1, then each term in the last
sum is less than 27" on Ky; hence this last series converges uniformly
on Ky, to a function which is holomorphic in the interior of Ky.
@ The function f — (Q1 + - - - + Qu) is holomorphic in the interior of
Kp, since the poles of each R, are outside 2.
@ Thus f has precisely the prescribed principal parts in the interior of
Kp, and hence in €, since N was arbitrary. O
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The Runge theorem

Characterization of simply connectedness

Theorem
For a region Q2 C C, each of the following conditions implies all the others.

(a) Q is homeomorphic to the open unit disc D.
Q is simply connected.

(b)
(c) Indy(a) =0 for every closed path ~ in Q and for every o € Coo \ Q.
(d) Coo \ Q is connected.

(e)

Every f € H(QQ) can be approximated by polynomials, uniformly on compact
subsets of Q.

For every f € H(Q) and every closed path ~ in Q we have fv f(z)dz = 0.

Iff € H(Q) and 1/f € H(Q), there exists a g € H(QQ) such that f = exp(g).
If f € H(Q) and 1/f € H(Q), there exists a p € H(Q) such that f = .

)

(g) Toevery f € H(Q) corresponds an F € H(QQ) such that F' = f.
)
)
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The Runge theorem

Characterization of simply connectedness

Proof (a) = (b). To say that Q is homeomorphic to D means that
there is a continuous one-to-one mapping 1 : Q — D whose inverse 1)1 is
also continuous.

o If v is a closed curve in , with parameter interval [0, 1], define

H(s,t) = v~ (t(1(5)))
Then H : 1> — Q is continuous; H(s,0) = ¢~%(0) is constant; and
H(s,1) = 7(s); and H(0,t) = H(1, t) because v(0) = v(1).
@ Thus 7 is null-homotopic in 2, hence Q is simply connected.
Proof (b) = (c). If (b) holds then every closed curve I' in Q is

null-homotopic, that is, there exists a continuous H : /2> — Q such that
H(s,0) =T(s), H(s,1)=~(s), forall sel,
H(0,t) = H(1,t) forall tel,

where 7 is a constant curve. Hence Ind,(a)) = 0 whenever a ¢ Q.
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The Runge theorem

Characterization of simply connectedness
@ Recall the following result:
Theorem

If Ty and T'1 are Q2-homotopic closed paths in a region Q C C, and if
a ¢ Q, then

|ndr1(a) = |ndr0(a).

o Invoking this result, we obtain that Indr(a) = Indy(a) =0 for oo € Q2
as desired completing the proof of implication from (b) to (c). O
Proof (c) = (d). Assume (d) is false. Then C \ Q2 is a closed subset
of Cs which is not connected. It follows that C, \ € is the union of two
nonempty disjoint closed sets H and K.

@ Let H be the one that contains co. Let W be the complement of H,
relative to the plane. Then W = QU K. Since K is compact, Cauchy
theorem for compact sets (with f = 1) shows that there is a cycle I’
in W\ K = Q such that Indr(z) =1 for z € K.

e Since K # (), (c) fails, and we are done. O
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The Runge theorem

Characterization of simply connectedness

Proof (d) = (e). This is part follows from Runge's theorem. O
Proof (e) = (f). Choose f € H(Q2), let -y be a closed path in , and
choose polynomials P, which converge to f, uniformly on v*. Since

[, Pn(2)dz = 0 for all n € N, we conclude that (f) holds. O
Proof (f) = (g). Assume (f) holds, fix zy € €, and put

F(z):/r()f(g)dq forall z e,

where '(z) is any path in Q from z to z.

@ This defines a function F in Q. For if ['1(z) is another path from z
to z in €, then I' followed by the opposite of I'1 is a closed path in €,
the integral of f over this closed path is 0, so F is well-defined, i.e. F
is not affected if '(z) is replaced by '1(z).

@ We now verify that F' = f. Fix a € Q, then there exists an r > 0
such that D(a; r) C Q. For z € D(a; r) we can compute F(z) by
integrating f over a path '(a), followed by the interval [a, z].
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The Runge theorem

Characterization of simply connectedness

@ Hence, for z € D'(a; r), we have

F(Z;:";:(a) _ Zia/[ ]f(C)dCa

and the continuity of f at a implies now that F'(a) = f(a).

Proof (g) = (h). If f € H(Q2) and f has no zero in £, then

f'/f € H(Q), and (g) implies that there exists a g € H(Q2) so that

g’ = f'/f. We can add a constant to g, so that exp(g (20)) = f (20)
for some zp € Q. Our choice of g shows that (fe=8)' = 0 in Q, hence
fe~& is constant (since Q is connected), and f = e5. O
Proof (h) = (i). By (h) we have f = 8. Set p = exp (1g). [
Proof (i) = (a). If Q is the whole plane, then € is homeomorphic
to D, take z+— z/(1 + |z|). If Q is a proper subregion of the plane
which satisfies (i), then there actually exists a holomorphic
homeomorphism of Q onto D by the Riemann mapping theorem. [
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