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Number systems

▶ N = {0, 1, 2, 3, . . .} – non-negative integers.

▶ Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .} – the set of integers.

▶ Z+ = {1, 2, 3, . . .} – positive integers.

▶ Q = {m
n : m ∈ Z, n ∈ Z \ {0}} – the set of rationals.

▶ R – the set of real numbers.

▶ R+ := (0,∞) – the set of positive real numbers.

▶ C – the set of complex numbers.

For N ∈ R+ and any A ⊆ [0,∞) we will use the following useful notation

A≤N := [0,N] ∩ A, A<N := [0,N) ∩ A,

A≥N := [N,∞) ∩ A, A>N := (N,∞) ∩ A.



Basic functions

▶ The Eulers’ function will be denoted by

e(t) := e2πit = cos(2πt) + i sin(2πt) for t ∈ R,

where i :=
√
−1 is the imaginary unit.

▶ For any x ∈ R we will use the floor and fractional part functions

⌊x⌋ := max{n ∈ Z : n ≤ x} and {x} := x − ⌊x⌋.

▶ For x ∈ R the sign function will be denoted by

sgn(x) :=


−1 if x < 0

0 if x = 0
1 if x > 0

.

It is not difficult to see that sgn(x) = x
|x| whenever x ̸= 0.



Three important principles

Well-Ordering Principle (WOP)
If A is a nonempty subset of nonnegative integers N, then A contains the
smallest number.

Principle of Induction (PI)
If A is a set of nonnegative integers N satisfying the following two
properties:
▶ (Basic step): 0 ∈ A,
▶ (Induction step): Whenever A contains a number n, it also contains the

number n + 1.
Then A = N. In other words, one can write

∀A⊆N (0 ∈ A and ∀k∈N (k ∈ A =⇒ k + 1 ∈ A) then A = N) .

Maximum Principle (MP)
A nonempty subset of N, which is bounded from above contains the greatest
number.



All these three principles are equivalent
Theorem
One has the following

(WOP) ⇐⇒ (PI) ⇐⇒ (MP).

We will show the following:

(WOP) =⇒ (PI) =⇒ (WOP) =⇒ (MP) =⇒ (WOP).

Proof (WOP) =⇒ (PI).
If A is a set of non-negative integers such that

(i) 0 ∈ A.
(ii) Whenever A contains a number n, it also contains n + 1.

We want to establish A = N. Suppose for contradiction that N \ A ̸= ∅. By
the well-ordering principle (WOP) there is the smallest element m of N \ A.
Since 0 ∈ A, we have m ̸= 0. Observe that m − 1 ∈ A. Otherwise
m − 1 ∈ N \ A, which contradicts the fact that m is the smallest element of
N \ A. But if m − 1 ∈ A, then by (ii) we have m ∈ A, which is impossible.
The implication (WOP) =⇒ (PI) follows.



All these three principles are equivalent

Proof (PI) =⇒ (WOP).
Let ∅ ≠ A ⊆ N. Suppose that A does not have a minimal element.
(a) It is easy to see that 0 ̸∈ A, because otherwise it would be a minimal

element of A (as 0 is the minimal element of N).
(b) We also see 1 ̸∈ A, otherwise it is a minimal element of A.
(c) We continue and assume that 1, 2, . . . , n ̸∈ A. Then n + 1 ̸∈ A,

otherwise n + 1 is the smallest element of A.
Now we can use the principle of induction (PI) and conclude that A = ∅,
which is impossible. Hence the implication (PI) =⇒ (WOP) follows.

Proof (WOP) =⇒ (MP).
Suppose that A ̸= ∅ is bounded, which means that there exists M ∈ N such
that a ≤ M for all a ∈ A. Equivalently, M − a ≥ 0 for all a ∈ A. Let us
consider the set B = {M − a : a ∈ A} ≠ ∅. By the well-ordering principle
(WOP) there is b ∈ A such that M − b is the smallest element of B. Thus
M − b ≤ M − a for all a ∈ A, equivalently a ≤ b for all a ∈ A. The
implication (WOP) =⇒ (MP) now follows.



All these three principles are equivalent

(MP) =⇒ (WOP).
Let ∅ ≠ A ⊆ N and we show that A has a minimal element. Let

B = {n ∈ N : n ≤ a for every a ∈ A}.

The set B is bounded and 0 ∈ B since 0 ≤ a for any a ∈ N. Thus, by the
maximum principle (MP) we find b0 ∈ B such that b0 is maximal in B. We
see that b ≤ b0 ≤ a for all a ∈ A and b ∈ B. The proof will be completed if
we show b0 ∈ A. Assume for contradiction b0 ̸= a and b0 ≤ a for all a ∈ A.
Thus b0 < a for all a ∈ A. Hence, b0 + 1 ≤ a for any a ∈ A. Then
b0 + 1 ∈ B, but b0 is the maximal element of B, which gives contradiction.
Hence the implication (MP) =⇒ (WOP) follows and the proof of Theorem
1 is finished.



Divisibility
Divisibility is a fundamental concept in number theory. Let a, d ∈ Z and we
say that d is a divisor of a, and that a is a multiple of d, if there exists an
integer q ∈ Z such that

a = dq.

If d divides a, we write d | a, and a/d is called the divisor conjugate to d.

Theorem (Divisibility)
Let a, b, d, n,m ∈ Z. Divisibility has the following properties:

1. d | n and n | m implies d | m.

2. d | n and d | m implies d | (an + bm).

3. d | n implies ad | an.

4. ad | an and a ̸= 0 implies d | n.

5. 1 | n and n | 0.

6. 0 | n implies n = 0.

7. d | n and n ̸= 0 implies |d| < |n|.
8. d | n and n/d implies |d| = |n|.
9. d | n and d ̸= 0 implies (n/d) | n.



The division algorithm
Theorem (The division algorithm)
Let a, d ∈ Z and d ̸= 0. There exist unique integers q and r such that

a = dq + r, where 0 ≤ r < |d|. (1)
Proof.
Let S := {a − dq : q ∈ Z} ∩ N and note that S ̸= ∅, indeed if a ≥ 0, then
a = a − d · 0 ∈ S. If a < 0, then a − d(d|d|−1a) = (−a)(|d| − 1) ∈ S.
▶ Existence: By the minimum principle, S contains a smallest element

r ∈ N, and a = dq + r for some q ∈ Z. If r ≥ |d|, then

0 ≤ r − |d| = a − d(q + d|d|−1) < r,

and r − |d| ∈ S, which contradicts the minimality of r implying (1).
▶ Uniqueness: Let q1, r1, q2, r2 ∈ Z be integers such that

a = dq1 + r1 = dq2 + r2 and 0 ≤ r1, r2 < |d|. If q1 ̸= q2, then

|d| ≤ |d||q1 − q2| = |r2 − r1| < |d|.

which is impossible. Therefore, q1 = q2 and r1 = r2 as desired.
Finally note that d | a if and only if r = 0.



Some remarks

Remarks on the division algorithm
▶ The integers q and r in the equation a = dq + r of the division

algorithm are called the quotient and the remainder, respectively, in the
division of a by d.

▶ Although the division algorithm theorem is an existence theorem, its
proof actually gives us a method for computing the quotient q and the
remainder r. We subtract from a (or add to a) enough multiples of d
until it is clear that we have obtained the smallest nonnegative number
of the form a − bq.

▶ In the previous theorem we can take

q :=

{
⌊a/d⌋ if d > 0,

−⌊a/|d|⌋ if d < 0,

where ⌊x⌋ := max{n ∈ Z : n ≤ x} denotes the integer part of x ∈ R.



Groups
Definition of groups
A group G := (G, ·) is a nonempty set G with a binary operation
G×G ∋ (x, y) 7→ x · y ∈ G that satisfies the following three axioms:

(i) Associativity: (x · y) · z = x · (y · z) for all x, y, z ∈ G.
(ii) Identity element: There exists a neutral element e ∈ G such that for all

e · x = x · e = x for all x ∈ G.

The element e is called the identity of the group.
(iii) Inverses: For every x ∈ G, there exists an element y ∈ G such that

x · y = y · x = e.

The element y is called the inverse of x.

Abelian groups
A group G = (G, ·) is called abelian or commutative if the binary operation
satisfies (i)–(iii) and also satisfies the axiom
(iv) Commutativity: x · y = y · x for all x, y ∈ G.



Examples
▶ The set GL2(C) of 2 × 2 matrices with complex coefficients and

nonzero determinant, is a nonabelian group with the usual matrix
multiplication as the binary operation.

▶ Examples of abelian groups are the integers Z, the rational numbers Q,
the real numbers R, and the complex numbers C, with the usual
operation of addition. The nonzero rational, real, and complex
numbers, denoted by Q×, R×, and C×, respectively, are also abelian
groups, with the usual multiplication as the binary operation.

▶ For every m ∈ Z+, the set of complex numbers

Γm := {e(k/m) : k ∈ N<m}

is a multiplicative group. The elements of Γm are called mth roots of
unity, since ωm = 1 for all ω ∈ Γm.

▶ If G is an abelian group can use additive notation and denote the image
of the ordered pair (x, y) ∈ G×G by x + y. We call x + y the sum of x
and y. In an additive group, the identity is usually written 0, the inverse
of x is written −x, and we define x − y = x + (−y).

▶ If G is nonabelian we can also use multiplicative notation and denote
the image of the ordered pair (x, y) ∈ G×G by xy. We call xy the
product of x and y. In a multiplicative group, the identity is usually
written e or 1 and the inverse of x is written x−1.



Subgroups
▶ A nonempty subset H of a group G is a subgroup of G if it is also a

group under the same binary operation as G. If H is a subgroup of G,
then H is closed under the binary operation in G, it contains the identity
element of G, and the inverse of every element of H belongs to H.

▶ A nonempty subset H of an additive abelian group G is a subgroup if
and only if x − y ∈ H for all x, y ∈ H

▶ For every d ∈ Z, the set of all multiples of d is a subgroup of Z. We
denote this subgroup by dZ. If a1, . . . , ak ∈ Z, then the set
{a1x1 + · · ·+ akxk : x1, . . . , xk ∈ Z} is also a subgroup of Z.

▶ The set Q of rational numbers is a subgroup of the additive group R.
The set R+ is a subgroup of the multiplicative group R×. The unit
circle in the complex plane T = {z ∈ C : |z| = 1} is a subgroup of the
multiplicative group C×, and Γm is a subgroup of T.

▶ If G is a group, written multiplicatively, and g ∈ G, then gn ∈ G for all
n ∈ Z, and {gn : n ∈ Z} is a subgroup of G.

▶ The intersection of a family of subgroups of a group G is a subgroup of
G. Let S be a subset of a group G. The subgroup of G generated by S is
the smallest subgroup of G that contains S. In fact, this is simply the
intersection of all subgroups of G that contain S.

▶ For example, the subgroup of Z generated by the set {d} is dZ.



Structure of the subgroups of Z
Theorem
Let H be a subgroup of the integers under addition. There exists a unique
nonnegative integer d ∈ N such that H = {0,±d,±2d, . . .} = dZ.

Proof of the existence.
▶ We have 0 ∈ H for every subgroup H. We can assume that H ̸= {0},

otherwise we choose (uniquely) d = 0 and H = 0Z.
▶ Since H ̸= {0}, then there exists 0 ̸= a ∈ H. Since −a also belongs to

H, it follows that H contains positive integers. By the well-ordering
principle, H contains a least positive integer d ∈ Z+. Hence, dq ∈ H
for every q ∈ Z, and so dZ ⊆ H.

▶ Now we show that H ⊆ dZ. Let a ∈ H. By the division algorithm, we
can write a = dq + r, where q and r are integers and 0 ≤ r < d. Since
dq ∈ H and H is closed under subtraction, it follows that

r = a − dq ∈ H.

Since 0 ≤ r < d and d is the smallest positive integer in H, we must
have r = 0, that is, a = dq ∈ dZ and H ⊆ dZ. It follows that H = dZ.



Subgroups of Z and the greatest common divisors

Proof of the uniqueness.
We have proved that H = dZ for some d ∈ N. If {0} ≠ H = dZ = d′Z,
where d, d′ ∈ Z+, then d′ ∈ dZ implies that d′ = dq for some q ∈ Z, and
d ∈ d′Z implies that d = d′q′ for some integer q′ ∈ Z. Therefore,

d = d′q′ = dqq′,

and so qq′ = 1, hence q = q′ = ±1 and d = ±d′. Since d, d′ ∈ Z+, we have
d = d′, and consequently d is unique as claimed.

Definition of the greatest common divisor
Let ∅ ≠ A ⊆ Z be a set of integers, not all zero.
▶ If the integer d divides a for all a ∈ A, then d is called a common

divisor of A.
▶ For example, 1 is a common divisor of every nonempty set of integers.
▶ The positive integer d is called the greatest common divisor of the set

A, denoted by d = gcd(A), if d is a common divisor of A and every
common divisor of A divides d.



Greatest common divisors
Theorem
Let ∅ ≠ A ⊆ Z be a set of integers, not all zero. Then A has a unique
greatest common divisor, and there exist integers a1, . . . , ak ∈ A and
x1, . . . , xk ∈ Z such that

gcd(A) = a1x1 + · · ·+ akxk.
Proof.
Let H := {a1x1 + · · ·+ akxk : a1, . . . , ak ∈ A, x1, . . . , xk ∈ Z for k ∈ [#A]}.
▶ Then H is a subgroup of Z and A ⊆ H. By the previous theorem there

exists a unique d ∈ Z+ such that H = dZ.
▶ In particular, every integer a ∈ A is a multiple of d, and so d is a

common divisor of A. Since d ∈ H, there exist integers a1, . . . , ak ∈ A
and x1, . . . , xk ∈ Z for some k ∈ [#A] such that

d = a1x1 + · · ·+ akxk.

▶ From this formula it follows that every common divisor of A must
divide d, hence d is a greatest common divisor of A.

▶ If the positive integers d and d′ are both greatest common divisors, then
d | d′ and d′ | d, and so d = d′. It follows that gcd(A) is unique.



Greatest common divisors and Euclid’s lemma
If A = {a1, . . . , ak} is a nonempty, finite set of integers, not all zero, we
write gcd(A) = (a1, . . . , ak). Then the previous theorem readily implies.

Theorem (GCD theorem)
Let a1, . . . , ak ∈ Z be integers, not all zero. Then (a1, . . . , ak) = 1 if and
only if there exist integers x1, . . . , xk ∈ Z such that

a1x1 + · · ·+ akxk = 1.

Definition
▶ The integers a1, . . . , ak ∈ Z are called relatively prime or coprime if

their greatest common divisor is 1, that is, (a1, . . . , ak) = 1.
▶ The integers a1, . . . , ak ∈ Z are called pairwise relatively prime if

(ai, aj) = 1 for i ̸= j.

Lemma (Euclid’s lemma)
Let a, b, c ∈ Z. If a | bc and (a, b) = 1, then a | c.
Proof.
Since (a, b) = 1, by the previous theorem, we can write 1 = ax + by for
some x, y ∈ Z. Therefore, multiplying by c gives us c = acx + bc. Since
a | acx and a | bc, it follows that a | c as desired.



Consequences of Euclid’s lemma
Theorem (GCD theorem for products)
Let k ≥ 2, and let a, b1, b2, . . . , bk ∈ Z. If (a, bi) = 1 for all i ∈ [k], then

(a, b1b2 · · · bk) = 1.
Proof.
Assume that k = 2 and d = (a, b1b2) and show that d = 1.
▶ Since d | a and (a, b1) = 1, it follows that (d, b1) = 1.
▶ Since d | b1b2, Euclid’s lemma implies that d divides b2.
▶ Therefore, d is a common divisor of a and b2, but (a, b2) = 1, so d = 1.
▶ Let k ≥ 3 and we will proceed by induction on k. Assume that the

result holds for k − 1. Let a, b1, . . . , bk be integers such that (a, bi) = 1
for i ∈ [k]. The induction assumption implies that (a, b1 · · · bk−1) = 1.

▶ Since we also have (a, bk) = 1, it follows from the case k = 2 that
(a, b1 · · · bk−1bk) = 1.

Exercise
Let k ∈ Z+, and let a, b1, . . . , bk ∈ Z. If b1, . . . , bk are pairwise relatively
prime and all divide a, then b1b2 · · · bk | a.



Euclid’s algorithm
Theorem (The Euclidean algorithm)
Let r0 := a ∈ Z+, r1 := b ∈ Z+ with b < a be given. Apply the division
algorithm repeatedly to obtain a set of remainders r2, . . . , rn+1 defined by

r0 = r1q1 + r2, where 0 < r2 < r1,

r1 = r2q2 + r3, where 0 < r3 < r2,

...

rn−2 = rn−1qn−1 + rn, where 0 < rn < rn−1,

rn−1 = rnqn + rn+1, where rn+1 = 0.

Then rn = gcd(a, b).

Proof.
▶ There is n ∈ Z+ such that rn+1 = 0 because the ri are decreasing and

nonnegative. The last relation, rn−1 = rnqn, shows that rn | rn−1. The
next to last shows that rn−1 | rn−2. By induction, we see that rn divides
each ri. In particular, rn | r1 = b and rn | r0 = a.

▶ Now let d be any common divisor of a and b. The definition of r2
shows that d | r2. The next relation shows that d | r3. By induction, d
divides each ri, so d | rn. Hence, rn = gcd(a, b).



Prime numbers
Definition (Prime and composite numbers)
▶ An integer n ∈ Z is called prime if n > 1 and if the only positive

divisors of n are 1 and n.
▶ If n > 1 and if n is not prime, then n is called composite.
▶ The set of all prime numbers will be denoted by P.

If p ∈ P, a ∈ Z and (p, a) > 1, then the definition readily implies that p | a.

Example
The prime numbers less than 100 are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Theorem
If p ∈ P and p divides a product of integers, then p divides one of the factors.

Proof.
Let b1, . . . , bk ∈ Z be integers such that p | b1 · · · bk. By the theorem on
GCD with product of coprime factors we have (p, bi) > 1 for some i ∈ [k].
Since p ∈ P is prime, it follows that p divides bi as desired.



Factorization of integers into primes
Theorem (Factorization theorem)
Every integer n > 1 is either a prime number or a product of prime numbers.

Proof.
The theorem is clearly true for n = 2. Proceeding by induction on n > 1 we
can assume that it is also true for every integer less than n. Then, if n is not
prime, it has a positive divisor d such that 1 < d < n. Hence, n = cd, where
1 < c < n. By induction each of c and d is a product of prime numbers by
induction. Therefore, n is also a product of prime numbers.

Theorem (Euclid)
There are infinitely many prime number.

Proof after Hermite.
For each integer n > 1, let pn ∈ P denote the smallest prime divisor of
n! + 1, which exists by the factorization theorem. We readily see that pn > n
and consequently the set of prime numbers P must be infinite.

Remark
Euclid originally argued by contradiction, assuming that P = {p1, . . . , pn} is
finite for some n ∈ Z+. Then, considering N = p1 · · · pn + 1 and applying
the factorization theorem, we reach a contradiction.



Fundamental theorem of arithmetic
Theorem (Fundamental theorem of arithmetic)
Every integer n > 1 can be represented as a product of prime factors in only
one way, apart from the order of the factors.

Proof.
▶ The theorem is obviously true for n = 2. Proceeding by induction on

n > 1 we can assume that it is also true for every integer greater than 1
and less than n. If n is prime, there is nothing more to prove.

▶ Assume, that n is composite and has two factorizations, say
n = p1p2 · · · ps = q1q2 · · · qt.

▶ We show that s = t and that each pi equals some qj. Since p1 | q1 · · · qt,
it must divide at least one factor. Relabel q1, . . . , qt so that p1 | q1. Then
p1 = q1 since both p1, q1 ∈ P. Dividing by p1 on both sides we obtain

n
p1

= p2p3 · · · ps = q2q3 · · · qt.

▶ If s > 1 or t > 1, then 1 < n
p1

< n. By induction the two factorizations
of n

p1
must be identical, apart from the order of the factors. Therefore,

s = t and the conclusion follows.



The standard prime power factorization
▶ For any n ∈ N and a prime number p ∈ P, we define vp(n) as the

greatest integer r ∈ N such that pr | n. Then vp(n) ∈ N and

vp(n) ≥ 1 ⇐⇒ p | n.

▶ If vp(n) = r then we say that the prime power pr exactly divides n, and
write pr ∥ n. The standard factorization of n is given by:

n =
∏
p|n

pvp(n).

▶ Since every positive integer is divisible by only a finite number of
primes, we can also write:

n =
∏
p∈P

pvp(n),

where the product is an infinite product over the set of all prime
numbers and vp(n) = 0 and pvp(n) = 1 for all but finitely many primes p.

▶ The function vp(n) is called the p-adic value of n. It is completely
additive in the sense that vp(mn) = vp(m) + vp(n) for all positive
integers m and n. For instance, vp(n!) =

∑
k∈[n] vp(k).

▶ If m | n, then vp(m) ≤ vp(n) for all p ∈ P.



Least common multiple
Definition of the least common multiple
Let a1, . . . , ak ∈ N be nonzero integers.
▶ An integer m ∈ Z is called a common multiple of a1, . . . , ak if it is a

multiple of ai for all i ∈ [k], that is, every integer ai | m.
▶ The least common multiple of a1, . . . , ak is a positive integer m ∈ Z+

such that m is a common multiple of a1, . . . , ak, and m divides every
common multiple of a1, . . . , ak.

▶ We denote by lcm(a1, . . . , ak) the least common multiple of a1, . . . , ak.

Theorem (Exercise, prove it!)
Let a1, . . . , ak ∈ Z+ be positive integers. Then

gcd(a1, . . . , ak) =
∏
p∈P

pmin{vp(a1),...,vp(ak)},

and
lcm(a1, . . . , ak) =

∏
p∈P

pmax{vp(a1),...,vp(ak)}.

In particular, for k = 2, we have a1a2 = gcd(a1, a2)lcm(a1, a2).



Prime power factorization of n!. For instance, 10! = 2834527
Theorem
For every positive integer n ∈ Z+ and a prime number p ∈ P, we have

vp(n!) =

⌊ log n
log p ⌋∑
r=1

⌊
n
pr

⌋
.

Proof.
Let 1 ≤ m ≤ n. If pr divides m, then pr ≤ m ≤ n and r ≤ log n

log p . Since r is an

integer, we have r ≤
⌊
log n
log p

⌋
, and thus,

vp(m) =

⌊ log n
log p ⌋∑
r=1
pr∥m

1.

The number of positive integers not exceeding n that are divisible by pr is
exactly

⌊ n
pr

⌋
, and so

vp(n!) =
n∑

m=1

vp(m) =

n∑
m=1

⌊ log n
log p ⌋∑
r=1
pr∥m

1 =

⌊ log n
log p ⌋∑
r=1

n∑
m=1
pr∥m

1 =

⌊ log n
log p ⌋∑
r=1

⌊
n
pr

⌋
.



Euler’s theorem
Theorem (Euler’s theorem)
One has that ∑

p∈P

1
p
= ∞.

In particular, this implies that P is infinite.

Proof.
For every positive integer n ∈ Z+, we have

n∑
k=1

1
k
≤

∏
p⩽n

(
1 − 1

p

)−1

.

▶ Indeed, take m ∈ Z+ so that 2m > n and observe that(
1 − 1

p

)−1

=

∞∑
k=0

1
pk ≥

m∑
k=0

1
pk .

In the first equality, we used the expansion into a geometric series.



Euler’s theorem: proof
▶ Let P≤n := {p ∈ P : p ≤ n} := {p1, . . . , pl}. By the last inequality

∏
p≤n

(
1 − 1

p

)−1

≥
∏
p⩽n

m∑
k=0

1
pk =

l∏
j=1

m∑
k=0

1
pk

j
=

m∑
k1=0

· · ·
m∑

kl=0

1
pk1

1 · · · pkl
l

≥
n∑

k=1

1
k
,

since every integer 1 < k ≤ n can be written as k =
∏

p∈P≤n
pvp(k),

where vp(k) ≤ m due to our choice of m ∈ Z+ satisfying 2m > n.
▶ Now using ∑

k⩽n

1
k
>

∫ n

1

dt
t

= log n,

we obtain that

log log n < log
∏
p⩽n

(
1 − 1

p

)−1

= −
∑
p⩽n

log

(
1 − 1

p

)
.

By the Taylor expansion for 0 ⩽ x < 1, we may write

− log(1 − x) =
∞∑

k=1

xk

k
< x +

1
2

∞∑
k=2

xk ≤ x +
x2

2(1 − x)
.



Euler’s theorem: proof

▶ Combining this Taylor expansion for x = 1/p with the last inequality,
we have

log log n < log
∏
p⩽n

(
1 − 1

p

)−1

= −
∑
p⩽n

log

(
1 − 1

p

)
⩽

∑
p⩽n

1
p
+

1
2

∑
p⩽n

1
p(p − 1)

⩽
∑
p⩽n

1
p
+

1
2

∞∑
k=2

1
k(k − 1)

=
∑
p⩽n

1
p
+

1
2

so that ∑
p⩽n

1
p
> log log n − 1

2
.

▶ Hence we deduce that the series
∑

p∈P 1/p is divergent, which implies
that there are infinitely many primes.



Sieve of Eratosthenes
The sieve is based on a simple observation.

Observation
If an n ∈ Z+ is composite, then n can be written in the form n = d1 · d2,
where 1 < d1 ≤ d2 < n. If d1 >

√
n, then we obtain a contradiction, since

n = d1 · d2 >
√

n ·
√

n = n.

▶ Therefore, if n ∈ Z+ is composite, then n has a divisor d such that
1 < d ≤

√
n. In particular, every composite number n ≤ x is divisible

by a prime p ≤
√

x.

Eratosthenes algorithm
To find all the primes up to x, we write down the integers between 1 and x,
and eliminate numbers from the list according to the following rule:

1. Cross out 1. The first number in the list that is not eliminated is 2; cross
out all multiples of 2 that are greater than 2.

2. The iterative procedure is as follows: Let d be the smallest number on
the list whose multiples have not already been eliminated. If d ≤

√
x,

then cross out all multiples of d that are greater than d. If d >
√

x, stop.
This algorithm must terminate after at most x steps. The prime numbers up
to x are the numbers that have not been crossed out.



Sieve of Eratosthenes for n = 40

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

▶ In the first step we remove 1 and all multiples of 2 grater than 2:

2 3 5 7 9
11 13 15 17 19
21 23 25 27 29
31 33 35 37 39

▶ In the second step we remove all multiples of 3 grater than 3:

2 3 5 7
11 13 17 19

23 25 29
31 37

▶ In the third step we remove all multiples of 5 grater than 5:

2 3 5 7
11 13 17 19

23 29
31 37

▶ In the fourth step the algorithm stops, since 7 >
√

40.



A first glance at sieve theory
The prime counting function
For x ∈ R+ the set of all prime numbers not exceeding x will be denoted by
P≤x := P ∩ [0, x]. The counting function for P≤x will be denoted by

π(x) := #P≤x := {p ∈ P : p ≤ x}.

▶ Let n ⩾ 2 be a fixed integer. As a consequence of Eratosthenes sieve,
an integer m ∈ (

√
n, n] is a prime number if and only if(

m,
∏

p∈P≤
√

n

p
)
= 1.

▶ If Sn is the set of positive integers m ⩽ n which are not divisible by all
prime numbers ⩽

√
n, then by Eratosthenes sieve we have

P≤n ⊆ Sn ∪ {1, . . . ,
√

n},

and Sn = π(n)− π(
√

n) + 1, which implies

π(n) ≤ #Sn + ⌊
√

n⌋.



Counting primes using sieve
▶ More generally, let r ⩾ 2 be an integer. We define π(n, r) to be the

number of positive integers m ⩽ n which are not divisible by prime
numbers ⩽ r (hence #Sn = π(n, [

√
n])). Similarly as above, we have

π(n) ⩽ π(n, r) + r.

Exclusion–inclusion principle
Consider N objects and r properties denoted by p1, . . . , pr. Suppose that
A = {pi1 , . . . , pim} for some m ∈ [r] and let NA be the number of objects that
satisfy properties pi1 , . . . , pim . Then, the number S of objects that satisfy
none of those properties is equal to

S =

r∑
k=0

(−1)k
∑
A⊆r
#A=k

NA.

Applying the exclusion–inclusion principle to π(n, r), we obtain

π(n, r) = n−
∑
p≤r

⌊
n
p

⌋
+
∑

p1<p2≤r

⌊
n

p1p2

⌋
−

∑
p1<p2<p3≤r

⌊
n

p1p2p3

⌋
+· · ·+(−1)r

⌊
n

p1 · · · pr

⌋
.



Counting primes using sieve
▶ Since x − 1 < ⌊x⌋ ⩽ x, we obtain

π(n, r) < n −
∑
p⩽r

n
p
+

∑
p1<p2⩽r

n
p1p2

+ · · ·+ (−1)r n
p1 · · · pr

+

k∑
k=1

∑
p1<...<pk⩽r

1

= n −
∑
p⩽r

n
p
+

∑
p1<p2⩽r

n
p1p2

+ · · ·+ (−1)r n
p1 · · · pr

+
r∑

k=1

(
π(r)

k

)

= n
∏
p⩽r

(
1 − 1

p

)
+ 2π(r) − 1.

▶ Now inserting this bound to π(n) ⩽ π(n, r) + r, implies that

π(n) < n
∏
p⩽r

(
1 − 1

p

)
+ 2π(r) + r − 1.

▶ In the proof of Euler’s theorem we showed that∑
p⩽n

1
p
> log log n − 1

2
.



Counting primes using sieve
▶ Using log(1 − x) ⩽ −x and the last bound, we obtain

∏
p⩽r

(
1 − 1

p

)
⩽ exp

(
−
∑
p⩽r

1
p

)
<

e1/2

log r
.

▶ This implies

π(n) <
ne1/2

log r
+ 2r + r − 1.

▶ Choosing r = 1 + ⌊log n⌋ with n ⩾ 10 implies that

π(n) <
3n

log log n
.

▶ This shows that π(n) = o(n) as n → ∞, which says that the set of
prime numbers has zero upper density.

▶ The upper density for A ⊆ N is defined by

lim sup
N→∞

#(A ∩ [1,N])

N
≥ 0.


