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Introduction to the prime number theorem

Important arithmetic functions involvong primes

1. The von Mangoldt function Λ is defined by

Λ(n) :=

{
log p, if n = pk for some prime p and k ∈ Z+,

0, otherwise
.

2. The first Chebyshev function ϑ is defined for x ⩾ 2 by

ϑ(x) :=
∑

p∈P≤x

log p,

while it is convenient to set ϑ(x) := 0 for 0 < x < 2, where

P≤x := {p ∈ P : p ≤ x} = P ∩ [0, x ].
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Introduction to the prime number theorem

Important arithmetic functions involvong primes

3. The second Chebyshev function ψ is defined for x ⩾ 2 by

ψ(x) :=
∑
n∈[x]

Λ(n),

while it is convenient to set ψ(x) := 0 for 0 < x < 2.

4. The prime counting function π is defined by

π(x) :=
∑

p∈P≤x

1 = #P≤x ,

while it is convenient to set π(x) := 0 for 0 < x < 2.
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Introduction to the prime number theorem

Simple relations

Theorem

For x ≥ 2 we have

ϑ(x) = π(x) log x −
∫ x

2
π(t)

dt

t
,

and

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt.

Proof: We have
π(x) =

∑
p∈P≤x

1 =
∑

1<n≤x

1P(n),

and
ϑ(x) =

∑
p∈P≤x

log p =
∑

1<n≤x

1P(n) log n.
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Introduction to the prime number theorem

Simple relations

If x , y ∈ R+ with ⌊y⌋ < ⌊x⌋, and g ∈ C 1([y , x ]), then we know∑
y<n≤x

f (n)g(n) = F (x)g(x)− F (y)g(y)−
∫ x

y
F (t)g ′(t)dt,

where F (t) :=
∑

1≤n≤x f (n).

Taking f (n) = 1P(n) and g(x) = log x with y = 1 we obtain

ϑ(x) =
∑

1<n≤x

1P(n) log n = π(x) log x − π(1) log 1−
∫ x

1
π(t)

dt

t
,

which proves the first identity since π(t) = 0 for t < 2.
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Introduction to the prime number theorem

Simple relations

Next, let f (n) = 1P(n) log n and g(x) = 1/ log x and write

π(x) =
∑

3/2<n≤x

f (n)
1

log n
, ϑ(x) =

∑
1<n≤x

f (n)

Using the summation by parts formula with y = 3/2 we obtain

π(x) =
ϑ(x)

log x
− ϑ(3/2)

log 3/2
+

∫ x

3/2

ϑ(t)

t log2 t
dt

which proves the second identity, since ϑ(t) = 0 if t < 2.
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Introduction to the prime number theorem

Pointwise bounds

Lemma

(i) For all x ∈ R+, we have

ϑ(x) ⩽ ψ(x) ⩽ ϑ(x) + π(
√
x) log x .

(ii) For all x ⩾ 2 and all a > 1, we have

ϑ(x)

log x
⩽ π(x) ⩽

aϑ(x)

log x
+ π

(
x1/a

)
.

Proof of (i): One may suppose x ⩾ 2. We first have

ψ(x)− ϑ(x) =
∑
pk⩽x

log p −
∑
p⩽x

log p =
∑
p⩽

√
x

⌊ log x
log p

⌋∑
k=2

log p,

so that ψ(x) ⩾ ϑ(x).
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Introduction to the prime number theorem

Pointwise bounds

On the other hand, we have

ψ(x)− ϑ(x) =
∑
p⩽

√
x

⌊ log x
log p

⌋∑
k=2

log p ⩽
∑
p⩽

√
x

log p

⌊
log x

log p

⌋
⩽

∑
p⩽

√
x

log x

= π(
√
x) log x .

Proof of (ii): We have

π(x) =
∑
p⩽x

1 =
∑
p⩽x

log p

log p
⩾

1

log x

∑
p⩽x

log p =
ϑ(x)

log x
.

For 2 ⩽ T < x , we also have

π(x) =
∑
p⩽T

1 +
∑

T<p⩽x

1 = π(T ) +
∑

T<p⩽x

log p

log p
⩽ π(T ) +

ϑ(x)

logT
.

and the choice of T = x1/a implies the asserted estimate.
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Introduction to the prime number theorem

Equivalent forms of the prime number theorem

Theorem

The following relations are equivalent:

lim
x→∞

π(x) log x

x
= 1. (A)

lim
x→∞

ϑ(x)

x
= 1. (B)

lim
x→∞

ψ(x)

x
= 1. (C)

Proof: We know that

ϑ(x)

x
⩽
ψ(x)

x
⩽
ϑ(x)

x
+
π(
√
x) log x

x
.

Hence the equivalence between (B) and (C) follows, since

lim
x→∞

π(
√
x) log x

x
= 0.
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Introduction to the prime number theorem

Equivalent forms of the prime number theorem

For every a > 1 know that

ϑ(x)

x
⩽
π(x) log x

x
⩽

aϑ(x)

x
+
π
(
x1/a

)
log x

x
.

For every a > 1 we also know that

lim
x→∞

π
(
x1/a

)
log x

x
= 0.

Then

lim
x→∞

ϑ(x)

x
⩽ lim

x→∞

π(x) log x

x
⩽ lim

x→∞

aϑ(x)

x
.

Since a > 1 is arbitrary, we obtain equivalence between (A) and (B).

This completes the proof of the theorem.
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Introduction to the prime number theorem

Chebyshev theorem, upper bound

Theorem

For all x ⩾ 1, we have
ϑ(x) ⩽ x log 4.

Proof: We first prove by induction that, for all n ∈ Z+, we have

ϑ(n) ⩽ n log 4.

This inequality is clearly true for n ∈ [3]. If n ⩾ 4 is even, we have

ϑ(n) = ϑ(n − 1) ⩽ (n − 1) log 4 < n log 4n.

Suppose now that n ⩾ 5 is odd and set n = 2m + 1 with m ∈ Z+.
The idea is to use the fact that the product∏

m+1<p⩽2m+1

p divides the binomial coefficient

(
2m + 1

m

)
.
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Introduction to the prime number theorem

Chebyshev theorem, upper bound

To see this, observe that p ∈ P such that m+1 < p ⩽ 2m+1 divides
(2m + 1)! because of p ⩽ 2m + 1, but does not divide m!(m + 1)!
because of p > m + 1, so that∏

m+1<p⩽2m+1

p divides (2m + 1)! = m!(m + 1)!

(
2m + 1

m

)
and since the product is coprime to m!(m + 1)! the claim follows.

Taking logarithms, we then obtain

ϑ(2m + 1)− ϑ(m + 1) =
∑

m+1<p⩽2m+1

log p ⩽ log

(
2m + 1

m

)
.

Using Stirling’s formula we have
(2m+1

m

)
≤ 2m+1

m+1
4m√
πm

≤ 4m, thus

ϑ(2m+1) ≤ m log 4+ϑ(m+1) ≤ m log 4+(m+1) log 4 = (2m+1) log 4,

where we have used the induction hypothesis applied to ϑ(m + 1).
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Introduction to the prime number theorem

Chebyshev theorem, lower bound

The lemma follows from

ϑ(x) = ϑ(⌊x⌋) ≤ ⌊x⌋ log 4 ⩽ x log 4.

The proof for the upper bound is now completed.

Theorem

For all x ⩾ 1537, we have

ϑ(x) >
x

log 4
.

Proof: We first notice that the function f defined by

f (x) = ⌊x⌋ −
⌊
x

2

⌋
−
⌊
x

3

⌋
−
⌊
x

5

⌋
+

⌊
x

30

⌋
,

is periodic of period 30, since ⌊x + n⌋ = ⌊x⌋+ n for any n ∈ Z.
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Introduction to the prime number theorem

Chebyshev theorem, lower bound

Moreover, for x /∈ Z, we have

f (30− x) = 1− f (x),

since ⌊−x⌋ = −⌊x⌋ − 1 for x /∈ Z.
An inspection of its values when x ∈ [1, 15) allows us to infer that
f (x) only takes the values 0 or 1 if x /∈ Z.
Since f is continuous on the right, we also have f (x) = 0 or 1 when
x ∈ Z. By periodicity, we infer that f (x) = 0 or 1 for all x ∈ R.
Since ⌊x/kn⌋ = 0 whenever n > x/k for k ∈ {2, 3, 5, 30}, we obtain

ψ(x) ⩾
∑
n⩽x

Λ(n)f
(x
n

)
=

∑
n⩽x

Λ(n)

(⌊
x

n

⌋
−
⌊
x

2n

⌋
−
⌊
x

3n

⌋
−
⌊
x

5n

⌋
+

⌊
x

30n

⌋)

=
∑
n⩽x

Λ(n)

⌊
x

n

⌋
−

∑
n⩽x/2

Λ(n)

⌊
x

2n

⌋
−

∑
n⩽x/3

Λ(n)

⌊
x

3n

⌋

−
∑

n⩽x/5

Λ(n)

⌊
x

5n

⌋
+

∑
n⩽x/30

Λ(n)

⌊
x

30n

⌋
.
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Introduction to the prime number theorem

Chebyshev theorem, lower bound

By a simplified form of Striling’s formula we know for all x ≥ 1 that∑
n∈[x]

log n = x log x − x + 1 + R(x), where 0 ≤ R(x) ≤ log x .

Since Λ ⋆ 1 = log, then we conclude that∑
n∈[x]

log n =
∑
n∈[x]

∑
d |n

Λ(d) =
∑
d∈[x]

Λ(d)
∑

k∈[x/d ]

=
∑
d∈[x]

Λ(d)

⌊
x

d

⌋
.

Hence for x ≥ 1, we have∑
d∈[x]

Λ(d)

⌊
x

d

⌋
= x log x−x+1+R(x), where 0 ≤ R(x) ≤ log x .
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Introduction to the prime number theorem

Chebyshev theorem, lower bound

Inserting this bounds to the previous formula we obtain

ψ(x) ⩾x log x − x + 1−
(x
2
log

x

2
− x

2
+ 1 + log

x

2

)
−
(x
3
log

x

3
− x

3
+ 1 + log

x

3

)
−
(x
5
log

x

5
− x

5
+ 1 + log

x

5

)
+
( x

30
log

x

30
− x

30
+ 1

)
=x log

(
27/1533/1051/6

)
− 3 log x + log 30− 1.

Using the estimate ψ(x) ≤ ϑ(x) + π(
√
x) log x we obtain the desired

lower bound

ϑ(x) ≥ x log
(
27/1533/1051/6

)
− (

√
x + 3) log x ≥ x

log 4
,

whenever x ∈ R+ is sufficiently large. This completes the proof.
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Introduction to the prime number theorem

Bertrand’s postulate

Note that
log

(
27/1533/1051/6

)
≈ 0.92129 . . . ,

which is a very good lower bound. It was sufficient to allow Chebyshev to
prove Bertrand’s famous postulate.

Theorem

Let n ∈ Z+. Then the interval (n, 2n] contains a prime number.

Proof: We check numerically the result for n ∈ [768].

Suppose n ⩾ 769, using Chebyshev’s upper and lower bounds we
deduce ∑

n<p⩽2n

log p = ϑ(2n)− ϑ(n) > n

(
2

log 4
− log 4

)
> 0.

This shows that (n, 2n] ∩ P ̸= ∅, which implies the desired result.
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Analytic continuation of the Riemann zeta function

Euler–Maclaurin–Jacobi summation formula

Theorem

Let b > a and q ≥ 1 be integers. Let f ∈ Cq([a, b]), then

b∑
n=a+1

f (n) =

∫ b

a
f (x)dx +

q∑
r=1

(−1)r
Br

r !

(
f (r−1)(b)− f (r−1)(a)

)
+ Rq,

where

Rq =
(−1)q+1

q!

∫ b

a
Bq(x − ⌊x⌋)f (q)(x)dx .
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Analytic continuation of the Riemann zeta function

Euler’s summation formula

Theorem

If f ∈ C 1([a, b]), and ψ(x) = {x} − 1/2 for x ∈ R, then

∑
a<n⩽b

f (n) =

∫ b

a
f (x)dx + f (a)ψ(a)− f (b)ψ(b) +

∫ b

a
f ′(x)ψ(x)dx .

Proof: We apply the Euler–Maclaurin–Jacobi summation formula with
q = 1, then

B1(x) = B0x + B1 = x − 1

2
, and B ′

1(x) = 1,

and consequently, we have

R1 =

∫ b

a
f ′(x)ψ(x)dx ,

which completes the proof.
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Analytic continuation of the Riemann zeta function

Riemann zeta-function

Definition

The Riemann zeta-function ζ(s) is defined for all complex numbers
s = σ + it such that σ > 1 by

ζ(s) =
∞∑
n=1

1

ns
.

By the absolute convergence for all complex numbers s = σ + it such
that σ > 1 we also have the Euler product formula

ζ(s) =
∏
p∈P

(
1− 1

ps

)−1

.

The Euler product formula enables us to see that ζ(s) ̸= 0 in the
half-plane σ > 1.
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Analytic continuation of the Riemann zeta function

Remarks

Indeed, for σ > 1 we have

1

|ζ(s)|
=

∏
p∈P

∣∣∣∣1− 1

ps

∣∣∣∣ ≤ ∏
p∈P

(
1 +

1

pσ

)

≤
∞∑
n=1

1

nσ
≤ 1 +

∫ ∞

1

dt

tσ
=

σ

σ − 1
.

Thus |ζ(s)| ≥ σ−1
σ > 0.

Euler’s summation formula

If f ∈ C 1([a, b]), and ψ(x) = {x} − 1/2 for x ∈ R, then

∑
a<n⩽b

f (n) =

∫ b

a
f (x)dx + f (a)ψ(a)− f (b)ψ(b) +

∫ b

a
f ′(x)ψ(x)dx .
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Analytic continuation of the Riemann zeta function

Riemann zeta-function

Let x ⩾ 1 be a real number and s = σ + it with σ > 1. By the Euler
summation formula with a = 1, b = x and f (x) = x−s , we can write∑

n⩽x

1

ns
=

1

2
+

1− x1−s

s − 1
− ψ(x)

x s
− s

∫ x

1

ψ(u)

us+1
du.

Taking x → ∞ we obtain

ζ(s) =
1

2
+

1

s − 1
− s

∫ ∞

1

ψ(u)

us+1
du. (*)

Since |ψ(x)| ⩽ 1
2 , the integral converges for Re s > 0 and is uniformly

convergent in any compact set to the right of the line Re s = 0.

This implies that it defines an analytic function in the half-plane
Re s > 0, and therefore (*) extends ζ to a meromorphic function in
this half-plane, which is analytic except for a simple pole at s = 1
with residue 1.
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Analytic continuation of the Riemann zeta function

Theta function

Replacing x by πn2x in the integral defining Γ(s/2) gives

π−s/2Γ
( s
2

)
n−s =

∫ ∞

0
x s/2−1e−πn2xdx for all σ > 0.

The purpose is to sum both sides of this equation. To this end, we
define the following two Theta functions. For all x > 0, we set

ω(x) =
∞∑
n=1

e−πn2x and θ(x) = 2ω(x) + 1 =
∑
n∈Z

e−πn2x .

Then g(t) = e−πt2 satisfies
∫
R g(t)dt = 1, and

ĝ(u) = e−πu2 .

For a Schwartz function f , by the Poisson summation formula, we
have

∑
n∈Z f̂ (n) =

∑
n∈Z f (n), hence

θ(x) =
∑
n∈Z

g(
√
xn) = x−1/2θ(x−1) for all x > 0.
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Analytic continuation of the Riemann zeta function

Theta function

Summing this equation over n ∈ Z+ and interchanging the sum and
integral, we obtain for all σ > 1 that

π−s/2Γ
( s
2

)
ζ(s) =

∫ ∞

0
x s/2−1ω(x)dx ,

since the sum and integral converge absolutely for σ > 1.

Splitting the integral
∫∞
0 =

∫ 1
0 +

∫∞
1 and changing the variables

x 7→ 1/x in the first integral yields

π−s/2Γ
( s
2

)
ζ(s) =

∫ ∞

1
x s/2−1ω(x)dx +

∫ ∞

1
x−s/2−1ω

(
1

x

)
dx .

Using θ(x−1) = x1/2θ(x) we write ω
(
1
x

)
= x1/2ω(x) + x1/2−1

2 , and

π−s/2Γ
( s
2

)
ζ(s) = −1

s
+

1

s − 1
+

∫ ∞

1
ω(x)

(
x s/2 + x (1−s)/2

) dx

x
,

whenever σ > 1.
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Analytic continuation of the Riemann zeta function

Functional equation

Theorem

Let
ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s)

= 1 +
s(s − 1)

2

∫ ∞

1
(θ(x)− 1)

(
x s/2 + x (1−s)/2

) dx

x
,

where θ is the Theta function θ(x) =
∑

n∈Z e
−πn2x .

Then the function ξ(s) can be extended analytically in the whole
complex plane to an entire function that satisfies the functional
equation ξ(s) = ξ(1− s).

Thus the Riemann zeta-function can be extended analytically in the
whole complex plane to a meromorphic function having a simple pole
at s = 1 with residue 1. Furthermore, for all s ∈ C\{1}, we have

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).
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Analytic continuation of the Riemann zeta function

Functional equation

Proof: For σ > 1 we have

Ξ(s) = −1

s
+

1

s − 1
+

∫ ∞

1
ω(x)

(
x s/2 + x (1−s)/2

) dx

x
. (*)

Then we see that
ξ(s) = s(s − 1)Ξ(s).

Since ω(x) = O(e−πx) as x → ∞, we infer that the integral in (*) is
absolutely convergent for all s ∈ C whereas the left-hand side is a
meromorphic function on σ > 0. This implies that:

(i) The identity (*) is valid for all σ > 0.
(ii) The function Ξ(s) can be defined by this identity as a meromorphic

function on C with simple poles at s = 0 and s = 1.
(iii) Since the right-hand side of (*) is invariant under the substitution

s 7→ 1− s, we obtain Ξ(s) = Ξ(1− s) and ξ(s) = ξ(1− s).
(iv) The function s 7→ ξ(s) = s(s − 1)Ξ(s) is entire on C. Indeed, if

σ > 0, the factor s − 1 counters the pole at s = 1, and the result on
all C follows from the functional equation.
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Analytic continuation of the Riemann zeta function

Functional equation

It remains to show that the functional equation can be written as

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).

Since Ξ(s) = Ξ(1− s), we have

Γ(s/2)ζ(s) = πs/2Ξ(s) = πs/2Ξ(1− s) = πs−1/2Γ

(
1− s

2

)
ζ(1− s).

Multiplying both sides by π−1/22s−1Γ
(
1+s
2

)
and using the duplication

formula, asserting that Γ(s) = π−1/22s−1Γ (s/2) Γ ((s + 1)/2) we see

Γ(s)ζ(s) = (2π)s−1Γ

(
1− s

2

)
Γ

(
1 + s

2

)
ζ(1− s)
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Analytic continuation of the Riemann zeta function

Functional equation

Now the reflection formula sinπs
π = 1

Γ(s)Γ(1−s) , implies that

ζ(s) = (2π)s−1

(
sinπs

sin(π(1 + s)/2)

)
Γ(1− s)ζ(1− s)

and the result follows from the identity

sinπs = 2 sin
(πs
2

)
sin

(π
2
(1 + s)

)
.

The proof is complete.
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Analytic continuation of the Riemann zeta function

Remarks

ζ(s) has simple zeros at s = −2,−4,−6,−8, . . .. Indeed, since the
integral in (*) is absolutely convergent for all s ∈ C and since
ω(x) > 0 for all x ∈ R, we have

Ξ(−2n) =
1

2n
− 1

2n + 1
+

∫ ∞

1
ω(x)

(
x−n + xn+1/2

) dx

x
> 0

for all n ∈ Z+. The result follows from the fact that Γ(s/2) has
simple poles at s = −2n.

These zeros are the only ones lying in the region σ < 0. They are
called trivial zeros of the Riemann zeta-function.
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Analytic continuation of the Riemann zeta function

Remarks

For all 0 < σ < 1, we have ζ(σ) ̸= 0. Indeed, for all σ > 0 we see

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
x s+1

dx

we infer that, for all 0 < σ < 1, we obtain∣∣∣∣ζ(σ)− σ

σ − 1

∣∣∣∣ < σ

∫ ∞

1

dx

xσ+1
= 1,

which implies that ζ(σ) < 1 + σ/(σ − 1) for all 0 < σ < 1.

Hence ζ(σ) < 0 for all 1
2 ⩽ σ < 1, and the functional equation implies

the asserted result.
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Analytic continuation of the Riemann zeta function

Stirling formula

Theorem

Let 0 < δ < π, then for any z ∈ C so that | arg z | < π − δ, we have

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log 2π + O(|z |−1),

uniformly as |z | → ∞, where logarithm has principal value, and the
implicit constant depend at most on δ.
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Analytic continuation of the Riemann zeta function

Stirling formula

Corollary

Let a, b ∈ R be fixed and a ≤ b.

(i) Then for every z = σ + it with σ ∈ [a, b] and |t| ≥ 1, we have

Γ(z) =
√
2πe−

π
2
|t||t|σ−

1
2 e i |t|(log |t|−1)e

πi
2 (σ−

1
2)

(
1 + O

(
1

|t|

))
.

(ii) Moreover, |Γ(z)| =
√
2πe−

π
2
|t||t|σ−

1
2

(
1 + O

(
1
|t|

))
.

(iii) This implies |Γ(z)| = O
(
e−

π
2
|t||t|σ−

1
2

)
and

(iv) 1
|Γ(z)| = O

(
e

π
2
|t||t|

1
2
−σ

)
.
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Analytic continuation of the Riemann zeta function

Order of ξ

Lemma

The function ξ(s) is an entire function of order 1. Furthermore,

lim sup
|s|→∞

log |ξ(s)|
|s| log |s|

=
1

2
.

Proof: Since ξ(s) = ξ(1− s), it suffices to bound |ξ(s)| for Re(s) ≥ 1/2.

We can estimate ξ(s) by invoking Stirling’s formula, and elementary
upper bounds for ζ(s). When Re(s) > 1, we will use the identity

ζ(s) =
s

s − 1
− s

∫ ∞

1

{x}
x s+1

dx .

However, since the last integral represents a holomorphic function in
Re(s) > 0, the identity holds in this larger domain.
In particular, we have

|(s − 1)ζ(s)| = O(|s|2) whenever Re(s) ≥ 1/2.
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Analytic continuation of the Riemann zeta function

Proof

Moreover, since log |Γ(s)| ≤ | log Γ(s)|, Stirling’s formula yields

log |Γ(s)| ≤ |s| log |s|+ O(|s|) whenever Re(s) ≥ 1/2.

Since ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s), we obtain

log |ξ(s)| ≤ 1

2
|s| log |s|+ O(|s|) whenever Re(s) ≥ 1/2.

which establishes the first claim of the lemma.

For the second claim, we note that

log |Γ(|s|)| = log Γ(|s|) = |s| log |s|+ O(|s|),

whence

log ξ(|s|) = 1

2
|s| log |s|+ O(|s|) as |s| → ∞.

This completes the proof of the lemma.
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Analytic continuation of the Riemann zeta function

Zeros of function ξ

Theorem

The function ξ(s) has infinitely many zeros in the strip 0 ≤ Re(s) ≤ 1 and
no zeros outside that strip. It can be written as

ξ(s) = eBs
∏
ρ

(
1− s

ρ

)
es/ρ, (*)

where ρ runs through the zeros of ξ(s) counted according to their
multiplicities and

B = 1 +
γ

2
− log(2

√
π).

Proof:

By the previous lemma, we know that ξ(s) has order 1.

Noting that ξ(0) = 1, and using Hadamard’s theorem we obtain (*)
for some B.
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Analytic continuation of the Riemann zeta function

Zeros of function ξ

If ξ(s) had only a finite number of zeros, (*) would imply the
estimate log |ξ(s)| = O(|s|), which contradicts the fact that

lim sup|s|→∞
log |ξ(s)|
|s| log |s| =

1
2 .

For Re s > 1, the zeta function ζ(s), and, consequently, ξ(s), have no
zeros in this range. By using the equation ξ(s) = ξ(1− s) it follows
that ξ(s) ̸= 0 for Re s < 0. Since 1 = ξ(0) = ξ(1) ̸= 0, the zeros of
ξ(s) lie in the strip 0 ≤ Re(s) ≤ 1.

Show that B = 1 + γ
2 − log(2

√
π).
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Analytic continuation of the Riemann zeta function

Zeros of function ζ

The zeta function ζ(s) has simple zeros at s = −2,−4,−6,−8, . . ..
These zeros are called the trivial zeros.

For Re s > 1, the zeta function ζ(s) has no zeros.

In addition to the trivial zeros, the zeta function has infinitely many
nontrivial zeros lying in the critical strip 0 ≤ Re s ≤ 1.

In the critical strip 0 ≤ Re s ≤ 1 the zeros of

ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s),

are precisely the zeros of ζ(s).

We also know that ζ(σ) ̸= 0 whenever 0 < σ < 1.

The nontrivial zeros of the zeta function are distributed symmetrically
with respect to the lines Re s = 1/2 and Im s = 0, which follows from
the functional equation

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).
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