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Introduction to the prime number theorem

Important arithmetic functions involvong primes

1. The von Mangoldt function A is defined by

A(n) =

logp, if n= pX for some prime p and k € Z,
0, otherwise '

2. The first Chebyshev function ¥ is defined for x > 2 by

9(x):= Y logp,

PGHDSX
while it is convenient to set ¥(x) := 0 for 0 < x < 2, where

Py :={peP:p<x}=PnNJ0,x].
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Introduction to the prime number theorem

Important arithmetic functions involvong primes

3. The second Chebyshev function v is defined for x > 2 by

b(x) = 3 An),

ne(x]
while it is convenient to set 1(x) := 0 for 0 < x < 2.

4. The prime counting function 7 is defined by

7(x) = Z 1 = #P<,,

Pepgx

while it is convenient to set 7(x) := 0 for 0 < x < 2.
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Simple relations

Theorem

For x > 2 we have

mmzﬂun%x—Lfﬂn“,

t

and

ﬂ@:M”+AXM”dt

log x tlog? t

Proof: We have

m(x) = ZI—ZIP

PEP< 1<n<x
and
= E log p = g 1p(n) log n.
pEP< 1<n<x
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Introduction to the prime number theorem

Simple relations

o If x,y € Ry with |y] < |x], and g € C}([y, x]), then we know

X

> f(men) = Fx)gt) ~ Fnel) - [ F(g e,

y<n<x y

where F(t) :=3 1, f(n).

e Taking f(n) = 1p(n) and g(x) = log x with y = 1 we obtain

x dt
I(x) = Z 1p(n)logn = m(x)logx — (1) log1 — / m(t)—,
1<n<x 1 t
which proves the first identity since 7(t) = 0 for t < 2.
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Introduction to the prime number theorem

Simple relations

@ Next, let f(n) = 1p(n)logn and g(x) = 1/log x and write

)= Y e =Y f(n)

logn’
3/2<n<x 1<n<x
@ Using the summation by parts formula with y = 3/2 we obtain

I(x)  9(3/2) /X 9(t)
+ dt
3

) = /2 tlog?t

" logx log3/2

which proves the second identity, since ¥(t) =0 if t < 2. O
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Introduction to the prime number theorem

Pointwise bounds

Lemma
(i) For all x € Ry, we have

9(x) < (x) < I(x) + 7(v/x) log x.
(i) For all x =2 and all a > 1, we have

av(x)
log x

cr<m(x) < T ().

Proof of (i): One may suppose x > 2. We first have

it
P(x =) logp—> logp=>_ > logp,
pk<x p<x p<y/x k=2

so that ¥(x) = ¥(x).
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Introduction to the prime number theorem

Pointwise bounds

@ On the other hand, we have

i8]
log x
P(x) —¥(x) = Z Z log p < Z Iogpbong < Z log x
p<y/x k=2 P<V/X P<V/X

= 7(\/x) log x. O
Proof of (ii): We have

Z Zlogp Ingzlgp_i

pP<X IOg p

@ For 2 < T < x, we also have

=1+ Y 1=x(n)+ Y logpgn(T)JrliéX;.

p<T T<p<x T<p<x

and the choice of T = x1/2 implies the asserted estimate. []
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Equivalent forms of the prime number theorem

Theorem
The following relations are equivalent:

7(x) log x -1 (A)

lim
X—»00 X
lim M =
X—>00 X
lim M

X—00 X

1. (B)

=1 (C)

Proof: We know that

90 _ 00 _ 90, w(y/)logx
X X X X

Hence the equivalence between (B) and (C) follows, since

i T(VX) logx

=0.
X—00 X
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Introduction to the prime number theorem

Equivalent forms of the prime number theorem

@ For every a > 1 know that

1
0() _ mx)logx _ ai(x) | 7(x'/?) logx
X X X X
@ For every a > 1 we also know that
W(Xl/a) log x

lim ——————— =
X—00 X

I
lim 719(x) < lim 77T(X) 08X < lim aﬂ(x).
X—o0 X X—00 X X—00 X

Since a > 1 is arbitrary, we obtain equivalence between (A) and (B).

This completes the proof of the theorem. O
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Introduction to the prime number theorem

Chebyshev theorem, upper bound

Theorem

For all x > 1, we have

Y(x) < xlog 4.

Proof: We first prove by induction that, for all n € Z_, we have

Y¥(n) < nlog4.

@ This inequality is clearly true for n € [3]. If n
d(n) =d(n—1)

@ Suppose now that n > 5 is odd and set n =2m+ 1 with me Z_..
The idea is to use the fact that the product

> 4 is even, we have

< (n—1)log4 < nlog4”.

m+1<p<2m+1

2 1
H p divides the binomial coefficient ( mm+ )
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Chebyshev theorem, upper bound

@ To see this, observe that p € P such that m+1 < p < 2m+ 1 divides
(2m + 1)! because of p < 2m + 1, but does not divide m!(m + 1)!
because of p > m+ 1, so that

2m+ 1
[I » dvidess (2m+1) :m!(m+1)!( mE )
m+1<p<2m+1 m

and since the product is coprime to m!(m + 1)! the claim follows.
o Taking logarithms, we then obtain

2 1
I2m+1) —JI(m+1) = Z log p < Iog(m+ )
m+1<p<2m+1 m

@ Using Stirling’s formula we have (2mm+1) < 2,;"j11 \;‘L < 4M thus

¥(2m+1) < mlog 4+9(m+1) < mlog4+(m+1)log4 = (2m+1)log 4,

where we have used the induction hypothesis applied to ¥(m + 1).
Lecture 20 November 17, 2025 12/37



Introduction to the prime number theorem

Chebyshev theorem, lower bound
@ The lemma follows from
I(x) = 9(|x]) < |x] log4 < xlog4.

@ The proof for the upper bound is now completed.

Theorem
For all x > 1537, we have

I(x) >

log4

Proof: We first notice that the function f defined by

- vi-[3]- 53]+ 3}

is periodic of period 30, since |x + n| = | x| + n for any n € Z.
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Chebyshev theorem, lower bound
e Moreover, for x ¢ Z, we have
f(30 —x) =1—f(x),

since |—x| = —|x| — 1 for x ¢ Z.

@ An inspection of its values when x € [1,15) allows us to infer that
f(x) only takes the values 0 or 1 if x ¢ Z.

e Since f is continuous on the right, we also have f(x) =0 or 1 when
x € Z. By periodicity, we infer that f(x) =0 or 1 for all x € R.

@ Since |x/kn] = 0 whenever n > x/k for k € {2,3,5,30}, we obtain

s () =Sam (|2 - [2]- 2] - |2) + |5s)

zé/\(n) m - néz/\(n) BJ - H<ZX;3/\(n) B}J
- o]+ 3 ros]
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Introduction to the prime number theorem

Chebyshev theorem, lower bound

@ By a simplified form of Striling’s formula we know for all x > 1 that

Z logn=xlogx — x+ 1+ R(x), where 0< R(x)<logx.
ne[x]

@ Since A x1 = log, then we conclude that
X
dlogn=> D "Ad)= D ANd) > => /\(d){dJ.
n€e[x] nelx] d|n de(x] ke[x/d]  de€[x]
@ Hence for x > 1, we have
X

Z A(d) {dJ = xlogx—x+1+R(x), where 0< R(x)<logx.
de[x]
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Introduction to the prime number theorem

Chebyshev theorem, lower bound
@ Inserting this bounds to the previous formula we obtain

x) 2xlogx —x+1— iIogi—i—kl—i-logi
2

2 2 2
—(ilo i—i—i-l—klog;i)—(ilogi—i—kl—klog§>
36373 3/ \5 %5 5 5
+<i|ogi—i+l>
30 °30 30

—xlog (27/ 1533/ 1051/6) —3log x + log 30 — 1.

@ Using the estimate ¢(x) < 9¥(x) + 7(y/x) log x we obtain the desired
lower bound

J(x) > xlog <27/1533/1051/6> — (VX +3)logx > é7

whenever x € R is sufficiently large. This completes the proof. O
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Introduction to the prime number theorem

Bertrand's postulate

Note that
log (27/1533/1051/6) ~0.92129. ..,

which is a very good lower bound. It was sufficient to allow Chebyshev to
prove Bertrand's famous postulate.

Theorem

Let n € Zy. Then the interval (n,2n] contains a prime number.

Proof: We check numerically the result for n € [768].

@ Suppose n > 769, using Chebyshev's upper and lower bounds we
deduce

2

Z logp =9(2n) —Y(n) > n ( - Iog4> > 0.
log 4

n<p<2n

@ This shows that (n,2n] NP # (), which implies the desired result. [
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Analytic continuation of the Riemann zeta function

Euler—Maclaurin—Jacobi summation formula

Theorem

Let b > a and q > 1 be integers. Let f € C9([a, b]), then

/ F(x dx—i—z 5 ( =1 (p) — f(’*l)(a)) + Ry,

n= a+1

where
_1)q+1 b
(1q)!+ / By(x — [x))F(@(x)dx.

Rq =
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Euler's summation formula

Theorem
If f € CY([a, b]), and 1(x) = {x} — 1/2 for x € R, then

b b
> f(n)= / f(x)dx + f(a)ip(a) — F(b)y(b) + / ! (x)(x)dx.

a<n<b a

Proof: We apply the Euler—Maclaurin—Jacobi summation formula with
g =1, then
1

Bi(x) = Box + B =x=3, and Bj(x) =1,

and consequently, we have

b
Ri= [ Fe9u(ax

which completes the proof. []
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Riemann zeta-function

Definition

The Riemann zeta-function ((s) is defined for all complex numbers
s = o0 + it such that 0 > 1 by

()=

n=1

@ By the absolute convergence for all complex numbers s = o + it such
that o > 1 we also have the Euler product formula

o) =TI (1_1)1.

S
peP p
@ The Euler product formula enables us to see that ((s) # 0 in the
half-plane o > 1.
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Analytic continuation of the Riemann zeta function

Remarks

@ Indeed, for 0 > 1 we have

peP peP
> > dt o
< *Slﬁ‘ o 1
- 1 t g —
Thus [¢(s)] = 5% > .

Euler's summation formula
If f € C([a, b]), and 1(x) = {x} — 1/2 for x € R, then

b
>ty = [ Aga + ahuta) — o) + [ Feputxran

a<n<b a
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Analytic continuation of the Riemann zeta function

Riemann zeta-function

@ Let x > 1 be a real number and s = o + it with 0 > 1. By the Euler
summation formula with a =1, b = x and f(x) = x~*°, we can write

111k k) )
B v du.
L~ 2 + s—1 xs 0 , ustl !

@ Taking x — oo we obtain

1 1 o), *
dﬂ=2+s_1s[ N du )
@ Since |1(x)| < 3, the integral converges for Res > 0 and is uniformly

convergent in any compact set to the right of the line Res = 0.

@ This implies that it defines an analytic function in the half-plane
Res > 0, and therefore (*) extends ¢ to a meromorphic function in
this half-plane, which is analytic except for a simple pole at s =1
with residue 1.
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Theta function
@ Replacing x by mn?x in the integral defining I'(s/2) gives
7s/2r (%) n° = /OOO x5/2 le=mmx gy forall o > 0.

@ The purpose is to sum both sides of this equation. To this end, we
define the following two Theta functions. For all x > 0, we set

CU(X) = Z e—ﬂ'nzx and Q(X) = 2W(X) +1= Z e—7rn2x'
n=1 ez
o Then g(t) = e ™" satisfies [, g(t)dt =1, and

7Tl.!2

g(u)=e"
@ For a Schwaltz function f, by the Poisson summation formula, we
have >, f(n) = >,z f(n), hence

O(x) = Zg(\/}n) =x"Y29(x71)  forall x> 0.
neZ
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Analytic continuation of the Riemann zeta function

Theta function

@ Summing this equation over n € Z and interchanging the sum and
integral, we obtain for all & > 1 that

sr (%) ¢(s) = /000 x*271(x)dx,

since the sum and integral converge absolutely for o > 1.
e Splitting the integral [ = fol + [ and changing the variables
x +— 1/x in the first integral yields

rs2r <g> ((s) = /OO x2Ly(x) dx + /OO x~s/27 1y, (i) dx.
1 1

o Using A(x~1) = x/20(x) we write w (1) = x12w(x) + *, and

S/2r (%) (s) = _% 4 1 X /OO w(x) (XS/Z —I—X(l—s)/2) %’
1

s—1 X

whenever o > 1.
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Functional equation

Theorem
Let

£(s) = s(s — D)a /21 (s/2)¢(s)
s(s—=1) [ s s dx
=14+ T [T (000 — 1) (72 4 x092) X

where 6 is the Theta function 6(x) =", e~ TX

@ Then the function £(s) can be extended analytically in the whole
complex plane to an entire function that satisfies the functional
equation £(s) = (1 — s).

@ Thus the Riemann zeta-function can be extended analytically in the
whole complex plane to a meromorphic function having a simple pole
at s = 1 with residue 1. Furthermore, for all s € C\{1}, we have

. TS
¢(s) = 2575 Lsin (7) M1 —s)C(1—s).
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Analytic continuation of the Riemann zeta function

Functional equation

Proof: For o > 1 we have
= _ 1 1 s 2 1 —s)/2 dx *
=)=t [ wbd (#PxE) )
Then we see that
§(s) = s(s = 1)=(s).

@ Since w(x) = O(e™™) as x — oo, we infer that the integral in (*) is
absolutely convergent for all s € C whereas the left-hand side is a
meromorphic function on ¢ > 0. This implies that:

(i) The identity (*) is valid for all & > 0.
(i) The function =(s) can be defined by this identity as a meromorphic
function on C with simple poles at s =0 and s = 1.
(iii) Since the right-hand side of (*) is invariant under the substitution
s+ 1—s, we obtain =(s) = =(1 —s) and &(s) = &(1 — s).
(iv) The function s +— &(s) = s(s — 1)=(s) is entire on C. Indeed, if
o > 0, the factor s — 1 counters the pole at s = 1, and the result on

all C follows from the functional equation.
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Analytic continuation of the Riemann zeta function

Functional equation

@ It remains to show that the functional equation can be written as
s,_s—1 m
((s) =2°n 5|n<2)|'(1—s) ¢(1—5).
@ Since =(s) = =(1 — s), we have

[(s/2)¢(s) = 7°/%=(s) = 7/?=(1 — s) = 75~ 1/2r< > ) (1 s).

o Multiplying both sides by 7=1/225~1 (1££) and using the duplication
STIM(s/2) T ((s + 1)/2) we see

r(s)ets) = n (155 r (B ) -9
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Analytic continuation of the Riemann zeta function

Functional equation

@ Now the reflection formula Si"ﬂ“ = r(s)rl(l—s)’ implies that

sinTs

((s) = @2m) <sn(7r(1+s)/z)

) M1-—s)¢(1-5)
and the result follows from the identity

. . (TSN . (T

sinms = 2sin (7> sin (5(1 + s)) :

@ The proof is complete. Ol
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Analytic continuation of the Riemann zeta function

Remarks

@ ((s) has simple zeros at s = —2, —4, —6, —8, . ... Indeed, since the
integral in (*) is absolutely convergent for all s € C and since
w(x) > 0 for all x € R, we have

1 1 ° dx
=(—2 - = _ ( —n n+1/2) bt
(—2n) P 2n—|—1+/1 w(x) (x "+ x ~ >0

for all n € Z4. The result follows from the fact that ['(s/2) has
simple poles at s = —2n.

@ These zeros are the only ones lying in the region o < 0. They are
called trivial zeros of the Riemann zeta-function.
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Analytic continuation of the Riemann zeta function

Remarks

@ For all 0 < o < 1, we have ((0) # 0. Indeed, for all o > 0 we see

¢(s) = sil —5/1 js)i}ldx

we infer that, for all 0 < o < 1, we obtain

o  dx
which implies that (o ) <l+4+oc/(c—1)forall0 <o <1
@ Hence ((0) < 0 for aII < o < 1, and the functional equation implies

the asserted result.
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Analytic continuation of the Riemann zeta function

Stirling formula

Theorem

Let 0 < § < m, then for any z € C so that |argz| < m — §, we have

1 1
logl(z) = <z - 2> logz —z+ 5 log 2m 4+ O(|z|™1),

uniformly as |z| — oo, where logarithm has principal value, and the
implicit constant depend at most on 4.
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Stirling formula

Corollary
Let a,b € R be fixed and a < b.

(i) Then for every z = o + it with o € [a, b] and |t| > 1, we have

[(z) = V2me 3t]¢o =2 il (oglt-D 5 (0-3) (1 +0 ( : )) .

t]

(ii) Moreover,

[(z)| = v2re 3It|¢[7—3 (1 +0 (ﬁ))

(i) This implies | (z)| = O (e~ %!|¢]7~%) and

. s 1 o5
() ey = O (e7"1e277).
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Analytic continuation of the Riemann zeta function
Order of &

Lemma

The function &(s) is an entire function of order 1. Furthermore,

log [§(s)| _ 1

limsup ———— = —.
Is|—o00 |S|log[s| 2

Proof: Since £(s) = &£(1 — s), it suffices to bound [£(s)| for Re(s) > 1/2.
e We can estimate £(s) by invoking Stirling’s formula, and elementary
upper bounds for ((s). When Re(s) > 1, we will use the identity

_ = {x
C(S)—:—S ) XS+1dX.

@ However, since the last integral represents a holomorphic function in
Re(s) > 0, the identity holds in this larger domain.
@ In particular, we have

|(s — 1)¢(s)| = O(|s|?) whenever Re(s) > 1/2.
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Analytic continuation of the Riemann zeta function

e Moreover, since log|l'(s)| < |log(s)|, Stirling’s formula yields
log|T'(s)| < |s|log|s| + O(|s|) whenever Re(s)>1/2.
e Since £(s) = s(s — 1)75/2T(s/2)¢(s), we obtain
log |£(s)| < %\s| log|s| + O(|s|) whenever Re(s) >1/2.

which establishes the first claim of the lemma.
@ For the second claim, we note that

log |'(|s])| = log (|s]) = |s| log [s| + O(|s]),
whence
1
log £(|s]) = 5lsllogs| + O(ls]) as |[s]— oo

This completes the proof of the lemma. O
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Analytic continuation of the Riemann zeta function

Zeros of function &

Theorem

The function &(s) has infinitely many zeros in the strip 0 < Re(s) <1 and
no zeros outside that strip. It can be written as

) =TT (1-2) e, *

where p runs through the zeros of {(s) counted according to their
multiplicities and

B=1+ % — log(2v/7).

Proof:

@ By the previous lemma, we know that £(s) has order 1.
e Noting that £(0) = 1, and using Hadamard's theorem we obtain (*)
for some B.
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Analytic continuation of the Riemann zeta function

Zeros of function &

e If £(s) had only a finite number of zeros, (*) would imply the
estimate log |£(s)| = O(|s|), which contradicts the fact that
log [£(s)] _ 1

lim supjs| o0 Tofiog 5] = 2
@ For Res > 1, the zeta function ((s), and, consequently, £(s), have no
zeros in this range. By using the equation £(s) = £(1 — s) it follows
that £(s) # 0 for Res < 0. Since 1 = £(0) = £(1) # 0, the zeros of
&(s) lie in the strip 0 < Re(s) < 1.
@ Show that B =14 3 — log(2/7). O
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Analytic continuation of the Riemann zeta function

Zeros of function (

The zeta function ((s) has simple zeros at s = —2, —4, -6, -8, .. ..
These zeros are called the trivial zeros.

@ For Res > 1, the zeta function ((s) has no zeros.
@ In addition to the trivial zeros, the zeta function has infinitely many

nontrivial zeros lying in the critical strip 0 < Res < 1.
In the critical strip 0 < Res < 1 the zeros of

&(s) = s(s = 1w (s/2)¢(s),

are precisely the zeros of ((s).

@ We also know that ((c) # 0 whenever 0 < o < 1.
@ The nontrivial zeros of the zeta function are distributed symmetrically

with respect to the lines Res = 1/2 and Ims = 0, which follows from
the functional equation

¢(s) = 2575 Lsin (%S) (1 —s)(1—s).
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