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Jensen’s formula

Jensen’s formula

Theorem

Let Q be an open set that contains the closure of a disc D(0, R) and
suppose that f is holomorphic in Q, and f(0) # 0, f vanishes nowhere on
the circle C(0,R). If z1, ..., zy denote the zeros of f inside the disc

(counted with multiplicities, i.e. each zero appears in the sequence as
many times as its order), then

27
log | £(0 y—Zm ('Zk‘>+21/0 log | f(Re'?)|df. (%)

The proof of the theorem consists of several steps.

@ Step 1. First, we observe that if 4 and £, are two functions satisfying
the hypotheses and the conclusion of the theorem, then the product
fif, also satisfies the hypothesis of the theorem and formula (*).
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Jensen’s formula

Jensen’s formula

@ This is a simple consequence of the fact that log xy = log x + log y
whenever x, y € Ry, and that the set of zeros of fif; is the union of
the sets of zeros of f; and f,.

@ Step 2. The function

f(2)
Z) =
&(2) (z=2z1) - (z—zn)
initially defined on Q\ {z1,..., 2y}, is bounded near each z;.

@ Therefore each z; is a removable singularity, and hence we can write

f(z) = (z—2)---(z - 2n) &(2),

where g is holomorphic in Q and nowhere vanishing in the closure of
D(0, R). By Step 1, it suffices to prove Jensen's formula for functions
like g that vanish nowhere, and for functions of the form z — z;.
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Jensen’s formula

Jensen’s formula

o Step 3. We first prove (*) for a function g that vanishes nowhere in
the closure of D(0, R). More precisely, we must establish the
following identity:

1 27 ;
0g£(0) = - [ 1ogle(Re”)/db. (%)
T Jo
o In a slightly larger disc, we can write g(z) = e"(2) where h is

holomorphic in that disc. This is possible since discs are simply
connected, and we can define h =logg.
o Now
|g(z)] _ |eh(z)| _ ‘eRe(h(z))-i—ilm(h(z))’ _ eRe(h(z))’

so that log |g(z)| = Re(h(z)). Then the mean value property for
holomorphic functions (in our case with h = log g) immediately
implies the desired formula for its real part, which is precisely (**).
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Jensen’s formula

Jensen’s formula

@ Step 4. The last step is to prove the formula for functions of the
form f(z) = z — w, where w € D(0, R). That is, we must show that

1 2w .
log |w| = log (’:g) + 277/0 log |Re’ — w|db.

e Since log(|w|/R) = log|w| — log R and
log|Re” — w| =log R+ log|e” — w/R|,

it suffices to prove that
2w .
/ log | — aldd =0, whenever |a| < 1.
0
@ This in turn is equivalent (after the change of variables § — —0 ) to
2w
/ log |1 — ae®|dd =0, whenever |a| < 1.
0

(MATH 503, FALL 2025) Lecture 17 November 3, 2025 5/38



Jensen’s formula

Jensen’s formula

@ To prove this, we use the function F(z) =1 — az, which vanishes
nowhere in the closure of the unit disc.

@ As a consequence, there exists a holomorphic function G in a disc of
radius greater than 1 such that

F(Z) = eG(Z)‘
@ Then |F| = eRe(®) and therefore log |F| = Re(G). Since F(0) =1 we
have log |F(0)| = 0, and an application of the mean value property to

the real part of holomorphic function G, which is log |F(z)| concludes
the proof of the theorem, giving

27
/ log |1 — ae™®|dd =0, whenever |a| < 1. O
0
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Jensen’s formula

Jensen’s formula

@ From Jensen’s formula we can derive an identity linking the growth of
a holomorphic function with its number of zeros inside a disc.

e If f is a holomorphic function on the closure of a disc D(0, R), we
denote by n¢(r) the number of zeros of f (counted with their
multiplicities) inside the disc D(0, r), with 0 < r < R.

@ A simple but useful observation is that n¢(r) is a non-decreasing

function of r.

Lemma
Under the assumptions of the previous theorem, we have

N

R r
/0 ﬂf(f)dT => log

k=1

R

Zk
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Jensen’s formula

Jensen’s formula

Proof:

o First we have
>~ iog| £ z [T
k=1 |2k B

@ If we define the characteristic function

1 ifr>]zk|,
le(f)Z{ :

0 ifr<|z],

Zk

then
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Jensen’s formula

Jensen’s formula

@ The lemma is proved using
N /R N rR R (N R
dr / dr dr dr
T [T = [ (w0 L= [w) T
@ This completes the proof of the lemma. O

Corollary

As a corollary of Jensen's formula and the previous lemma, we obtain

R 27
dr 1 .
/ ne(r) = o / log | £(Re'”)|d6 — log | £(0).
0 r ™ Jo
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Jensen’s formula

Functions of finite order

@ Let f be an entire function. If there exist p € R4 and constants
A, B € R} such that

| F(2)] < AeB1F” forall zeC,

then we say that f has an order of growth < p.
@ We define the order of growth of f as

pf = inf Ps

where the infimum is taken over all p > 0 such that f has an order of
growth < p.

@ For example, the order of growth of the function e? is 2.
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Jensen’s formula

Functions of finite order

Theorem
If f is an entire function that has an order of growth < p, then:
(i) ne(r) < Cr? for some C > 0 and all sufficiently large r.
(ii) If z1,zo, ... denote the zeros of f, with z, # 0, then for all s > p we

have
PR
= .

Proof: It suffices to prove the estimate for ns(r) when £(0) # 0.

o Indeed, consider F(z) = f(z)/z', where I is the order of the zero of f

at the origin. Then n¢(r) and ng(r) differ only by a constant, and F
also has an of order of growth < p.
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Jensen’s formula

Functions of finite order

o If £(0) # 0 we may use formula from the previous corollary, namely

R 27
d 1 .
/0 nf(x)% = 27r/o log | £(Re™®)|d6 — log| £(0)].
@ Choosing R = 2r, this formula implies
2r 2
dx 1 ;
— <= [ log|f(Re")|do — log | f(0)].
|05 < 5 [ og | F(Re) a0 —log £(0)

@ On the one hand, since n¢(r) is increasing, we have

2r 2r
/ nf(x)% > nf(r)/ % = n¢(r)[log2r — log r] = n¢(r) log 2.

@ On the other hand, the growth condition on f (for all large r) gives
2 2
/ log |f(Re™®)|d6 g/ log |AeBR"|do < C'r*.
0 0

(MATH 503, FALL 2025) Lecture 17 November 3, 2025 12/38



Jensen’s formula

Functions of finite order

e Consequently, ng(r) < Cr” for an appropriate C > 0 and all
sufficiently large r.

@ The following estimates prove the second part of the theorem:

> \Zklsti Szl

|z¢|>1 J=0 \2i<|z|<2+1

< Z 2 (21
o0 .
< CZ2_j52(j+1)p < Z (2’”_5)J < 00
=0 j=0

@ The last series converges because s > p.

This completes the proof of the theorem.
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Infinite products

Infinite products

e Given a sequence (an)nez, C C, we say that the product

o

[T +an

n=1

converges if the limit
N
lim (14 an)
N—oo
n=1
of the partial products exists.
@ A useful necessary condition that guarantees the existence of a

product is contained in the following lemma.

Lemma
If> ez, |an| < oo, then the product [1;2; (1 + an) converges. Moreover,
the product converges to 0 if and only if one of its factors is Q.
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Infinite products

Infinite products

o If 3 ,cz, |an| converges, then for all large n we must have |a,| < 1/2.
We may assume, without loss of generality, that this inequality holds
forall ne Z,.

@ Hence, we can define log (1 + a,) by the usual power series, and this
logarithm satisfies the property that

|4z — coslia)

whenever |z] < 1.

@ Hence we may write the partial products as follows:

ﬁ 1+ an H elog 1+an)
n=1

where By = SV b, with b, = log (1 + aj,).
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Infinite products

Infinite products

@ By the power series expansion we see that
| log(1 + 2)| < 2|z],

if |z] < 1/2. Hence |by| < 2|ap|, so By converges as N — oo to a
complex number, say B.
@ Since the exponential function is continuous, we conclude that

lim eBv = €8,
N—oo

and the first part follows.

@ Observe also that if 1+ a, # 0 for all n € Z_, then the product
converges to a non-zero limit since it is expressed as e?. O
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Infinite products

Infinite products of holomorphic functions

Lemma
Suppose (Fn)nez, is a sequence of holomorphic functions on the open set
Q C C. If there exist constants c, > 0 such that

Z chn<oo and |Fh(z)—1]<¢, forall ze€Q,
neZ4

then:

(i) The product ]2 Fn(z) converges uniformly in Q to a holomorphic
function F(z).

(i) If Fo(z) does not vanish for any n, then

F'(z) _ i Fr(2)
Flz) ~ & Fi2)
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Infinite products

Infinite products of holomorphic functions

@ To prove the first statement, note that for each z we may argue as in
the previous lemma if we write F,(z) =1+ a,(z), with |a,(z)| < c,.

@ Then, we observe that the estimates are actually uniform in z because
the ¢, 's are constants. It follows that the product converges
uniformly to a holomorphic function, which we denote by F(z).

@ To establish the second part of the theorem, suppose that K is a
compact subset of 2, and let

@ We have just proved that limy_., Gy = F uniformly in Q. Hence,
the sequence (Gy)nez, converges uniformly to F/ in K.
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Infinite products

Infinite products of holomorphic functions

@ Since Gy is uniformly bounded from below on K, we conclude that

uniformly on K, and because K is an arbitrary compact subset of €,
the limit holds for every point of Q.

@ Moreover, a simple calculation yields

Gy~ F,
:E:J
GN Fn7

n=1

so part (ii) of the lemma is also proved. O
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Infinite products

Canonical factors

@ For each integer k > 0 we define the canonical factors by
Eo(z) =1z,

and , .
Ex(z) = (1 — z)e? 7 /2+F2 Kk for k> 1.

The integer k is called the degree of the canonical factor.

Lemma

If |z| < 1/2, then
|Ex(2) — 1| < 2e|z|< T,
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Infinite products

Canonical factors

Proof: If |z| < 1/2, then with the logarithm defined in terms of the power
series, we have 1 — z = elog(1-2)

@ Therefore
Ek(Z) — elog(l—z)+z+z2/2+~--+zk/k — e

where w = — >, ., z"/n. Observe that since |z| < 1/2 we have
oo oo .
w| < [z Y 2" < 2Ty 27 < 2z
n=k+1 Jj=0

@ In particular, we have |w| <1 and this implies that

11— Ex(2)] = |1 — e"| < e|w| < 2e|z|*F1. O
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Infinite products

Weierstrass infinite products

Theorem

Given any sequence (ap)nez, C C with lim,_, |an| = 00, there exists an
entire function f that vanishes at all z = a,, and nowhere else. Any other
such entire function is of the form f(z)e&\?), where g is entire.

Proof:

@ Recall that if a holomorphic function f vanishes at z = a, then the
multiplicity of the zero a is the integer m so that

f(z) = (z - a)"g(2),

where g is holomorphic and nowhere vanishing in a neighborhood of a.
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Infinite products

Weierstrass infinite products

@ To begin the proof, note first that if f; and f, are two entire functions
that vanish at all z = a, and nowhere else, then f;/f, has removable
singularities at all the points a,. Hence fi/f, is entire and vanishes
nowhere, so that there exists an entire function g with

fi(z)/fa(z2) = e8).

o Therefore fi(z) = f2(z)e8(?) as desired.

@ We have to construct a function that vanishes at all the points of the
sequence (an)nez, and nowhere else.

@ Suppose that we are given a zero of order m at the origin, and that
ai, az ... are all non-zero. Then we define the Weierstrass product
by

f(z)y=2z" H En(z/an).
n=1
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Infinite products

Weierstrass infinite products

@ We claim that this function has the required properties; that is,

(i) f is entire with a zero of order m at the origin;
(ii) f has zeros at each point of the sequence (an)ncz, ;
(i) f vanishes nowhere else.

e Fix R > 0, and suppose that z belongs to the disc D(0, R). We shall
prove that f has all the desired properties in this disc, and since R is
arbitrary, this will prove the theorem.

@ We can consider two types of factors in the formula defining £, with
the choice depending on whether |a,| < 2R or |a,| > 2R.

@ There are only finitely many terms of the first kind, since

lim |a,| = oo,
n—oo

and we see that the finite product vanishes at all z = a, € D(0, R).
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Infinite products

Weierstrass infinite products

o If |as| > 2R, we have |z/a,| < 1/2, hence the previous lemma implies

n+1

z
— <

|En(z/an) — 1] < 2e

e
n 2"

@ Therefore, the product

H E,(z/an)

lan|>2R

defines a holomorphic function when |z| < R, and does not vanish in
that disc by the previous lemmas.

@ This shows that the function f has the desired properties, and the
proof of Weierstrass's theorem is complete. O
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Infinite products

Hadamard's theorem

Theorem

Suppose f is entire and has growth order py. Let k € 7 be so that
k <po < k+1. Ifa1,ay,... denote the (non-zero) zeros of f, then

f(z) = POz [ [ Ei (2/2).
n=1

where P is a polynomial of degree < k, and m is the order of the zero of f
at z =0, and Ej are the canonical factors for k € N.

@ We gather a few lemmas needed in the proof of Hadamard's theorem.
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Hadamard's theorem
Lemma
The canonical products satisfy
|Ex(2)| > e i |zl < 1/2,

and .
|Ex(2)| > |1 —z]e~clZ" i |z| > 1/2.

Here, we allow the implied constant ¢ = ¢, to depend on k € N.

Proof:

e If |z| < 1/2 we can use the power series to define the logarithm of
1 — z, so that

Ex(z) = loB(l-2)+ 5k 2"/n _ =120 g

Since |e¥| > e~ "l and |w| < c|z|*T!, the first part follows.
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Infinite products

Hadamard's theorem

@ For the second part, simply observe that if |z| > 1/2, then

|Ex(2)] = |1 — 2| |72/ 24+2" k]

and that there exists ¢/ > 0 such that
ez+22/2+--~+zk/k‘ > e—‘z+22/2+-~+zk/k’ > e—c’|z|k‘ ]

Lemma
For any s € Ry with pp <s < k+ 1, we have

11 Ex(z/2n)| > e7cI°F,
n=1

except possibly when z belongs to the union of the discs centered at a,, of
radius |a,| %", forn e Z,.
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Hadamard's theorem

Proof: First, we write

[ Ec(z/a) = ][] Ex(z/an) [] Ex(z/an)
n=1

lan|<2|z] lan|>2|z]

@ For the second product the estimate asserted above holds for all
z € C. Indeed, by the previous lemma

I &EGan|= T IE(z/an)

lan|>2|z| lan|>2|z|
k+1 —k—1
> | | e Clz/an*T o o=l T 50 lanl .

|an|>2]|z|
e But |ap| > 2|z| and s < k + 1, so we must have
‘an’_k_l = lan|* ‘anls_k_l < Clan| % |2~
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Infinite products

Hadamard's theorem

o Therefore, the fact that >, ;. |an|~° converges implies that

> e7C|Z|5

II Ex(z/2n)

lan|>2]2]|

for some constant ¢ > 0, which may depend on k and s.
@ To estimate the first product, we use the second part of the previous
lemma, and write

I Ex(z/an)

lan| <22

z
1- =
an

[T et )

|an|<2|2|

> 11

|an|<2|2|

@ We now note that
k k —k
[[ e = e 2l Ejap<apzilanl ™
|an|<2|z|

and again, we have |a,| ™" = |a,| "% |a,|** < Clan| "% |z]* %
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Infinite products

Hadamard's theorem

@ This proves that
H e_cl|z/a"|k 2 e—C‘Z‘S.

|an|<2|z|

@ The estimate on the first product on the right-hand side of (*) will

require the restriction on z imposed in the statement of the lemma.

@ Indeed, whenever z does not belong to a disc of radius |a,,|7k*1

centered at a,, we must have |a, — z| > ]a,,|_k_1.
@ Therefore

|an| <22

_ H |an‘fk72.

|an|<2|z|
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Infinite products

Hadamard's theorem
e Finally, the estimate for the first product follows from the fact that
(k+2) > loglan| < (k+2)ns(2lz])log 2|z
lan|<2|2|
< c|z|* log 2|z
< C/’Z‘s/
for any s’ > s, and the second inequality follows as n(2|z|) < c|z|*.
@ Hence, we have proved that

IT Ec(z/a0)
n=1

except possibly when z belongs to the union of the discs centered at
ap of radius |a,,|_k_1, forneZ,.

@ Since we restricted s to satisfy s > pg, we can take an initial s
sufficiently close to pg, so that the assertion of the lemma is

established (with s being replaced by s’). O
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Infinite products

Hadamard's theorem

Corollary

There exists a sequence of radii, ry, r, ..., with r,, — 00, such that

>e 7 for |z| = rp

I1 Ex(z/2n)
n=1

Proof:
e Since >z, |lan|TF71 < o0, there exists N € Z, so that

(0.0
> lan Kt < 1/10.
n=N
@ Therefore, given any two consecutive large integers L and L+ 1, we
can find r € Ry with L < r < L+ 1, such that the circle of radius r

centered at the origin does not intersect the forbidden discs from the
previous lemma.
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Infinite products

Hadamard's theorem

o Otherwise, the union of the intervals [, = [ |an| — Ian‘%ﬂ, lan| + Ian\%ﬂ]
(which are of length 2|a,|*~!) would cover all the interval [L, L + 1].

L |
I I
I,

e This would imply 237 , lan| %71 > 1, which is a contradiction. We
then apply the previous lemma with |z| = r and the proof follows

.o
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Infinite products

Proof of Hadamard's theorem
Proof: Let

E(z)=z"[] Ex(z/an).
n=1

@ To prove that E is entire, we repeat the argument from the proof of
the Weierstrass theorem. Namely, we have
k+1
, foralllarge neZ,y,

|Ex (z/an) — 1| < 2e

n

and that the series >, lan| ¥~ converges. (Here, recall that
po<s<k+1.)

@ Moreover, E has the zeros of f, therefore f/E is holomorphic and
nowhere vanishing. Hence

f(z) — eg(z)

E(z)
for some entire function g.
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Infinite products

Proof of Hadamard's theorem

@ By the fact that f has growth order pg, and because of the estimate
from below for E obtained in the previous corollary, we have

s
< el whenever  |z| = rpp.

Re(e() _ | F(2)
E(2)

@ This proves that
Re(g(z)) < ClzI*, for |z| = rm,

where (rm)mez, C Ry is a a sequence such that limpy_o0 rm = 0.
@ We have to prove that g is a polynomial of degree < s.

@ We can expand g in a power series centered at the origin

g(z)=) anz"
n=0
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Infinite products

Proof of Hadamard's theorem

@ As a simple application of Cauchy’s integral formulas, we may write

1 (2 N o i >
— g (re’9> e~y = " nn= 0,
2w 0 0 if n<O0.

@ By taking complex conjugates we find that
1 27 0
— ei®)e™"""df = 0
3 (re'®)
whenever n > 0.
@ Since 2u = g + g we add the above two equations and obtain

1 27 . .
apr" = / u (re’e) e_’”(’d@7 whenever n > 0.
™ Jo
@ For n = 0 we find that

2Re(ap) = 1 /% u (rei9> do.
0

™
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Proof of Hadamard’'s theorem

@ Now we recall the simple fact that whenever n # 0, the integral of
e~ over any circle centered at the origin vanishes. Therefore

an = ! /27r [u (rei9> — Crs} e M4  when n>0.
0

wrn

e Taking r = ry,, we consequently obtain

lan| < /027r [Cr,ﬁ, —u (rme"e)} df <2Cr;7 " —2Re(ag) r,,".

m

@ Letting m — oo we deduce a, = 0 for any n > s.

@ This completes the proof of Hadamard’s theorem. O
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