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Jensen’s formula

Jensen’s formula

Theorem

Let Ω be an open set that contains the closure of a disc D(0,R) and
suppose that f is holomorphic in Ω, and f (0) ̸= 0, f vanishes nowhere on
the circle C (0,R). If z1, . . . , zN denote the zeros of f inside the disc
(counted with multiplicities, i.e. each zero appears in the sequence as
many times as its order), then

log |f (0)| =
N∑

k=1

log

(
|zk |
R

)
+

1

2π

∫ 2π

0
log |f (Re iθ)|dθ. (*)

The proof of the theorem consists of several steps.

Step 1. First, we observe that if f1 and f2 are two functions satisfying
the hypotheses and the conclusion of the theorem, then the product
f1f2 also satisfies the hypothesis of the theorem and formula (*).
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Jensen’s formula

Jensen’s formula

This is a simple consequence of the fact that log xy = log x + log y
whenever x , y ∈ R+, and that the set of zeros of f1f2 is the union of
the sets of zeros of f1 and f2.

Step 2. The function

g(z) =
f (z)

(z − z1) · · · (z − zN)

initially defined on Ω \ {z1, . . . , zN}, is bounded near each zj .

Therefore each zj is a removable singularity, and hence we can write

f (z) = (z − z1) · · · (z − zN) g(z),

where g is holomorphic in Ω and nowhere vanishing in the closure of
D(0,R). By Step 1, it suffices to prove Jensen’s formula for functions
like g that vanish nowhere, and for functions of the form z − zj .
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Jensen’s formula

Jensen’s formula

Step 3. We first prove (*) for a function g that vanishes nowhere in
the closure of D(0,R). More precisely, we must establish the
following identity:

log |g(0)| = 1

2π

∫ 2π

0
log |g(Re iθ)|dθ. (**)

In a slightly larger disc, we can write g(z) = eh(z) where h is
holomorphic in that disc. This is possible since discs are simply
connected, and we can define h = log g .

Now
|g(z)| = |eh(z)| = |eRe(h(z))+i Im(h(z))| = eRe(h(z)),

so that log |g(z)| = Re(h(z)). Then the mean value property for
holomorphic functions (in our case with h = log g) immediately
implies the desired formula for its real part, which is precisely (**).
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Jensen’s formula

Jensen’s formula

Step 4. The last step is to prove the formula for functions of the
form f (z) = z − w , where w ∈ D(0,R). That is, we must show that

log |w | = log

(
|w |
R

)
+

1

2π

∫ 2π

0
log |Re iθ − w |dθ.

Since log(|w |/R) = log |w | − logR and

log |Re iθ − w | = logR + log |e iθ − w/R|,

it suffices to prove that∫ 2π

0
log |e iθ − a|dθ = 0, whenever |a| < 1.

This in turn is equivalent (after the change of variables θ 7→ −θ ) to∫ 2π

0
log |1− ae iθ|dθ = 0, whenever |a| < 1.
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Jensen’s formula

Jensen’s formula

To prove this, we use the function F (z) = 1− az , which vanishes
nowhere in the closure of the unit disc.

As a consequence, there exists a holomorphic function G in a disc of
radius greater than 1 such that

F (z) = eG(z).

Then |F | = eRe(G), and therefore log |F | = Re(G ). Since F (0) = 1 we
have log |F (0)| = 0, and an application of the mean value property to
the real part of holomorphic function G , which is log |F (z)| concludes
the proof of the theorem, giving∫ 2π

0
log |1− ae iθ|dθ = 0, whenever |a| < 1.
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Jensen’s formula

Jensen’s formula

From Jensen’s formula we can derive an identity linking the growth of
a holomorphic function with its number of zeros inside a disc.

If f is a holomorphic function on the closure of a disc D(0,R), we
denote by nf (r) the number of zeros of f (counted with their
multiplicities) inside the disc D(0, r), with 0 < r < R.

A simple but useful observation is that nf (r) is a non-decreasing
function of r .

Lemma

Under the assumptions of the previous theorem, we have∫ R

0
nf (r)

dr

r
=

N∑
k=1

log

∣∣∣∣ Rzk
∣∣∣∣.
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Jensen’s formula

Jensen’s formula

Proof:

First we have
N∑

k=1

log

∣∣∣∣ Rzk
∣∣∣∣ = N∑

k=1

∫ R

|zk |

dr

r
.

If we define the characteristic function

ηk(r) =

{
1 if r > |zk | ,
0 if r ≤ |zk | ,

then

N∑
k=1

ηk(r) = nf (r).
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Jensen’s formula

Jensen’s formula

The lemma is proved using

N∑
k=1

∫ R

|zk |

dr

r
=

N∑
k=1

∫ R

0
ηk(r)

dr

r
=

∫ R

0

(
N∑

k=1

ηk(r)

)
dr

r
=

∫ R

0
nf (r)

dr

r
.

This completes the proof of the lemma.

Corollary

As a corollary of Jensen’s formula and the previous lemma, we obtain∫ R

0
nf (r)

dr

r
=

1

2π

∫ 2π

0
log | f (Re iθ)|dθ − log | f (0)|.
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Jensen’s formula

Functions of finite order

Let f be an entire function. If there exist ρ ∈ R+ and constants
A,B ∈ R+ such that

| f (z)| ≤ AeB|z|ρ for all z ∈ C,

then we say that f has an order of growth ≤ ρ.

We define the order of growth of f as

ρf = inf ρ,

where the infimum is taken over all ρ > 0 such that f has an order of
growth ≤ ρ.

For example, the order of growth of the function ez
2
is 2.
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Jensen’s formula

Functions of finite order

Theorem

If f is an entire function that has an order of growth ≤ ρ, then:

(i) nf (r) ≤ Crρ for some C > 0 and all sufficiently large r .

(ii) If z1, z2, . . . denote the zeros of f , with zk ̸= 0, then for all s > ρ we
have

∞∑
k=1

1

|zk |s
< ∞.

Proof: It suffices to prove the estimate for nf (r) when f (0) ̸= 0.

Indeed, consider F (z) = f (z)/z l , where l is the order of the zero of f
at the origin. Then nf (r) and nF (r) differ only by a constant, and F
also has an of order of growth ≤ ρ.
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Jensen’s formula

Functions of finite order

If f (0) ̸= 0 we may use formula from the previous corollary, namely∫ R

0
nf (x)

dx

x
=

1

2π

∫ 2π

0
log | f (Re iθ)|dθ − log | f (0)|.

Choosing R = 2r , this formula implies∫ 2r

r
nf (x)

dx

x
≤ 1

2π

∫ 2π

0
log | f (Re iθ)|dθ − log | f (0)|.

On the one hand, since nf (r) is increasing, we have∫ 2r

r
nf (x)

dx

x
≥ nf (r)

∫ 2r

r

dx

x
= nf (r)[log 2r − log r ] = nf (r) log 2.

On the other hand, the growth condition on f (for all large r) gives∫ 2π

0
log |f (Re iθ)|dθ ≤

∫ 2π

0
log |AeBRρ |dθ ≤ C ′rρ.
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Jensen’s formula

Functions of finite order

Consequently, nf (r) ≤ Crρ for an appropriate C > 0 and all
sufficiently large r .

The following estimates prove the second part of the theorem:

∑
|zk |≥1

|zk |−s =
∞∑
j=0

 ∑
2j≤|zk |<2j+1

|zk |−s


≤

∞∑
j=0

2−jsnf
(
2j+1

)
≤ c

∞∑
j=0

2−js2(j+1)ρ ≤ c ′
∞∑
j=0

(
2ρ−s

)j
< ∞

The last series converges because s > ρ.

This completes the proof of the theorem.
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Infinite products

Infinite products

Given a sequence (an)n∈Z+ ⊆ C, we say that the product

∞∏
n=1

(1 + an)

converges if the limit

lim
N→∞

N∏
n=1

(1 + an)

of the partial products exists.

A useful necessary condition that guarantees the existence of a
product is contained in the following lemma.

Lemma

If
∑

n∈Z+
|an| < ∞, then the product

∏∞
n=1 (1 + an) converges. Moreover,

the product converges to 0 if and only if one of its factors is 0.
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Infinite products

Infinite products

If
∑

n∈Z+
|an| converges, then for all large n we must have |an| < 1/2.

We may assume, without loss of generality, that this inequality holds
for all n ∈ Z+.

Hence, we can define log (1 + an) by the usual power series, and this
logarithm satisfies the property that

1 + z = e log(1+z),

whenever |z | < 1.

Hence we may write the partial products as follows:

N∏
n=1

(1 + an) =
N∏

n=1

e log(1+an) = eBN

where BN =
∑N

n=1 bn with bn = log (1 + an).
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Infinite products

Infinite products

By the power series expansion we see that

| log(1 + z)| ≤ 2|z |,

if |z | < 1/2. Hence |bn| ≤ 2 |an|, so BN converges as N → ∞ to a
complex number, say B.

Since the exponential function is continuous, we conclude that

lim
N→∞

eBN = eB ,

and the first part follows.

Observe also that if 1 + an ̸= 0 for all n ∈ Z+, then the product
converges to a non-zero limit since it is expressed as eB .
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Infinite products

Infinite products of holomorphic functions

Lemma

Suppose (Fn)n∈Z+ is a sequence of holomorphic functions on the open set
Ω ⊆ C. If there exist constants cn > 0 such that∑

n∈Z+

cn < ∞ and |Fn(z)− 1| ≤ cn for all z ∈ Ω,

then:

(i) The product
∏∞

n=1 Fn(z) converges uniformly in Ω to a holomorphic
function F (z).

(ii) If Fn(z) does not vanish for any n, then

F ′(z)

F (z)
=

∞∑
n=1

F ′
n(z)

Fn(z)
.
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Infinite products

Infinite products of holomorphic functions

To prove the first statement, note that for each z we may argue as in
the previous lemma if we write Fn(z) = 1 + an(z), with |an(z)| ≤ cn.

Then, we observe that the estimates are actually uniform in z because
the cn ’s are constants. It follows that the product converges
uniformly to a holomorphic function, which we denote by F (z).

To establish the second part of the theorem, suppose that K is a
compact subset of Ω, and let

GN(z) =
N∏

n=1

Fn(z).

We have just proved that limN→∞ GN = F uniformly in Ω. Hence,
the sequence (G ′

N)N∈Z+ converges uniformly to F ′ in K .
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Infinite products

Infinite products of holomorphic functions

Since GN is uniformly bounded from below on K , we conclude that

lim
N→∞

G ′
N

GN
=

F ′

F

uniformly on K , and because K is an arbitrary compact subset of Ω,
the limit holds for every point of Ω.

Moreover, a simple calculation yields

G ′
N

GN
=

N∑
n=1

F ′
n

Fn
,

so part (ii) of the lemma is also proved.

(MATH 503, FALL 2025) Lecture 17 November 3, 2025 19 / 38



Infinite products

Canonical factors

For each integer k ≥ 0 we define the canonical factors by

E0(z) = 1− z ,

and
Ek(z) = (1− z)ez+z2/2+···+zk/k , for k ≥ 1.

The integer k is called the degree of the canonical factor.

Lemma

If |z | ≤ 1/2, then
|Ek(z)− 1| ≤ 2e|z |k+1.
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Infinite products

Canonical factors

Proof: If |z | ≤ 1/2, then with the logarithm defined in terms of the power
series, we have 1− z = e log(1−z).

Therefore
Ek(z) = e log(1−z)+z+z2/2+···+zk/k = ew

where w = −
∑∞

n=k+1 z
n/n. Observe that since |z | ≤ 1/2 we have

|w | ≤ |z |k+1
∞∑

n=k+1

|z |n−k−1/n ≤ |z |k+1
∞∑
j=0

2−j ≤ 2|z |k+1.

In particular, we have |w | ≤ 1 and this implies that

|1− Ek(z)| = |1− ew | ≤ e|w | ≤ 2e|z |k+1.
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Infinite products

Weierstrass infinite products

Theorem

Given any sequence (an)n∈Z+ ⊆ C with limn→∞ |an| = ∞, there exists an
entire function f that vanishes at all z = an and nowhere else. Any other
such entire function is of the form f (z)eg(z), where g is entire.

Proof:

Recall that if a holomorphic function f vanishes at z = a, then the
multiplicity of the zero a is the integer m so that

f (z) = (z − a)mg(z),

where g is holomorphic and nowhere vanishing in a neighborhood of a.
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Infinite products

Weierstrass infinite products

To begin the proof, note first that if f1 and f2 are two entire functions
that vanish at all z = an and nowhere else, then f1/f2 has removable
singularities at all the points an. Hence f1/f2 is entire and vanishes
nowhere, so that there exists an entire function g with

f1(z)/f2(z) = eg(z).

Therefore f1(z) = f2(z)e
g(z) as desired.

We have to construct a function that vanishes at all the points of the
sequence (an)n∈Z+ and nowhere else.

Suppose that we are given a zero of order m at the origin, and that
a1, a2 . . . are all non-zero. Then we define the Weierstrass product
by

f (z) = zm
∞∏
n=1

En (z/an) .
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Infinite products

Weierstrass infinite products

We claim that this function has the required properties; that is,

(i) f is entire with a zero of order m at the origin;

(ii) f has zeros at each point of the sequence (an)n∈Z+ ;

(iii) f vanishes nowhere else.

Fix R > 0, and suppose that z belongs to the disc D(0,R). We shall
prove that f has all the desired properties in this disc, and since R is
arbitrary, this will prove the theorem.

We can consider two types of factors in the formula defining f , with
the choice depending on whether |an| ≤ 2R or |an| > 2R.

There are only finitely many terms of the first kind, since

lim
n→∞

|an| = ∞,

and we see that the finite product vanishes at all z = an ∈ D(0,R).
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Infinite products

Weierstrass infinite products

If |an| ≥ 2R, we have |z/an| ≤ 1/2, hence the previous lemma implies

|En (z/an)− 1| ≤ 2e

∣∣∣∣ zan
∣∣∣∣n+1

≤ e

2n
.

Therefore, the product ∏
|an|≥2R

En (z/an)

defines a holomorphic function when |z | < R, and does not vanish in
that disc by the previous lemmas.

This shows that the function f has the desired properties, and the
proof of Weierstrass’s theorem is complete.

(MATH 503, FALL 2025) Lecture 17 November 3, 2025 25 / 38



Infinite products

Hadamard’s theorem

Theorem

Suppose f is entire and has growth order ρ0. Let k ∈ Z be so that
k ≤ ρ0 < k + 1. If a1, a2, . . . denote the (non-zero) zeros of f , then

f (z) = eP(z)zm
∞∏
n=1

Ek (z/an) ,

where P is a polynomial of degree ≤ k, and m is the order of the zero of f
at z = 0, and Ek are the canonical factors for k ∈ N.

We gather a few lemmas needed in the proof of Hadamard’s theorem.
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Infinite products

Hadamard’s theorem

Lemma

The canonical products satisfy

|Ek(z)| ≥ e−c|z|k+1
if |z | ≤ 1/2,

and
|Ek(z)| ≥ |1− z |e−c|z|k if |z | ≥ 1/2.

Here, we allow the implied constant c = ck to depend on k ∈ N.

Proof:

If |z | ≤ 1/2 we can use the power series to define the logarithm of
1− z , so that

Ek(z) = e log(1−z)+
∑k

n=1 z
n/n = e−

∑∞
n=k+1 z

n/n = ew .

Since |ew | ≥ e−|w | and |w | ≤ c |z |k+1, the first part follows.
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Infinite products

Hadamard’s theorem

For the second part, simply observe that if |z | ≥ 1/2, then

|Ek(z)| = |1− z |
∣∣∣ez+z2/2+···+zk/k

∣∣∣ ,
and that there exists c ′ > 0 such that∣∣∣ez+z2/2+···+zk/k

∣∣∣ ≥ e−|z+z2/2+···+zk/k| ≥ e−c ′|z|k .

Lemma

For any s ∈ R+ with ρ0 < s < k + 1, we have∣∣∣∣∣
∞∏
n=1

Ek (z/an)

∣∣∣∣∣ ≥ e−c|z|s ,

except possibly when z belongs to the union of the discs centered at an of
radius |an|−k−1, for n ∈ Z+.
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Infinite products

Hadamard’s theorem

Proof: First, we write

∞∏
n=1

Ek (z/an) =
∏

|an|≤2|z|

Ek (z/an)
∏

|an|>2|z|

Ek (z/an)

For the second product the estimate asserted above holds for all
z ∈ C. Indeed, by the previous lemma∣∣∣∣ ∏
|an|>2|z|

Ek (z/an)

∣∣∣∣ = ∏
|an|>2|z|

|Ek (z/an)|

≥
∏

|an|>2|z|

e−c|z/an|k+1 ≥ e−c|z|k+1
∑

|an|>2|z||an|
−k−1

.

But |an| > 2|z | and s < k + 1, so we must have

|an|−k−1 = |an|−s |an|s−k−1 ≤ C |an|−s |z |s−k−1.
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Infinite products

Hadamard’s theorem

Therefore, the fact that
∑

n∈Z+
|an|−s converges implies that∣∣∣∣ ∏

|an|>2|z|

Ek (z/an)

∣∣∣∣ ≥ e−c|z|s

for some constant c > 0, which may depend on k and s.

To estimate the first product, we use the second part of the previous
lemma, and write∣∣∣∣ ∏

|an|≤2|z|

Ek (z/an)

∣∣∣∣ ≥ ∏
|an|≤2|z|

∣∣∣∣1− z

an

∣∣∣∣ ∏
|an|≤2|z|

e−c|z/an|k . (*)

We now note that∏
|an|≤2|z|

e−c|z/an|k = e−c|z|k
∑

|an|≤2|z||an|
−k

,

and again, we have |an|−k = |an|−s |an|s−k ≤ C |an|−s |z |s−k .
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Infinite products

Hadamard’s theorem

This proves that ∏
|an|≤2|z|

e−c ′|z/an|k ≥ e−c|z|s .

The estimate on the first product on the right-hand side of (*) will
require the restriction on z imposed in the statement of the lemma.
Indeed, whenever z does not belong to a disc of radius |an|−k−1

centered at an, we must have |an − z | ≥ |an|−k−1.
Therefore ∏

|an|≤2|z|

∣∣∣∣1− z

an

∣∣∣∣ = ∏
|an|≤2|z|

∣∣∣∣an − z

an

∣∣∣∣
≥

∏
|an|≤2|z|

|an|−k−1 |an|−1

=
∏

|an|≤2|z|

|an|−k−2 .
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Infinite products

Hadamard’s theorem

Finally, the estimate for the first product follows from the fact that

(k + 2)
∑

|an|≤2|z|

log |an| ≤ (k + 2)nf (2|z |) log 2|z |

≤ c |z |s log 2|z |

≤ c ′|z |s′

for any s ′ > s, and the second inequality follows as n(2|z |) ≤ c |z |s .
Hence, we have proved that∣∣∣∣∣

∞∏
n=1

Ek (z/an)

∣∣∣∣∣ ≥ e−c ′|z|s′ ,

except possibly when z belongs to the union of the discs centered at
an of radius |an|−k−1, for n ∈ Z+.
Since we restricted s to satisfy s > ρ0, we can take an initial s
sufficiently close to ρ0, so that the assertion of the lemma is
established (with s being replaced by s ′).
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Infinite products

Hadamard’s theorem

Corollary

There exists a sequence of radii, r1, r2, . . ., with rm → ∞, such that∣∣∣∣ ∞∏
n=1

Ek (z/an)

∣∣∣∣ ≥ e−c|z|s for |z | = rm.

Proof:

Since
∑

n∈Z+
|an|−k−1 < ∞, there exists N ∈ Z+ so that

∞∑
n=N

|an|−k−1 < 1/10.

Therefore, given any two consecutive large integers L and L+ 1, we
can find r ∈ R+ with L ≤ r ≤ L+ 1, such that the circle of radius r
centered at the origin does not intersect the forbidden discs from the
previous lemma.
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Infinite products

Hadamard’s theorem

Otherwise, the union of the intervals In =
[
|an| − 1

|an|k+1 , |an|+ 1
|an|k+1

]
(which are of length 2 |an|−k−1) would cover all the interval [L, L+ 1].

This would imply 2
∑∞

n=N |an|−k−1 ≥ 1, which is a contradiction. We
then apply the previous lemma with |z | = r and the proof follows.
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Infinite products

Proof of Hadamard’s theorem

Proof: Let

E (z) = zm
∞∏
n=1

Ek (z/an) .

To prove that E is entire, we repeat the argument from the proof of
the Weierstrass theorem. Namely, we have

|Ek (z/an)− 1| ≤ 2e

∣∣∣∣ zan
∣∣∣∣k+1

, for all large n ∈ Z+,

and that the series
∑

n∈Z+
|an|−k−1 converges. (Here, recall that

ρ0 < s < k + 1.)
Moreover, E has the zeros of f , therefore f /E is holomorphic and
nowhere vanishing. Hence

f (z)

E (z)
= eg(z)

for some entire function g .
(MATH 503, FALL 2025) Lecture 17 November 3, 2025 35 / 38



Infinite products

Proof of Hadamard’s theorem

By the fact that f has growth order ρ0, and because of the estimate
from below for E obtained in the previous corollary, we have

eRe(g(z)) =

∣∣∣∣ f (z)E (z)

∣∣∣∣ ≤ c ′ec|z|
s
, whenever |z | = rm.

This proves that

Re(g(z)) ≤ C |z |s , for |z | = rm,

where (rm)m∈Z+ ⊆ R+ is a a sequence such that limm→∞ rm = ∞.

We have to prove that g is a polynomial of degree ≤ s.

We can expand g in a power series centered at the origin

g(z) =
∞∑
n=0

anz
n
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Infinite products

Proof of Hadamard’s theorem

As a simple application of Cauchy’s integral formulas, we may write

1

2π

∫ 2π

0
g
(
re iθ
)
e−inθdθ =

{
anr

n if n ≥ 0,

0 if n < 0.

By taking complex conjugates we find that

1

2π

∫ 2π

0
g (re iθ)e−inθdθ = 0

whenever n > 0.
Since 2u = g + g we add the above two equations and obtain

anr
n =

1

π

∫ 2π

0
u
(
re iθ
)
e−inθdθ, whenever n > 0.

For n = 0 we find that

2 Re (a0) =
1

π

∫ 2π

0
u
(
re iθ
)
dθ.
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Infinite products

Proof of Hadamard’s theorem

Now we recall the simple fact that whenever n ̸= 0, the integral of
e−inθ over any circle centered at the origin vanishes. Therefore

an =
1

πrn

∫ 2π

0

[
u
(
re iθ
)
− Cr s

]
e−inθdθ when n > 0.

Taking r = rm, we consequently obtain

|an| ≤
1

πrnm

∫ 2π

0

[
Cr sm − u

(
rme

iθ
)]

dθ ≤ 2Cr s−n
m − 2Re (a0) r

−n
m .

Letting m → ∞ we deduce an = 0 for any n > s.

This completes the proof of Hadamard’s theorem.
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