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Vinogradov’s system of diophantine equations

» Letk,n>

1 be integers, and P € Z be a large integer. Let J; ,(P) be

the number of integer solutions of the system of diophantine equations

Xpto X =X — o —x =0
x%+...+xﬁ-xi+l_...—x§k:0
: (HE)
X — = =0,
where 1 < xl,...,xngP.
» More generally, for given integers Aj, ..., \, € Z, let us define
Jin (P; A1, ..., Ay) as the number of solutions of the system
Xyt X = Xppr — o — Xk = Ag
Mo R X =
: (E)
Kb =y = = = A
where 1 < Xy X% S < P. Theann( ) ]k,n (P,O,,O)



Integral representation of Ji , (P; A, ..., \y)
» The basis of this method is the elementary orthogonality identity

! . 1 ifk=0
/ e(kx)dx = / Ry = 1 ’
0 0 0 ifk+#0.

» Using this identity we note that

2k
Jk’n(P;)\l,...7)\n): Z H(S)\ (Zx — Z )
1<x1,.. ,szng 1 j=k—+1
_ H/ Zx - Z x;"—Am)am)dam
1<xp, i KPm=1 Jj=k+1
/1/ ’Ze(alx—i—'--—i—a,,x”) e(—aqA — - —apAy) day -
0 0 x€[P]

» We then immediately see that

Jk,n (P;)\lv'”v)\n) S‘Ikn(P);

B

by taking Ay = ... =\, = 0.

-doy,.



Simple properties of Ji , (P; A1, ..., \y)

» When xi, ..., xy run over all possible P?* values, then the left-hand
side of the system (IE) assumes all possible values Ay, ..., \,, which
satisfy

M| < kP, | M| < kP?, ..., |A\a| < kP".
» By the Fourier inverse transform we have
2%
‘Ze(mx—k co 4 apx)
x<P
= > Jin Aty M) e (—arh — - — au\) .
A1 <kP,... | Ny | <kP"

» Now taking oy = ... = a, = 0 in the above equation we obtain

Z Jk,n(>‘lv~~'7>\n):P2k'

A1 <kP,...,| Ny | <kP"

» Further, we have trivially Ji ,(P) < P?%*_ and moreover Jia(P) is clearly

nondecreasing as a function of k or P.



Simple properties of Ji , (P; A1, ..., \y)
» Our interest will be primarily in the upper bounds for Ji ,(P), but we
may note here that a lower bound may be obtained as follows.

sz: Z Jk,n (Alw"?)‘n)
AL <KP, ... .| X | <kP"
< Jia(P) > 1 < Jia(P)(2k)P--- (2k)P"
[ X[ <KP,... | Au| <kP"
_ Jk,n(P) (2k)nPn(n+l)/2’
which gives
]k}n(P) > (2k)—nP2k—n(n+l)/27
and this is a nontrivial bound if & > % (n2 + n)
» If we consider the diagonal solutions x; = xj4 for all j € [k], and
1 <xg,...,x <P, then]k}n(P) > P
» If we consider only the first n — 1 equations in (IE), then the number of
their solutions i Jx ,—1 (A1, ..., Ay—1), and if we let |\, take all
possible values ( < kP") in the last equation in (IE), then we obtain

Z Jin Ao M) = Ten—1 (A1y o5 Amn) -
A <kP?



Linnik’s lemma

Lemma (Linnik)

Letm,n € Z, and also let A € 7Z, let p > n be a prime number, and let
Aly ..oy Ay € Z. Let T denote the number of solutions (x1, . ..,x,) € Z" of
the simultaneous congruences

X1+ +x,=X (mod p),
2

x1+...+xﬁE)\2 (mOdpz)’
: (LE)
X4+ +x=X (modp"),

where x; are distinct modulo p and A < x; < A+ mp" for all j € [n]. Then
for all integers Ay, ..., \, € Z, we have

T< n!m”p"(”fl)/z.
Proof.

» We can assume that A = 0. If xy, ..., x, satisfy (LE) with A = 0, then
we take [ € Z such that [p" — 1 < A < Ip" and consider y; = x; + Ip”,
then A <y; <A+ mp" forj € [n], and we readily see that yi,...,y,
satisfy (LE), since x; = y; (mod p") forj € [n].



Proof

We can also assume that m = 1. If (xy, ..., x,) is a solution of (LE)
such that 0 < x; < p" forj € [n], then (x; + [;p", ..., x, + [,p") with
Ii,...,1, € [m] is also a solution of (LE), and there are m" such
solutions.

For each \ € Z and j € [n] there is p"~/ choices of the residue class p
(mod p") such that A = i (mod p/).

Thus for any given tuple of integers (A\y, ..., \,) € Z", there are

HJ’.’:_I] p'i = p"n=1D/2 different vectors (1, . . ., pn) € Z/p"7Z so that

W=\ (mod p/) forall j& [n].

It will suffices to prove that for any fixed vector (1, ..., u,) € Z/p"Z
there are at most n! solutions (xi, . ..,x,) € Z/p"Z that the x; are
distinct (mod p) and satisfy

X+ X, = (mOdPn)7
x%_i_..._i,_xiE,lLQ (mOdpn)’
; (LEM)
XX =, (mod p").

We have “lifted” all of our congruences to be congruences modulo p”.



Proof

> Recall the Girard-Newton formulae. For k € Z_, let
n
Prlxi X)) = > xf =xf + 42
i=1

» For k € N, let ex(x1, . . ., x,) be the elementary symmetric polynomial

eo(xt, ..., x0) = 1,

er(Xr, .oy xn) =x1+ X2+ + Xy,

ez(xl,...,xn): Z )C,'Xj,

1<i<j<n
en(X1,y .oy Xn) = X120+ Xy,
ex(x1y...,x,) =0, fork>n.

» Then Newton’s identities can be stated as
k
kep(x1,...,x,) = Z(—l)i_lek_i(xl, ces X)Pi(X1, LX),
i=1
valid foralln > k > 1.



Proof

From (LEM) we see that p;(xy,...,x,) = g (mod p") fori € [n].

Since (p,n!) = 1, then the elementary functions ¢; = ¢;(x1, ..., xy)
given as solutions (mod p") of the following linear equations

e; = pi,2e; = (eip1 — p2),3es = (exp1 — e1p2 + p3),

dey = (63171 —eprteps *P4)» s, ney = Z(il)iilen—ipiv
i=I
are uniquely determined by p; (mod p") fori € [n].

We also know that the polynomial with roots xi, . . . , x,, may be
expressed as

n

H (x—x;) = Z(—l)kek(xl s X XR

i€[n] k=0

Therefore, the polynomial Hie[n} (x — x;) in also uniquely determined
by p; (mod p") fori € [n].



Proof

Now suppose that there are two solutions (xi,...,x,) € Z/p"Z and
(1, --,Yn) € Z/p"Z with distinct entries (mod p) such that

ZXJ’-‘ = Zyjk = (modp") forall k€ [n],
Jel] jel]

then we show that (yy, .. .,y,) is a permutation of (xi,...,x,).
By the previous discussion the polynomials

P@)=[[G—x) and 0@k =][]@—w)
i€[n] i€[n]
are identically congruent (mod p").
But we have P (x;) =0 (mod p") for all j € [n], and so we must have
0(x) = H (x; —yi)) =0 (modp") forall ;e [n]
i=1

If the y; are distinct modulo p this implies that x; is congruent to one of
the y; (mod p"), and so (since the x; are also distinct modulo p) the x;
are forced to be a permutation of the y; (mod p)". This implies that
there are at most n! possible solution vectors (xi, ..., X,). O



Recursive estimate

We now formulate a recursive estimate for Ji ,(P), which will enable us to
bound it explicitly. This is the crucial part of the Vinogradov—Korobov
method.

Proposition
Letn > 2,P > (2n)*", and k > n®> + n. Then

Jin(P) < 4%k pH/ntCn=3)12y (Py), (RE)

where P is a number which satisfies pl=1)/n <P < 4pn=1)/n

Proof.

> Let p € P be a prime from [1P'/", P!/"] (such a prime exists by
Bertrand’s postulate or the prime number theorem).

» Thus p > n, and if we set P; = [Pp~!| + 1, then
po=/m < pr<apt=N/" - and P < pPy.
» This gives Ji ,(P) < Ji,, (pP1). It will suffices to prove

Jk,n (pP]) S 42kZ2k/n+(3n_5)/2Jk—n7n (Pl) .



Proof

Let us also note that p > n, because of our hypothesis that P > (2n)3”.
We will be able to apply Linnik’s lemma to » of our variables.

We choose p ~ P'/" so that the ranges mp" of the variables in Linnik’s
lemma will approximately match the ranges P of our variables.

Next, let J; denote the number of solution vectors (xi, .. .,x), counted
by Ji. (pP1), in which (x1,...,x;) and (xx41, . .., X2¢) each contain n
numbers that are distinct modulo p, and let J, denote the number of
solution vectors not counted by J;.

Then it suffices to estimate J; and J, separately, since

Jin (PP1) =01 + Ja.

Also let J| denote the number of solution vectors (x1, ..., xz), counted
by Ji . (pP1), for which the first n elements (xy, . ..,x,) and
(Xk+15 - - - y Xx4n) are distinct modulo p. Then we have

Jin (PP) = J1 +Jo < KT} +

since each vector counted by J| corresponds to at most k*" vectors
counted by J;. This is by noting that the first n entries of a vector from
J| may be placed in k(k — 1) - - - (k — n + 1) ways in k places without
changing the order of the remaining k — n entries of the vector.



Proof

We now prove that
Ji < max.ll( ),

xelp]
where Ji (x) denotes the number of solution vectors (xi, . . ., xx), counted by
J1, for which all of the 2k — 2n components (X,+1, . - . , Xx) and
(Xk4n+t1, - - -, X2) are congruent to x (mod p).
Indeed, for a = (au, ..., a,) € [0,1)", let
Py
Se(a) = Z e(az+ ...+ and"),
s=x(mod p)
and observe that
y :/ 5. (a ‘ ) Z ‘Zk 2n
OD" gy mel] € [p]
distinct

Using Holder’s inequality, pulling out the inner sum Exe ) and taking
maX,¢[,] We obtain

I < p max/
*ell Jio, 1y

For every x € [p], the last integral is precisely equal to Ji (x) as desired.

2
Su (@) -+ 85, (@) [ I8:(0) P* > dar
Xp 50X €[]

distinct




Proof

» If (xi,...,xx) is a solution counted by J; (x), then it has the form

(-xla s Xy Xnb 1y o ooy Kby Xkt-15 « « oy Xktny Xktnt15 - - - 7x2k)

= ()C], ey Xy DYl Xy PYE T X Xkt 1y - ey Xkny PYkbnd1 Xy PY2K +X),
where (x1,...,%,) and (Xgt1, . - . , Xetn) are distinct modulo p, and
Y41, Yitn+1y - -« 3 Yy Y2k € [Pl]

» Observe that the system (HE) is translation invariant, which means that if
(x1,...,xx) satisfies (HE), then (x; — x, ..., xx — x) also does.

» Hence, by the translation invariance, we have

n k
S =di+ > (pyit+x) — (pyeri+x) =0 forall j€ [n],
i=1

i=n+1
n . . . k . .
A Zzi'*zlwﬂrp] Z Yi =Y =0 forall jen],
i=1 i=n+1

where z; = x; — x and zx4; = xx+; — x for all i € [n]. Moreover, we have
1 —x<zi,z+i < pPi —xfori € [n],and 1 < y;, yiq: < Py fori € [k] \ [n],
and (zi,...,z:) and (zk+1, - - -, Zk4a) are distinct modulo p.



Proof

The last system of equations can be rewritten as

Sd- 24+, P S foral el
i=1

i=n+1

Fixing zgy1, - - -, Zt4n» €ach vector (zy, . . ., z,) satisfies the conditions
of Linnik’s lemma, withA =1 —xand m > pP,p~" > Pp~", so that
we may take m = |Pp~"| + 1. Thus by Linnik’s lemma

T< nlmnpn(n 1)/2

For any fixed z, ..., 2, and Zx+1, - - . , Zk+n, the number of vectors
(Vnt15 - -« s Yks Vitnt1, - - - » y2r) that are counted in J7(x) is at most
Jk—n,n (Pl)-

So in total, using the trivial bound (pPl)" for the number of choices of
Zk+15 - - -  Zk+n> WE May write

Jl < anJi (x) < k2np2k—2nn!mnpn(n—l)/2 (ppl)" kan,n (Pl) .



Proof

Since p > %Pl/” we have Pp™" < 2", implying m" < o L ok,
Using further p < PUn and P, < 4p(n=1/n e obtain

Ji < nl2k2npR/ntGn=S)/2qny, | (P))

< 142kp2k/n+(3n75)/2jk_n ; (P] )
2 ’ ’
because k > n? +n,and n > 2.
Recall that J, counts all those vectors (Xy, . .., Xk, Xkt1, - - - s X2k )5
counted by Ji , (pP1), in which either (x1,...,x;) or (Xgt1, ..., X2)

contains at most n — 1 numbers that are distinct (mod p).

In the first case there are at most p"~!(n — 1) possibilities for

(x; (mod p),...,x (mod p)). Indeed, there are at most p"~! ways of
choosing {uy,...,u;} C Z/pZ, and then there are at most (n — 1)*
possibilities of fixing (x; (mod p),...,x (mod p)) with coordinates
from {u;, ..., u}. Hence, there are at most p"~!T*n* possibilities for
(x1 (mod p),...,x (mod p),x;+1 (mod p),...,xx (mod p)).

We proceed similarly in the second case.

Therefore, if .4 denote the set of all possible vectors of the form

(x1 (mod p),...,x (mod p),xx+1 (mod p),...,xy (mod p)) that
are counted in J,, then #A4 < 2p”’1+knk.



Proof

» Observe that

le (a) e SYk( )SXkJrl (a) o szk (a)

(x15--- X)) EA
1/2k 1/2k
2k 2k
(X m@r) (X sa@F)
(X150 0 ) EA (x150005%2% ) EA
ST IS@F S 1< S (s o)
x€[p] (X1 500Xt ) EA x€[p]
<zkarn 1 kPZnZ |S 2(k7n).

x€(p]
since trivially |S¢(c)| < Pi. Therefore

= /[ S 80(0) Sy (@)Sup (@) S (@)dar

D" (i) €A

\ A+n 1 k Zn/ ‘S Z(k—n)da
o 2 15

x€[Py]

>

o L okt (i
:PH_ ]l’lkP% Je—nn (P1) < 542AP2/{/ LSRN /. (P1).

> This completes the proof.



Vinogradov’s mean value theorem

Theorem (Vinogradov’s mean value theorem)
Letre N n>2 k>n*+nr,and P > Py and define

(n* +n) (1—:l>r.

Jk,n(P) < (4n)4krP2k—(n2+n)/2+c,. (*)

cr =

N —

Then

Proof.

» We use induction on r € N. For r = 0 inequality (*) is true, since
trivially Ji ,(P) < P?*.

» Suppose now that (*) is true for r = m > 0 and consider r = m + 1. If

P> (zn)Sn(l—i-l/(n—l))’

thenk > n® + n(m + 1), and P > (2n)3(+1/(=D)""",
» An application of the previous proposition gives

Jin(P) < 4pR/ntGn=s)2y, . (Py). (A)



Proof

To bound Ji_, , (P1) we may use the the induction hypothesis, since
k—n>=n*4+nm, and Py >P'7/" > (2p)30+1/ (=1
It follows that
Jicnn (Py) < (dn)3mm paimn =0 /2,
< (4n)4(k7n)m42(k7n)P(lf1/n)(2k72n7(n2+n)/2+cm)’

which combined with (A) gives (¥).
Let now
P< (zn)3n(1+l/(n71))”

and use induction again, supposing
pP< (zn)3n(l+l/(n—l))m+l7 and k> n®+n(m+1).
Then we have trivially
Jin(P) < P*"J—nu(P), (B)

and if P > (2n)>"(1+1/(==1)" then by the first part of the proof
Ji—nn(P) may be estimated by (*) as before.



Proof

» Otherwise, we use the induction hypothesis to estimate J;_, ,(P), so
that we obtain in any case

Tecnn(P) < (4n)¥m p2lh=m —(w*tn) /24 cn.
and (B) gives
Ten(P) < (4n)*Ont) p2h=(tn) /24 ni
since
P< (zn)3n(l+l/(n—l))’"+17 and  k>n+n(m+1),

implies
Pen—Cmt1 (4n)4k )

» This completes the proof of the Vinogradov mean value theorem.



