

Lecture 15

The Runge theorem

MATH 503, FALL 2025

October 27, 2025

The Riemann mapping theorem

- $D = \{z \in \mathbb{C} : |z| < 1\}$ is the open unit disc centered at the origin.

Theorem

Let $\Omega \neq \mathbb{C}$ be a simply connected region. Then Ω is conformally equivalent to D . Moreover, the assumption $\Omega \neq \mathbb{C}$ is necessary.

Remark

- In view of the Liouville theorem, the assumption $\Omega \neq \mathbb{C}$ is necessary. Indeed, if $f : \mathbb{C} \rightarrow D$ is a conformal map, then f is bounded, since $|f(z)| < 1$ for all $z \in \mathbb{C}$. Hence, by the Liouville theorem f must be constant, but then it cannot be injective.
- However, \mathbb{C} and D are homeomorphic. The mapping

$$\mathbb{C} \ni z \mapsto \frac{z}{1 + |z|} \in D$$

is the desired homeomorphism.

Rational functions

Definition

- A **rational function** f is, by definition, a quotient of two polynomials P and Q , i.e.

$$f = P/Q.$$

- By the fundamental theorem of algebra every nonconstant polynomial is a product of factors of degree 1.
- Thus, we may assume that P and Q have no such factors in common.
- Then f has a pole at each zero of Q (the pole of f has the same order as the zero of Q).
- If we subtract the corresponding principal parts, we obtain a rational function whose only singularity is at ∞ and which is therefore a polynomial.

Rational functions

Definition

- Every **rational function**

$$f = P/Q,$$

has thus a representation of the form

$$f(z) = A_0(z) + \sum_{j=1}^k A_j \left((z - a_j)^{-1} \right), \quad (*)$$

where A_0, A_1, \dots, A_k are polynomials, A_1, \dots, A_k have no constant term, and a_1, \dots, a_k are the distinct zeros of Q ;

- Representation (*) is called the **partial fractions decomposition** of the rational function f .

Sets of oriented intervals

- Let Φ be a finite collection of oriented intervals in the plane.
- For each point p , let $m_I(p)$, [resp. $m_E(p)$] be the number of members of Φ that have initial point [resp. end point] p . If $m_I(p) = m_E(p)$ for every p , we shall say that Φ is **balanced**.

Construction

If $\Phi \neq \emptyset$ is balanced, the following construction can be carried out.

- Pick $\gamma_1 = [a_0, a_1] \in \Phi$. Assume $k \geq 1$, and assume that distinct members $\gamma_1, \dots, \gamma_k$ of Φ have been chosen in such a way that $\gamma_i = [a_{i-1}, a_i]$ for $1 \leq i \leq k$. If $a_k = a_0$, stop. If $a_k \neq a_0$, and if precisely r of the intervals $\gamma_1, \dots, \gamma_k$ have a_k as end point, then only $r - 1$ of them have a_k as initial point; since Φ is balanced, Φ contains at least one other interval, say γ_{k+1} , whose initial point is a_k .
- Since Φ is finite, we must return to a_0 eventually, say at the n th step.
- Then join the intervals $\gamma_1, \dots, \gamma_n$ (in this order) to form a closed path.

Sets of oriented intervals

- The remaining members of Φ still form a balanced collection to which the above construction can be applied.
- It follows that the members of Φ can be so numbered that they form finitely many closed paths. The sum of these paths is a cycle.
- Hence, we conclude, if $\Phi = \{\gamma_1, \dots, \gamma_N\}$ is a balanced collection of oriented intervals, and if $\Gamma = \gamma_1 + \dots + \gamma_N$, then Γ is a cycle.

Theorem

If $K \subset \mathbb{C}$ is a compact subset of an open set $\Omega \neq \emptyset$, then there is a cycle Γ in $\Omega \setminus K$ such that the Cauchy formula

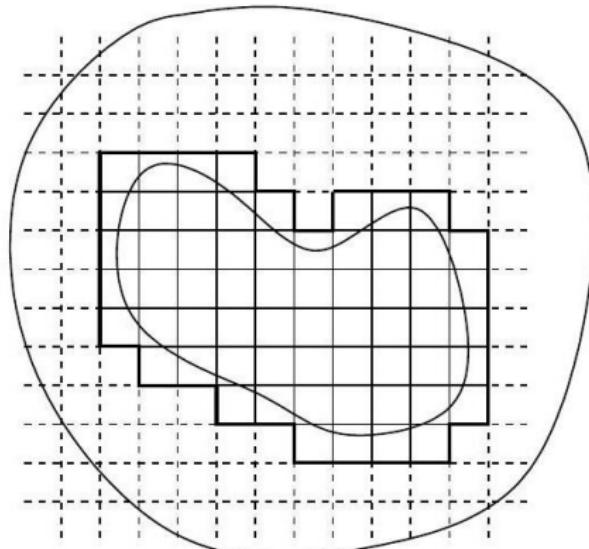
$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta \quad (**)$$

holds for every $f \in H(\Omega)$ and for every $z \in K$.

Cauchy theorem for compact sets

Proof: Since K is compact and Ω is open, there exists an $\eta > 0$ such that the distance from any point of K to any point outside Ω is at least 2η .

- Construct a grid of horizontal and vertical lines in the plane, such that the distance between any two adjacent horizontal lines is η , and likewise for the vertical lines.



Cauchy theorem for compact sets

- Let Q_1, \dots, Q_m be those squares (closed 2-cells) of edge η which are formed by this grid and which intersect K .
- Then $Q_r \subset \Omega$ for $r = 1, \dots, m$.
- If a_r is the center of Q_r and $a_r + b$ is one of its vertices, let γ_{rk} be the oriented interval

$$\gamma_{rk} = [a_r + i^k b, a_r + i^{k+1} b],$$

and define

$$\partial Q_r = \gamma_{r1} \dot{+} \gamma_{r2} \dot{+} \gamma_{r3} \dot{+} \gamma_{r4} \quad \text{for } r = 1, \dots, m.$$

Cauchy theorem for compact sets

- It is then easy to check that

$$\text{Ind}_{\partial Q_r}(\alpha) = \begin{cases} 1 & \text{if } \alpha \text{ is in the interior of } Q_r, \\ 0 & \text{if } \alpha \text{ is not in } Q_r. \end{cases}$$

- Let Σ be the collection of all γ_{rk} with $1 \leq r \leq m$, and $1 \leq k \leq 4$. It is clear that Σ is balanced.
- Remove those members of Σ whose opposites also belong to Σ .
- Let Φ be the collection of the remaining members of Σ . Then Φ is balanced. Let Γ be the cycle constructed from Φ .
- If an edge E of some Q_r intersects K , then the two squares in whose boundaries E lies intersect K . Hence Σ contains two oriented intervals which are each other's opposites and whose range is E . These intervals do not occur in Φ .
- Thus Γ is a cycle in $\Omega \setminus K$.

Cauchy theorem for compact sets

- The construction of Φ from Σ shows also that

$$\text{Ind}_\Gamma(\alpha) = \sum_{r=1}^m \text{Ind}_{\partial Q_r}(\alpha),$$

if α is not in the boundary of any Q_r . Hence, we obtain

$$\text{Ind}_\Gamma(\alpha) = \begin{cases} 1 & \text{if } \alpha \text{ is in the interior of some } Q_r, \\ 0 & \text{if } \alpha \text{ lies in no } Q_r. \end{cases}$$

- If $z \in K$, then $z \notin \Gamma^*$, and z is a limit point of the interior of some Q_r . Since the left side of $\text{Ind}_\Gamma(\alpha)$ is constant in each component of the complement of Γ^* , we obtain

$$\text{Ind}_\Gamma(z) = \begin{cases} 1 & \text{if } z \in K, \\ 0 & \text{if } z \notin \Omega. \end{cases}$$

- Now $(**)$ follows from the global Cauchy theorem. □

Runge's theorem

Theorem

Suppose $K \subset \mathbb{C}$ is a compact set and $(\alpha_j)_{j \in \mathbb{N}}$ is a set which contains one point in each component of $\mathbb{C}_\infty \setminus K$. If Ω is open, and $\Omega \supset K$, and $f \in H(\Omega)$, and $\varepsilon > 0$, there exists a rational function R , all of whose poles lie in the prescribed set $(\alpha_j)_{j \in \mathbb{N}}$, such that

$$|f(z) - R(z)| < \varepsilon$$

for every $z \in K$.

Remark

- Note that $\mathbb{C}_\infty \setminus K$ has at most countably many components.
- Note also that the preassigned point in the unbounded component of $\mathbb{C}_\infty \setminus K$ may very well be ∞ ; in fact, this happens to be the most interesting choice.

Runge's theorem

Proof: We consider the Banach space $C(K)$ whose members are the continuous complex functions on K , with the supremum norm. Let M be the linear subspace of $C(K)$ which consists of the restrictions to K of those rational functions which have all their poles in $(\alpha_j)_{j \in \mathbb{N}}$.

- The theorem asserts that f is in the closure of M .
- As a consequence of the Hahn–Banach theorem, this is equivalent to saying that every bounded linear functional Λ on $C(K)$ which vanishes on M also vanishes at f , i.e.

$$\Lambda(f) = 0.$$

- By the the Riesz representation theorem (it is covered in 502) there exists a complex Borel measure μ on K such

$$\Lambda(f) = \int_K f(x) d\mu(x) \quad \text{for every } f \in C(K).$$

Runge's theorem

Therefore we have to prove the following assertion:

- If μ is a complex Borel measure on K such that

$$\int_K R d\mu = 0 \quad \text{for every } R \in M,$$

and if $f \in H(\Omega)$, then we also have

$$\int_K f d\mu = 0.$$

- So let us assume that μ is a complex Borel measure on K as above, and define

$$h(z) = \int_K \frac{d\mu(\zeta)}{\zeta - z} \quad \text{for } z \in \mathbb{C}_\infty \setminus K.$$

- Then $h \in H(\mathbb{C}_\infty \setminus K)$. (Why?)

Runge's theorem

- Let V_j be the component of $\mathbb{C}_\infty \setminus K$ which contains α_j , and suppose $D(\alpha_j; r) \subset V_j$. If $\alpha_j \neq \infty$ and if z is fixed in $D(\alpha_j; r)$, then

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - \alpha_j} \frac{1}{1 - \frac{z - \alpha_j}{\zeta - \alpha_j}} = \lim_{N \rightarrow \infty} \sum_{n=0}^N \frac{(z - \alpha_j)^n}{(\zeta - \alpha_j)^{n+1}}$$

uniformly for $\zeta \in K$.

- Now observe that

$$h(z) = \int_K \frac{d\mu(\zeta)}{\zeta - z} = \lim_{N \rightarrow \infty} \sum_{n=0}^N \int_K \frac{(z - \alpha_j)^n}{(\zeta - \alpha_j)^{n+1}} d\mu(\zeta) = 0,$$

since $(z - \alpha_j)^n (\zeta - \alpha_j)^{-n-1} \in M$, and $\int_K R d\mu = 0$ for every $R \in M$.

- Hence $h(z) = 0$ for all $z \in D(\alpha_j; r)$. This implies that $h(z) = 0$ for all $z \in V_j$, by the uniqueness theorem.

Runge's theorem

- If $\alpha_j = \infty$, and if z is fixed in $D(\infty; r)$, i.e. $|z| > r$, then

$$\frac{1}{\zeta - z} = -\frac{1}{z} \frac{1}{1 - \frac{\zeta}{z}} = -\lim_{N \rightarrow \infty} \sum_{n=0}^N z^{-n-1} \zeta^n$$

uniformly for $\zeta \in K$.

- Hence, as before, we deduce that $h(z) = 0$ in $D(\infty; r)$, hence in V_j .
- We have thus proved that

$$h(z) = 0 \quad \text{for} \quad z \in \mathbb{C}_\infty \setminus K.$$

- Now choose a cycle Γ in $\Omega \setminus K$, as in the previous theorem, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

holds for every $z \in K$.

Runge's theorem

- An application of Fubini's theorem (legitimate, since we are dealing with Borel measures and continuous functions on compact spaces), combined with $h(z) = 0$ for $z \in \mathbb{C}_\infty \setminus K$, gives

$$\begin{aligned}
 \int_K f(\zeta) d\mu(\zeta) &= \int_K \left[\frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - \zeta} dw \right] d\mu(\zeta) \\
 &= \frac{1}{2\pi i} \int_{\Gamma} f(w) dw \int_K \frac{d\mu(\zeta)}{w - \zeta} \\
 &= -\frac{1}{2\pi i} \int_{\Gamma} f(w) h(w) dw = 0,
 \end{aligned}$$

since $h(w) = 0$ on $\Gamma^* \subset \Omega \setminus K \subseteq \mathbb{C}_\infty \setminus K$.

- Thus

$$\int_K f(\zeta) d\mu(\zeta)$$

holds for any $f \in H(\Omega)$, and the proof is complete. □

Runge's theorem (approximation by polynomials)

The following special case is of particular interest.

Theorem

Suppose $K \subset \mathbb{C}$ is a compact set, $\mathbb{C}_\infty \setminus K$ is connected, and $f \in H(\Omega)$, where Ω is some open set containing K . Then there is a sequence $(P_n)_{n \in \mathbb{N}}$ of polynomials such that $\lim_{n \rightarrow \infty} P_n(z) = f(z)$ uniformly on K .

Proof: Since $\mathbb{C}_\infty \setminus K$ has now only one component, we need only one point α_j to apply the previous theorem, and we may take $\alpha_j = \infty$.

Runge's theorem

Remark

- The preceding result is **false** for every compact K in the plane such that $\mathbb{C}_\infty \setminus K$ is not connected.
- Namely, in that case $\mathbb{C}_\infty \setminus K$ has a bounded component V . Choose $\alpha \in V$, set $f(z) = (z - \alpha)^{-1}$, and let $m = \max\{|z - \alpha| : z \in K\}$.
- Suppose that P is a polynomial, such that $|P(z) - f(z)| < 1/m$ for all $z \in K$. Then

$$|(z - \alpha)P(z) - 1| < 1 \quad \text{for } z \in K \quad (\text{A})$$

- In particular, (A) holds if z is in the boundary of V ; since the closure of V is compact, the maximum modulus theorem shows that (A) holds for every $z \in V$; taking $z = \alpha$, we obtain $1 < 1$.
- Hence the uniform approximation is not possible.

Runge's theorem

Recall the following lemma from the previous lecture:

Lemma

Let Ω be an open subset of \mathbb{C} . Then there exists a sequence $(K_n)_{n \in \mathbb{N}} \subseteq \Omega$ of compact sets such that

$$\Omega = \bigcup_{n=1}^{\infty} K_n \quad \text{and} \quad K_n \subseteq \text{int } K_{n+1} \quad \text{for } n \in \mathbb{N},$$

where $\text{int } K_{n+1}$ denotes the interior of K_{n+1} . Further for a compact set $K \subseteq \Omega$, we have $K \subseteq K_n$ for some $n \in \mathbb{N}$.

Remark

From this lemma we can also deduce that every component of $\mathbb{C}_{\infty} \setminus K_n$ contains a component of $\mathbb{C}_{\infty} \setminus \Omega$ for $n \in \mathbb{N}$.

Runge's theorem

- This can be seen by recalling that for every $n \in \mathbb{N}$, we defined

$$K_n = \overline{D}(0, n) \cap \{z \in \Omega : d(z, \mathbb{C} \setminus \Omega) \geq 1/n\}.$$

- Setting $D(\infty, n) = \{z \in \mathbb{C} : |z| > n\}$, we see

$$V_n = K_n^c = D(\infty, n) \cup \bigcup_{a \notin \Omega} D(a, 1/n).$$

- Therefore, each disc from V_n intersects $\mathbb{C}_\infty \setminus \Omega$.
- Each disc from V_n is connected, hence each component of V_n intersects $\mathbb{C}_\infty \setminus \Omega$.
- Since $V_n \supseteq \mathbb{C}_\infty \setminus \Omega$, no component of $\mathbb{C}_\infty \setminus \Omega$ can intersect two components of V_n .
- Hence, every component of $\mathbb{C}_\infty \setminus K_n$ contains a component of $\mathbb{C}_\infty \setminus \Omega$ for $n \in \mathbb{N}$.

Runge's theorem

Theorem

Let $\Omega \subseteq \mathbb{C}$ be an open set, let A be a set which has one point in each component of $\mathbb{C}_\infty \setminus \Omega$, and assume that $f \in H(\Omega)$. Then:

- There is a sequence $(R_n)_{n \in \mathbb{N}}$ of rational functions, with poles only in A , such that $\lim_{n \rightarrow \infty} R_n = f$ uniformly on compact subsets of Ω .
- In the special case in which $\mathbb{C}_\infty \setminus \Omega$ is connected, we may take $A = \{\infty\}$ and thus obtain polynomials P_n such that $\lim_{n \rightarrow \infty} P_n = f$ uniformly on compact subsets of Ω .

Remark

- Observe that $\mathbb{C}_\infty \setminus \Omega$ may have uncountably many components; for instance, we may have $\mathbb{C}_\infty \setminus \Omega = \{\infty\} \cup C$, where C is a Cantor set.

Runge's theorem

Proof: Choose a sequence of compact sets $(K_n)_{n \in \mathbb{N}}$ in Ω , as in the previous lemma. Fix $n \in \mathbb{N}$, for the moment.

- Since each component of $\mathbb{C}_\infty \setminus K_n$ contains a component of $\mathbb{C}_\infty \setminus \Omega$, each component of $\mathbb{C}_\infty \setminus K_n$ contains a point of A , so the previous theorem gives us a rational function R_n with poles in A such that

$$|R_n(z) - f(z)| < \frac{1}{n} \quad \text{for all } z \in K_n.$$

- If now $K \subset \Omega$ is compact, there exists an $N \in \mathbb{N}$ such that $K \subset K_n$ for all $n \geq N$. It follows from the previous inequality that

$$|R_n(z) - f(z)| < \frac{1}{n} \quad \text{for all } z \in K, \text{ and } n \geq N,$$

which completes the proof. □

Mittag–Leffler theorem

Runge's theorem will now be used to prove that meromorphic functions can be constructed with arbitrarily preassigned poles.

Theorem

Suppose $\Omega \subseteq \mathbb{C}$ is an open set, $A \subset \Omega$, and A has no limit point in Ω , and to each $\alpha \in A$ there are associated a positive integer $m(\alpha)$ and a rational function

$$P_\alpha(z) = \sum_{j=1}^{m(\alpha)} c_{j,\alpha} (z - \alpha)^{-j}.$$

Then there exists a meromorphic function f in Ω , whose principal part at each $\alpha \in A$ is P_α and which has no other poles in Ω .

Proof: We choose a sequence $(K_n)_{n \in \mathbb{N}}$ of compact sets in Ω , as in the previous lemma. Then $K_n \subseteq \text{int } K_{n+1}$ for all $n \in \mathbb{N}$, and every compact subset of Ω lies in some K_n , for some $n \in \mathbb{N}$. Moreover, every component of $\mathbb{C}_\infty \setminus K_n$ contains a component of $\mathbb{C}_\infty \setminus \Omega$.

Mittag–Leffler theorem

- Set $A_1 = A \cap K_1$, and $A_n = A \cap (K_n \setminus K_{n-1})$ for $n \geq 2$.
- Since $A_n \subset K_n$ and A has no limit point in Ω (hence none in K_n), each A_n is a finite set.
- Set

$$Q_n(z) = \sum_{\alpha \in A_n} P_\alpha(z) \quad \text{for } n \in \mathbb{N}.$$

- Since each A_n is finite, each Q_n is a rational function. The poles of Q_n lie in $K_n \setminus K_{n-1}$, for $n \geq 2$. In particular, Q_n is holomorphic in an open set containing K_{n-1} .
- It now follows from Runge's theorem that there exist rational functions R_n , all of whose poles are in $\mathbb{C}_\infty \setminus \Omega$, such that

$$|R_n(z) - Q_n(z)| < 2^{-n} \quad \text{for all } z \in K_{n-1}.$$

Mittag–Leffler theorem

- We claim that

$$f(z) = Q_1(z) + \sum_{n=2}^{\infty} (Q_n(z) - R_n(z)) \quad \text{for all } z \in \Omega$$

has the desired properties.

- Fix $N \in \mathbb{N}$. On K_N , we have

$$f = Q_1 + \sum_{n=2}^N (Q_n - R_n) + \sum_{n=N+1}^{\infty} (Q_n - R_n).$$

- Since $|R_n(z) - Q_n(z)| < 2^{-n}$ on K_{n-1} , then each term in the last sum is less than 2^{-n} on K_N ; hence this last series converges uniformly on K_N , to a function which is holomorphic in the interior of K_N .
- The function $f - (Q_1 + \cdots + Q_N)$ is holomorphic in the interior of K_N , since the poles of each R_n are outside Ω .
- Thus f has precisely the prescribed principal parts in the interior of K_N , and hence in Ω , since N was arbitrary. □

Characterization of simply connectedness

Theorem

For a region $\Omega \subseteq \mathbb{C}$, each of the following conditions implies all the others.

- (a) Ω is homeomorphic to the open unit disc D .
- (b) Ω is simply connected.
- (c) $\text{Ind}_\gamma(\alpha) = 0$ for every closed path γ in Ω and for every $\alpha \in \mathbb{C}_\infty \setminus \Omega$.
- (d) $\mathbb{C}_\infty \setminus \Omega$ is connected.
- (e) Every $f \in H(\Omega)$ can be approximated by polynomials, uniformly on compact subsets of Ω .
- (f) For every $f \in H(\Omega)$ and every closed path γ in Ω we have $\int_\gamma f(z) dz = 0$.
- (g) To every $f \in H(\Omega)$ corresponds an $F \in H(\Omega)$ such that $F' = f$.
- (h) If $f \in H(\Omega)$ and $1/f \in H(\Omega)$, there exists a $g \in H(\Omega)$ such that $f = \exp(g)$.
- (i) If $f \in H(\Omega)$ and $1/f \in H(\Omega)$, there exists a $\varphi \in H(\Omega)$ such that $f = \varphi^2$.

Characterization of simply connectedness

Proof (a) \Rightarrow (b). To say that Ω is homeomorphic to D means that there is a continuous one-to-one mapping $\psi : \Omega \rightarrow D$ whose inverse ψ^{-1} is also continuous.

- If γ is a closed curve in Ω , with parameter interval $[0, 1]$, define

$$H(s, t) = \psi^{-1}(t\psi(\gamma(s)))$$

Then $H : I^2 \rightarrow \Omega$ is continuous; $H(s, 0) = \psi^{-1}(0)$ is constant; and $H(s, 1) = \gamma(s)$; and $H(0, t) = H(1, t)$ because $\gamma(0) = \gamma(1)$.

- Thus γ is null-homotopic in Ω , hence Ω is simply connected.

Proof (b) \Rightarrow (c). If (b) holds then every closed curve Γ in Ω is null-homotopic, that is, there exists a continuous $H : I^2 \rightarrow \Omega$ such that

$$H(s, 0) = \Gamma(s), \quad H(s, 1) = \gamma(s), \quad \text{for all } s \in I,$$

$$H(0, t) = H(1, t) \quad \text{for all } t \in I,$$

where γ is a constant curve. Hence $\text{Ind}_\gamma(\alpha) = 0$ whenever $\alpha \notin \Omega$.

Characterization of simply connectedness

- Recall the following result:

Theorem

If Γ_0 and Γ_1 are Ω -homotopic closed paths in a region $\Omega \subseteq \mathbb{C}$, and if $\alpha \notin \Omega$, then

$$\text{Ind}_{\Gamma_1}(\alpha) = \text{Ind}_{\Gamma_0}(\alpha).$$

- Invoking this result, we obtain that $\text{Ind}_{\Gamma}(\alpha) = \text{Ind}_{\gamma}(\alpha) = 0$ for $\alpha \notin \Omega$ as desired completing the proof of implication from (b) to (c). \square

Proof (c) \implies (d). Assume (d) is false. Then $\mathbb{C}_{\infty} \setminus \Omega$ is a closed subset of \mathbb{C}_{∞} which is not connected. It follows that $\mathbb{C}_{\infty} \setminus \Omega$ is the union of two nonempty disjoint closed sets H and K .

- Let H be the one that contains ∞ . Let W be the complement of H , relative to the plane. Then $W = \Omega \cup K$. Since K is compact, Cauchy theorem for compact sets (with $f = 1$) shows that there is a cycle Γ in $W \setminus K = \Omega$ such that $\text{Ind}_{\Gamma}(z) = 1$ for $z \in K$.
- Since $K \neq \emptyset$, (c) fails, and we are done. \square

Characterization of simply connectedness

Proof (d) \Rightarrow (e). This part follows from Runge's theorem. □

Proof (e) \Rightarrow (f). Choose $f \in H(\Omega)$, let γ be a closed path in Ω , and choose polynomials P_n which converge to f , uniformly on γ^* . Since $\int_{\gamma} P_n(z) dz = 0$ for all $n \in \mathbb{N}$, we conclude that (f) holds. □

Proof (f) \Rightarrow (g). Assume (f) holds, fix $z_0 \in \Omega$, and put

$$F(z) = \int_{\Gamma(z)} f(\zeta) d\zeta \quad \text{for all } z \in \Omega,$$

where $\Gamma(z)$ is any path in Ω from z_0 to z .

- This defines a function F in Ω . For if $\Gamma_1(z)$ is another path from z_0 to z in Ω , then Γ followed by the opposite of Γ_1 is a closed path in Ω , the integral of f over this closed path is 0, so F is well-defined, i.e. F is not affected if $\Gamma(z)$ is replaced by $\Gamma_1(z)$.
- We now verify that $F' = f$. Fix $a \in \Omega$, then there exists an $r > 0$ such that $D(a; r) \subseteq \Omega$. For $z \in D(a; r)$ we can compute $F(z)$ by integrating f over a path $\Gamma(a)$, followed by the interval $[a, z]$.

Characterization of simply connectedness

- Hence, for $z \in D'(a; r)$, we have

$$\frac{F(z) - F(a)}{z - a} = \frac{1}{z - a} \int_{[a, z]} f(\zeta) d\zeta,$$

and the continuity of f at a implies now that $F'(a) = f(a)$.

Proof (g) \Rightarrow (h). If $f \in H(\Omega)$ and f has no zero in Ω , then $f'/f \in H(\Omega)$, and (g) implies that there exists a $g \in H(\Omega)$ so that $g' = f'/f$. We can add a constant to g , so that $\exp(g(z_0)) = f(z_0)$ for some $z_0 \in \Omega$. Our choice of g shows that $(fe^{-g})' = 0$ in Ω , hence fe^{-g} is constant (since Ω is connected), and $f = e^g$. □

Proof (h) \Rightarrow (i). By (h) we have $f = e^g$. Set $\varphi = \exp(\frac{1}{2}g)$. □

Proof (i) \Rightarrow (a). If Ω is the whole plane, then Ω is homeomorphic to D , take $z \mapsto z/(1 + |z|)$. If Ω is a proper subregion of the plane which satisfies (i), then there actually exists a holomorphic homeomorphism of Ω onto D by the Riemann mapping theorem. □