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Number systems

» N={0,1,2,3,...} — non-negative integers.
> Z={...,—2,—1,0,1,2,3,...} —the set of integers.
> Z, =1{1,2,3,...} — positive integers.
» Q={2:meZncZ\{0}} - the set of rationals.
> R - the set of real numbers.
» R, := (0, 00) — the set of positive real numbers.
» C - the set of complex numbers.
For N € R, and any A C [0, 00) we will use the following useful notation

Acy = [0,N]NA, Aoy :=[0,N)NA4,
Asy :=[N,00)NA, Asy:=(N,00)NA.



Basic functions

» The Eulers’ function will be denoted by
e(t) := ™" = cos(2nt) +isin(2nt) for t€R,

where i := v/—1 is the imaginary unit.
» For any x € R we will use the floor and fractional part functions

x| :=max{n€Z:n<x} and {x}:=x— |x].

» For x € R the sign function will be denoted by

-1 ifx<0
sgn(x) := 0 ifx=0.
1 ifx>0

It is not difficult to see that sgn(x) = fu7 Whenever x 7 0.



Three important principles

Well-Ordering Principle (WOP)

If A is a nonempty subset of nonnegative integers N, then A contains the
smallest number.

Principle of Induction (PI)
If A is a set of nonnegative integers N satisfying the following two
properties:

» (Basic step): 0 € A,

» (Induction step): Whenever A contains a number 7, it also contains the
number n + 1.

Then A = N. In other words, one can write

VAQN (OEA and VkeN(kEA:>k+] GA)thenA:N).

Maximum Principle (MP)

A nonempty subset of N, which is bounded from above contains the greatest
number.



All these three principles are equivalent

Theorem
One has the following

(WOP) <= (PI) <= (MP).

We will show the following:

(WOP) = (PI) = (WOP) = (MP) —> (WOP).

Proof (WOP) = (PI).
If A is a set of non-negative integers such that

(1) 0€A.

(i1)) Whenever A contains a number 7, it also contains n + 1.
We want to establish A = N. Suppose for contradiction that N \ A # (. By
the well-ordering principle (WOP) there is the smallest element m of N \ A.
Since 0 € A, we have m # 0. Observe that m — 1 € A. Otherwise
m — 1 € N'\ A, which contradicts the fact that m is the smallest element of
N\ A. Butif m — 1 € A, then by (ii) we have m € A, which is impossible.
The implication (WOP) = (PI) follows.



All these three principles are equivalent

Proof (PI) = (WOP).
Let ) # A C N. Suppose that A does not have a minimal element.
(a) Itis easy to see that 0 & A, because otherwise it would be a minimal
element of A (as 0 is the minimal element of N).
(b) We also see 1 € A, otherwise it is a minimal element of A.

(c) We continue and assume that 1,2,...,.n ¢ A. Thenn + 1 ¢ A,
otherwise n + 1 is the smallest element of A.

Now we can use the principle of induction (PI) and conclude that A = (),
which is impossible. Hence the implication (PI) = (WOP) follows. O

Proof (WOP) =— (MP).

Suppose that A # () is bounded, which means that there exists M € N such
that a < M for all a € A. Equivalently, M —a > O for all a € A. Let us
consider the set B = {M —a: a € A} # (). By the well-ordering principle
(WOQOP) there is b € A such that M — b is the smallest element of B. Thus

M —b<M—aforalla € A, equivalently a < b for alla € A. The
implication (WOP) = (MP) now follows. O



All these three principles are equivalent

(MP) —> (WOP).
Let ) # A C N and we show that A has a minimal element. Let

B={neN:n<aforeverya € A}.

The set B is bounded and 0 € B since 0 < a for any a € N. Thus, by the
maximum principle (MP) we find by € B such that by is maximal in B. We
see that b < by < aforall a € A and b € B. The proof will be completed if
we show by € A. Assume for contradiction by # a and by < a for all a € A.
Thus by < a for all a € A. Hence, by + 1 < a for any a € A. Then

by + 1 € B, but b is the maximal element of B, which gives contradiction.
Hence the implication (MP) = (WOP) follows and the proof of Theorem
1 is finished. ]



Divisibility
Divisibility is a fundamental concept in number theory. Let a,d € Z and we
say that d is a divisor of a, and that a is a multiple of d, if there exists an
integer ¢ € Z such that
a=dgq.

If d divides a, we write d | a, and a/d is called the divisor conjugate to d.
Theorem (Divisibility)
Leta,b,d,n,m € Z. Divisibility has the following properties:
1. d | nandn | mimpliesd | m.
d|nandd | mimplies d | (an + bm).

d | nimplies ad | an.

W

ad | an and a # 0 implies d | n.
l|nandn|O.

0 | nimplies n = 0.

d | nand n # 0 implies |d| < |n|.
d | nand n/d implies |d| = |n|.

d | nandd # 0 implies (n/d) | n.

AR S RS N



The division algorithm

Theorem (The division algorithm)
Leta,d € 7 and d # 0. There exist unique integers q and r such that

a=dg+r, where 0<r<]|d|. D
Proof.
Let S := {a — dq : g € Z} NN and note that S # (), indeed if a > 0, then
a=a—d-0€S.1fa<0,thena—d(d|d|~'a) = (—a)(Jd| — 1) € S.

> Existence: By the minimum principle, S contains a smallest element
r € N, and a = dg + r for some g € Z. If r > |d|, then

0<r—|d=a—dg+dd™") <r,

and r — |d| € S, which contradicts the minimality of r implying (1).

» Uniqueness: Let g1, 7, g2, 2 € Z be integers such that
a=dg+r =dg+ryand 0 < r,r, < |d|. If 1 # g2, then

ldl < ldllg1 = g2 = |r2 = 1| < |d|.

which is impossible. Therefore, g; = g, and r; = r, as desired.
Finally note that d | a if and only if r = 0. O



Some remarks

Remarks on the division algorithm

» The integers g and r in the equation a = dg + r of the division
algorithm are called the quotient and the remainder, respectively, in the
division of a by d.

» Although the division algorithm theorem is an existence theorem, its
proof actually gives us a method for computing the quotient g and the
remainder r. We subtract from a (or add to a) enough multiples of d
until it is clear that we have obtained the smallest nonnegative number
of the form a — bq.

» In the previous theorem we can take

[ lajal itd>o,
T=\ “la/jd|] itd <o,

where |x| := max{n € Z : n < x} denotes the integer part of x € R.



Groups

Definition of groups
A group G := (G, ) is a nonempty set G with a binary operation
G x G > (x,y) — x -y € G that satisfies the following three axioms:

(i) Associativity: (x-y)-z=x-(y-z) forallx,y,z € G.
(ii) Identity element: There exists a neutral element e € G such that for all

e-x=x-e=x forall xeG.
The element e is called the identity of the group.
(iii) Inverses: For every x € @, there exists an element y € G such that
xX-y=y-x=e.
The element y is called the inverse of x.

Abelian groups

A group G = (G, ) is called abelian or commutative if the binary operation
satisfies (i)—(iii) and also satisfies the axiom

(iv) Commutativity: x-y =y -xforall x,y € G.



Examples

» The set GL,(C) of 2 x 2 matrices with complex coefficients and
nonzero determinant, is a nonabelian group with the usual matrix
multiplication as the binary operation.

> Examples of abelian groups are the integers Z, the rational numbers Q,
the real numbers R, and the complex numbers C, with the usual
operation of addition. The nonzero rational, real, and complex
numbers, denoted by Q*, R*, and C*, respectively, are also abelian
groups, with the usual multiplication as the binary operation.

» For every m € Z_, the set of complex numbers

Ty = {e(k/m) : k € Ng, }

is a multiplicative group. The elements of I',, are called mth roots of
unity, since w” = 1 forallw € T',.

» If G is an abelian group can use additive notation and denote the image
of the ordered pair (x,y) € G x G by x + y. We call x + y the sum of x
and y. In an additive group, the identity is usually written O, the inverse
of x is written —x, and we define x — y = x + (—y).

» If G is nonabelian we can also use multiplicative notation and denote
the image of the ordered pair (x,y) € G x G by xy. We call xy the
product of x and y. In a multiplicative group, the identity is usually

written e or 1 and the inverse of x is written x 1.



Subgroups

> A nonempty subset H of a group G is a subgroup of G if it is also a
group under the same binary operation as G. If H is a subgroup of G,
then H is closed under the binary operation in G, it contains the identity
element of G, and the inverse of every element of H belongs to H.

> A nonempty subset H of an additive abelian group G is a subgroup if
andonly if x —y € Hforallx,y € H

» For every d € Z, the set of all multiples of d is a subgroup of Z. We
denote this subgroup by dZ. If ay, . .., a; € Z, then the set
{awx; + -+ + agx : x1,...,x; € Z} is also a subgroup of Z.

» The set Q of rational numbers is a subgroup of the additive group R.
The set R is a subgroup of the multiplicative group R*. The unit
circle in the complex plane T = {z € C : |z] = 1} is a subgroup of the
multiplicative group C*, and T, is a subgroup of T.

> If G is a group, written multiplicatively, and g € G, then g" € G for all
n € Z,and {g" : n € Z} is a subgroup of G.

» The intersection of a family of subgroups of a group G is a subgroup of
G. Let S be a subset of a group G. The subgroup of G generated by S is
the smallest subgroup of G that contains S. In fact, this is simply the
intersection of all subgroups of G that contain S.

» For example, the subgroup of Z generated by the set {d} is dZ.



Structure of the subgroups of Z

Theorem

Let H be a subgroup of the integers under addition. There exists a unique
nonnegative integer d € N such that H = {0, +d, +2d, ...} = dZ.

Proof of the existence.

| g

>

We have 0 € H for every subgroup H. We can assume that H # {0},
otherwise we choose (uniquely) d = 0 and H = 0Z.

Since H # {0}, then there exists 0 # a € H. Since —a also belongs to
Hi, it follows that H contains positive integers. By the well-ordering
principle, Hl contains a least positive integer d € Z_.. Hence, dg € H
for every ¢q € Z, and so dZ C H.

Now we show that H C dZ. Let a € H. By the division algorithm, we
can write a = dq + r, where g and r are integers and 0 < r < d. Since
dg € H and H is closed under subtraction, it follows that

r=a—dqe H.

Since 0 < r < d and d is the smallest positive integer in H, we must
have r = 0, that is, a = dq € dZ and H C dZ. It follows that H = dZ.

O



Subgroups of Z and the greatest common divisors

Proof of the uniqueness.

We have proved that H = dZ for some d € N. If {0} # H = dZ = d'Z,
where d,d’ € Z ., then d’ € dZ implies that d’ = dq for some g € Z, and
d € d'Z implies that d = d'q’ for some integer ¢’ € Z. Therefore,

d=dq =dqq,

andsogq’ = 1,hence ¢ = ¢ = +1andd = +d'. Since d,d’ € Z., we have
d = d’, and consequently d is unique as claimed. O

Definition of the greatest common divisor
Let ) # A C Z be a set of integers, not all zero.

> If the integer d divides a for all a € A, then d is called a common
divisor of A.
» For example, 1 is a common divisor of every nonempty set of integers.

» The positive integer d is called the greatest common divisor of the set
A, denoted by d = ged(A), if d is a common divisor of A and every
common divisor of A divides d.



Greatest common divisors

Theorem
Let ) # A C Z be a set of integers, not all zero. Then A has a unique
greatest common divisor, and there exist integers ay, . .. ,a, € A and
X1y .., X € Z such that

ged(A) = ajxy + - - + agx.
Proof.

LetH :={ax;+ - +axg: ar,...,ax €A, x1,...,x € Zfork € [#A]}.

» Then H is a subgroup of Z and A C H. By the previous theorem there
exists a unique d € Z such that H = dZ.

» In particular, every integer a € A is a multiple of d, and so d is a
common divisor of A. Since d € H, there exist integers a;,...,a; € A
and xp, ..., x; € Z for some k € [#A] such that

d=ax;+ -+ apx.

» From this formula it follows that every common divisor of A must
divide d, hence d is a greatest common divisor of A.

» If the positive integers d and d’ are both greatest common divisors, then
d|d andd' | d,and sod = d'. It follows that gcd(A) is unique.

O



Greatest common divisors and Euclid’s lemma
IfA = {ay,...,a;} is a nonempty, finite set of integers, not all zero, we
write gcd(A) = (ai, . .., ax). Then the previous theorem readily implies.

Theorem (GCD theorem)

Let ay, ... a; € Z be integers, not all zero. Then (ay, ... ,a;) = 1 if and
only if there exist integers X1, . . ., Xy € Z such that

aix; + - +axp = 1.

Definition
» The integers ay, . . . ,ax € Z are called relatively prime or coprime if
their greatest common divisor is 1, that is, (a,...,a;) = 1.
» The integers ay, . . . ,ax € Z are called pairwise relatively prime if

(a;,a;) = 1fori #j.

Lemma (Euclid’s lemma)

Leta,b,c € Z. Ifa | bc and (a,b) = 1, thena | c.

Proof.

Since (a,b) = 1, by the previous theorem, we can write 1 = ax + by for
some x,y € Z. Therefore, multiplying by ¢ gives us ¢ = acx + bc. Since
a | acx and a | b, it follows that a | ¢ as desired.



Consequences of Euclid’s lemma

Theorem (GCD theorem for products)
Letk > 2, andleta,by,by,... by € Z. If (a,b;) = 1 foralli € [k], then
(a,blbz . bk) =1.

Proof.
Assume that k = 2 and d = (a, by b,) and show that d = 1.

» Since d | a and (a,b;) = 1, it follows that (d,b;) = 1.

» Since d | b1b,, Euclid’s lemma implies that d divides b,.

» Therefore, d is a common divisor of a and b,, but (a,b;) = 1,s0d = 1.
>

Let k£ > 3 and we will proceed by induction on k. Assume that the

result holds for k — 1. Let a, by, . . ., by be integers such that (a, ;) = 1

for i € [k]. The induction assumption implies that (a, by - - - bg—1) = 1.
» Since we also have (a, by) = 1, it follows from the case k = 2 that

(a, b] c ‘bk—lbk> =1.

Exercise
Letk € Z4,andleta,b;,...,by € Z. If by, ..., by are pairwise relatively
prime and all divide a, then b1b, - - - by | a.



Euclid’s algorithm

Theorem (The Euclidean algorithm)
Letrg:=a € Z4,r :=b € Z4 withb < a be given. Apply the division

algorithm repeatedly to obtain a set of remainders ry, . . ., 1,y defined by
ry =riqi +r, where 0 < r, <ri,
ro=nrq> +r3, where 0 < r3 <,
Tn—2 = Fn—1qn—1 + I'n, where 0 <r, < ryp—1,
Tn—1 = Tnqn + Tnt1, where ryy1 = 0.

Then r, = ged(a, b).
Proof.

» There is n € Z such that r,,1| = 0 because the r; are decreasing and
nonnegative. The last relation, r,_ = r,q,, shows that r,, | r,—;. The
next to last shows that r,,_; | r,_. By induction, we see that r, divides
each r;. In particular, r,, | ry =band r, | rp = a.

» Now let d be any common divisor of a and b. The definition of r,
shows that d | r,. The next relation shows that d | r3. By induction, d
divides each r;, so d | r,. Hence, r, = gcd(a, D). O



Prime numbers

Definition (Prime and composite numbers)

» Aninteger n € Z is called prime if n > 1 and if the only positive
divisors of n are 1 and n.

» If n > 1 and if # is not prime, then n is called composite.
» The set of all prime numbers will be denoted by P.
If p € P,a € Z and (p,a) > 1, then the definition readily implies that p | a.

Example
The prime numbers less than 100 are:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, 53,59, 61,67,71,73,79, 83, 89, 97.

Theorem

If p € P and p divides a product of integers, then p divides one of the factors.
Proof.

Let by, ..., by € Z be integers such that p | b; - - - by. By the theorem on

GCD with product of coprime factors we have (p, b;) > 1 for some i € [k].
Since p € P is prime, it follows that p divides b; as desired. O



Factorization of integers into primes

Theorem (Factorization theorem)
Every integer n > 1 is either a prime number or a product of prime numbers.

Proof.

The theorem is clearly true for n = 2. Proceeding by induction onn > 1 we
can assume that it is also true for every integer less than n. Then, if n is not
prime, it has a positive divisor d such that 1 < d < n. Hence, n = cd, where
1 < ¢ < n. By induction each of ¢ and d is a product of prime numbers by
induction. Therefore, n is also a product of prime numbers. O

Theorem (Euclid)

There are infinitely many prime number.

Proof after Hermite.

For each integer n > 1, let p,, € P denote the smallest prime divisor of

n! + 1, which exists by the factorization theorem. We readily see that p,, > n
and consequently the set of prime numbers P must be infinite. OJ

Remark

Euclid originally argued by contradiction, assuming that P = {p;,...,p,} is
finite for some n € Z, . Then, considering N = p; - - - p, + 1 and applying
the factorization theorem, we reach a contradiction.



Fundamental theorem of arithmetic

Theorem (Fundamental theorem of arithmetic)

Every integer n > 1 can be represented as a product of prime factors in only
one way, apart from the order of the factors.

Proof.

» The theorem is obviously true for n = 2. Proceeding by induction on
n > 1 we can assume that it is also true for every integer greater than 1
and less than n. If n is prime, there is nothing more to prove.

» Assume, that n is composite and has two factorizations, say

n=pp2---pPs=4q192" 4.

» We show that s =  and that each p; equals some ¢;. Since p1 | g1 - - - ¢s,
it must divide at least one factor. Relabel g1, . . ., ¢; so that p; | ¢;. Then

p1 = qi since both py, g; € P. Dividing by p; on both sides we obtain

n
—_— :p2p3 .. .ps pr— q2q3 .. 'qt'
P1

> Ifs>1lort>1,thenl < l] < n. By induction the two factorizations
of & must be identical, apart from the order of the factors. Therefore,
s = t and the conclusion follows. O



The standard prime power factorization
» For any n € N and a prime number p € P, we define v,(n) as the
greatest integer r € N such that p” | n. Then v,(n) € N and
wn)>1 < p|n

» If v,(n) = r then we say that the prime power p” exactly divides n, and
write p” || n. The standard factorization of n is given by:

n= Hp"p(")‘
pln

» Since every positive integer is divisible by only a finite number of
primes, we can also write:

n= Hpvp(”)7

pEP
where the product is an infinite product over the set of all prime
numbers and v,(n) = 0 and p*»(") = 1 for all but finitely many primes p.

» The function v, (n) is called the p-adic value of n. It is completely
additive in the sense that v, (mn) = v, (m) + v, (n) for all positive
integers m and n. For instance, v, (n!) = 31, vp (k).

» If m | n, then v,(m) < v,(n) forallp € P.



Least common multiple

Definition of the least common multiple

Letay,...,a; € N be nonzero integers.

» Aninteger m € Z is called a common multiple of a;, ..., q; if itis a
multiple of g; for all i € [k], that is, every integer a; | m.

» The least common multiple of ay, . .., ay is a positive integer m € Z
such that m is a common multiple of a;, . . . , a;, and m divides every
common multiple of ay, . .., a.

» We denote by lem(ay, . . ., ai) the least common multiple of ay, . . . , a.

Theorem (Exercise, prove it!)
Letay, ... ,ax € Z4 be positive integers. Then

ged(ar, .., a) = [ printola) (@),
peP

and
lem(ay,...,a) = Hpmax{v,;(al).,... vplan)}
peP

In particular, for k = 2, we have aja, = ged(ay, ax)lem(ay, as).



Prime power factorization of n!. For instance, 10! = 2834527
Theorem
For every positive integer n € Z and a prime number p € P, we have
L1557

)=y L’:J .

r=1

Proof.

Let 1 <m < n. If p” divides m, then p” < m < nand r < igg;. Since r is an

integer, we have r < HEE;J, and thus,

logn
LTogpd

vp(m) = Z 1.

r=
pll|m

The number of positive integers not exceeding n that are divisible by p” is
exactly L%J, and so

logn

n . L1252 Ligs) Li2es) .
) =S um =53 1=3% Yi1=% {;J 0
m=1 m=1 r=1 r=1 m=1 r=1

r

plim plllm



Euler’s theorem

Theorem (Euler’s theorem)
One has that

1
E — = 0.
pGIP’p

In particular, this implies that P is infinite.

Proof.

For every positive integer n € Z., we have

n 1 1 —1
>i=l(-;)

k=1 p<n

» Indeed, take m € Z so that 2" > n and observe that

l—loo1 m1
(1-3) -Lazls

In the first equality, we used the expansion into a geometric series.



Euler’s theorem: proof
> LetPo, :={p eP:p<n}:={pi,...,p} By the last inequality
— 1 m m m
1 1 1
M(-5) 2O -y -3
p<n p<n k= 0 j=1 k=0 "J 1=0 =0 4 k=1

since every integer 1 < k < n can be written as k = HpelP’<,, pvﬁ(k)
where v, (k) < m due to our choice of m € Z satisfying 2" > n.

» Now using
Z / — =logn,

k<n

>

we obtain that

|
loglogn < logH (1 _p> = —Zlog (1 — )

psn p<n

By the Taylor expansion for 0 < x < 1, we may write

flog(l—x):g z<x+§E xk<x+2(1_ ]
k=1 k=2



Euler’s theorem: proof

» Combining this Taylor expansion for x = 1/p with the last inequality,
we have

1! 1
loglogn<logH<1> :7210g <1>
p p

psn psn
1 1 1
SDIFEEIY
p 2e=plp—1)
1 1S 1 1
< oIt
P 2 — k(k—1) p 2

so that
1 1
Z — > loglogn — -.
p 2

psn

» Hence we deduce that the series Zp cp 1/p is divergent, which implies
that there are infinitely many primes. OJ



Sieve of Eratosthenes
The sieve is based on a simple observation.
Observation

If an n € Z is composite, then n can be written in the form n = d, - d,,
where 1 < d; < d, < n. If d; > /n, then we obtain a contradiction, since

n=dy-dy>\/n-/n=n.
» Therefore, if n € Z_ is composite, then n has a divisor d such that
1 < d < +/n. In particular, every composite number n < x is divisible
by a prime p < /x.
Eratosthenes algorithm
To find all the primes up to x, we write down the integers between 1 and x,
and eliminate numbers from the list according to the following rule:
1. Cross out 1. The first number in the list that is not eliminated is 2; cross
out all multiples of 2 that are greater than 2.

2. The iterative procedure is as follows: Let d be the smallest number on
the list whose multiples have not already been eliminated. If d < /x,
then cross out all multiples of d that are greater than d. If d > +/x, stop.

This algorithm must terminate after at most x steps. The prime numbers up
to x are the numbers that have not been crossed out.



Sieve of Eratosthenes for n

v

40

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 | 20
21 22| 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
31 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40
In the first step we remove 1 and all multiples of 2 grater than 2:
2 3 5 7 9
11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
In the second step we remove all multiples of 3 grater than 3:
2 3 5 7
11 13 17 19
23 25 29
31 37
In the third step we remove all multiples of 5 grater than 5:
2 3 5 7
11 13 17 19
23 29
31 37

In the fourth step the algorithm stops, since 7 > +/40.




A first glance at sieve theory

The prime counting function
For x € R, the set of all prime numbers not exceeding x will be denoted by
P<, := PN [0,x]. The counting function for P<, will be denoted by

w(x) = #P<,:={peP:p <x}.

» Letn > 2 be a fixed integer. As a consequence of Eratosthenes sieve,
an integer m € (/n, n] is a prime number if and only if

(m, H p) =1.
PEP< /i

> If S, is the set of positive integers m < n which are not divisible by all
prime numbers < /7, then by Eratosthenes sieve we have

Pgn QS,ZU{I,...,\/E},
and S, = m(n) — w(y/n) + 1, which implies
nn) < 5, + Vil



Counting primes using sieve

» More generally, let r > 2 be an integer. We define 7(n, r) to be the
number of positive integers m < n which are not divisible by prime
numbers < r (hence #S, = m(n, [/n])). Similarly as above, we have

m(n) < w(n,r) +r.

Exclusion—inclusion principle

Consider N objects and r properties denoted by py, ..., p,. Suppose that
A={pi,...,pi,} for some m € [r] and let N4 be the number of objects that
satisfy properties p;,, . .., p;,. Then, the number S of objects that satisfy
none of those properties is equal to

S=> (=1 > Na.

ACr
#A=k

Applying the exclusion—inclusion principle to 7(n, r), we obtain

wr il 2 L) el el

p<r P1<p2<r p1<p2<p3<r




Counting primes using sieve

» Since x — 1 < |x] < x, we obtain

w(n,r <n—Z > (-1) " +Y > 1

p<r pI<pa<r pip2 pr-pr k=1
- n !

—n—z S (1) -
p<r p1<p2<rp]p2 pre--pr k=1

7nH< )+2’T“ 1.

p<r
» Now inserting this bound to 7 (n) < 7 (n, r) + r, implies that
n) <nH (1 - 1) +270) f 1.
< p
PRI
» In the proof of Euler’s theorem we showed that

1 1
— > logl - =
Z > loglogn )

p<n



Counting primes using sieve

» Using log(1 — x) < —x and the last bound, we obtain

1 1 1/2
H(l)gexp(z><f .
P<r P P<r P ogr
» This implies
ne'’?
m(n) < +2"+r-1.
log r

» Choosing r = 1 + [logn| with n > 10 implies that

3n

< .
() loglogn

» This shows that (n) = o(n) as n — oo, which says that the set of
prime numbers has zero upper density.

» The upper density for A C N is defined by

limsup ZAN LA
N—oo N



