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Vinogradov’s system of diophantine equations
▶ Let k, n ⩾ 1 be integers, and P ∈ Z+ be a large integer. Let Jk,n(P) be

the number of integer solutions of the system of diophantine equations

x1 + · · ·+ xk − xk+1 − · · · − x2k = 0

x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

2k = 0
...

... (HE)
xn

1 + · · ·+ xn
k − xn

k+1 − · · · − xn
2k = 0,

where 1 ⩽ x1, . . . , x2k ⩽ P.
▶ More generally, for given integers λ1, . . . , λn ∈ Z, let us define

Jk,n (P;λ1, . . . , λn) as the number of solutions of the system

x1 + · · ·+ xk − xk+1 − · · · − x2k = λ1

x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

2k = λ2

...
... (IE)

xn
1 + · · ·+ xn

k − xn
k+1 − · · · − xn

2k = λn,

where 1 ⩽ x1, . . . , x2k ⩽ P. Then Jk,n(P) = Jk,n (P; 0, . . . , 0).



Integral representation of Jk,n (P;λ1, . . . , λn)
▶ The basis of this method is the elementary orthogonality identity∫ 1

0
e(kx)dx =

∫ 1

0
e2πikxdx =

{
1 if k = 0,
0 if k ̸= 0.

▶ Using this identity we note that

Jk,n (P;λ1, . . . , λn) =
∑

1⩽x1,...,x2k⩽P

n∏
m=1

δλm

( k∑
j=1

xm
j −

2k∑
j=k+1

xm
j

)

=
∑

1⩽x1,...,x2k⩽P

n∏
m=1

∫ 1

0
e
(( k∑

j=1

xm
j −

2k∑
j=k+1

xm
j − λm

)
αm

)
dαm

∫ 1

0
· · ·

∫ 1

0

∣∣∣ ∑
x∈[P]

e (α1x + · · ·+ αnxn)
∣∣∣2k

e (−α1λ1 − · · · − αnλn) dα1 · · · dαn.

▶ We then immediately see that

Jk,n (P;λ1, . . . , λn) ≤ Jk,n(P),

by taking λ1 = . . . = λn = 0.



Simple properties of Jk,n (P;λ1, . . . , λn)

▶ When x1, . . . , x2k run over all possible P2k values, then the left-hand
side of the system (IE) assumes all possible values λ1, . . . , λn, which
satisfy

|λ1| < kP, |λ2| < kP2, . . . , |λn| < kPn.

▶ By the Fourier inverse transform we have∣∣∣∑
x⩽P

e (α1x + · · ·+ αnxn)
∣∣∣2k

=
∑

|λ1|<kP,...,|λn|<kPn

Jk,n (λ1, . . . , λn) e (−α1λ1 − · · · − αnλn) .

▶ Now taking α1 = . . . = αn = 0 in the above equation we obtain∑
|λ1|<kP,...,|λn|<kPn

Jk,n (λ1, . . . , λn) = P2k.

▶ Further, we have trivially Jk,n(P) ⩽ P2k, and moreover Jk,n(P) is clearly
nondecreasing as a function of k or P.



Simple properties of Jk,n (P;λ1, . . . , λn)
▶ Our interest will be primarily in the upper bounds for Jk,n(P), but we

may note here that a lower bound may be obtained as follows.

P2k =
∑

|λ1|<kP,...,|λn|<kPn

Jk,n (λ1, . . . , λn)

⩽ Jk,n(P)
∑

|λ1|<kP,...,|λn|<kPn

1 ⩽ Jk,n(P)(2k)P · · · (2k)Pn

= Jk,n(P)(2k)nPn(n+1)/2,

which gives
Jk,n(P) ⩾ (2k)−nP2k−n(n+1)/2,

and this is a nontrivial bound if k > 1
4

(
n2 + n

)
.

▶ If we consider the diagonal solutions xj = xj+k for all j ∈ [k], and
1 ≤ x1, . . . , xk ≤ P, then Jk,n(P) ≥ Pn.

▶ If we consider only the first n − 1 equations in (IE), then the number of
their solutions is Jk,n−1 (λ1, . . . , λn−1), and if we let |λn| take all
possible values ( < kPn ) in the last equation in (IE), then we obtain∑

|λn|<kPn

Jk,n (λ1, . . . , λn) = Jk,n−1 (λ1, . . . , λn−1) .



Linnik’s lemma
Lemma (Linnik)
Let m, n ∈ Z+, and also let A ∈ Z, let p > n be a prime number, and let
λ1, . . . , λn ∈ Z. Let T denote the number of solutions (x1, . . . , xn) ∈ Zn of
the simultaneous congruences

x1 + · · ·+ xn ≡ λ1 (mod p),

x2
1 + · · ·+ x2

n ≡ λ2 (mod p2),

... (LE)
xn

1 + · · ·+ xn
n ≡ λn (mod pn),

where xj are distinct modulo p and A ≤ xj < A + mpn for all j ∈ [n]. Then
for all integers λ1, . . . , λn ∈ Z, we have

T ≤ n!mnpn(n−1)/2.
Proof.
▶ We can assume that A = 0. If x1, . . . , xn satisfy (LE) with A = 0, then

we take l ∈ Z such that lpn − 1 < A ≤ lpn and consider yj = xj + lpn,
then A ≤ yj ≤ A + mpn for j ∈ [n], and we readily see that y1, . . . , yn

satisfy (LE), since xj ≡ yj (mod pn) for j ∈ [n].



Proof
▶ We can also assume that m = 1. If (x1, . . . , xn) is a solution of (LE)

such that 0 ≤ xj < pn for j ∈ [n], then (x1 + l1pn, . . . , xn + lnpn) with
l1, . . . , ln ∈ [m] is also a solution of (LE), and there are mn such
solutions.

▶ For each λ ∈ Z and j ∈ [n] there is pn−j choices of the residue class µ
(mod pn) such that λ ≡ µ (mod pj).

▶ Thus for any given tuple of integers (λ1, . . . , λn) ∈ Zn, there are∏n−1
j=1 pn−j = pn(n−1)/2 different vectors (µ1, . . . , µn) ∈ Z/pnZ so that

µj ≡ λj (mod pj) for all j ∈ [n].

▶ It will suffices to prove that for any fixed vector (µ1, . . . , µn) ∈ Z/pnZ
there are at most n! solutions (x1, . . . , xn) ∈ Z/pnZ that the xj are
distinct (mod p) and satisfy

x1 + · · ·+ xn ≡ µ1 (mod pn),

x2
1 + · · ·+ x2

n ≡ µ2 (mod pn),

... (LEM)
xn

1 + · · ·+ xn
n ≡ µn (mod pn).

We have “lifted” all of our congruences to be congruences modulo pn.



Proof
▶ Recall the Girard–Newton formulae. For k ∈ Z+, let

pk(x1, . . . , xn) =

n∑
i=1

xk
i = xk

1 + · · ·+ xk
n.

▶ For k ∈ N, let ek(x1, . . . , xn) be the elementary symmetric polynomial

e0(x1, . . . , xn) = 1,
e1(x1, . . . , xn) = x1 + x2 + · · ·+ xn,

e2(x1, . . . , xn) =
∑

1≤i<j≤n

xixj,

...
en(x1, . . . , xn) = x1x2 · · · xn,

ek(x1, . . . , xn) = 0, for k > n.

▶ Then Newton’s identities can be stated as

kek(x1, . . . , xn) =

k∑
i=1

(−1)i−1ek−i(x1, . . . , xn)pi(x1, . . . , xn),

valid for all n ≥ k ≥ 1.



Proof

▶ From (LEM) we see that pi(x1, . . . , xn) ≡ µi (mod pn) for i ∈ [n].
▶ Since (p, n!) = 1, then the elementary functions ej = ej(x1, . . . , xn)

given as solutions (mod pn) of the following linear equations

e1 = p1, 2e2 = (e1p1 − p2), 3e3 = (e2p1 − e1p2 + p3),

4e4 = (e3p1 − e2p2 + e1p3 − p4), . . . , nen =

n∑
i=1

(−1)i−1en−ipi,

are uniquely determined by µi (mod pn) for i ∈ [n].
▶ We also know that the polynomial with roots x1, . . . , xn may be

expressed as

∏
i∈[n]

(x − xi) =

n∑
k=0

(−1)kek(x1, . . . , xn)xn−k.

▶ Therefore, the polynomial
∏

i∈[n](x − xi) in also uniquely determined
by µi (mod pn) for i ∈ [n].



Proof
▶ Now suppose that there are two solutions (x1, . . . , xn) ∈ Z/pnZ and

(y1, . . . , yn) ∈ Z/pnZ with distinct entries (mod p) such that∑
j∈[n]

xk
j ≡

∑
j∈[n]

yk
j ≡ µk (mod pn) for all k ∈ [n],

then we show that (y1, . . . , yn) is a permutation of (x1, . . . , xn).
▶ By the previous discussion the polynomials

P(z) =
∏
i∈[n]

(z − xi) and Q(z) =
∏
i∈[n]

(z − yi)

are identically congruent (mod pn).
▶ But we have P (xj) ≡ 0 (mod pn) for all j ∈ [n], and so we must have

Q (xj) =

n∏
i=1

(xj − yi) ≡ 0 (mod pn) for all j ∈ [n].

▶ If the yi are distinct modulo p this implies that xj is congruent to one of
the yi (mod pn), and so (since the xj are also distinct modulo p) the xj

are forced to be a permutation of the yj (mod p)n. This implies that
there are at most n! possible solution vectors (x1, . . . , xn).



Recursive estimate
We now formulate a recursive estimate for Jk,n(P), which will enable us to
bound it explicitly. This is the crucial part of the Vinogradov–Korobov
method.

Proposition
Let n ⩾ 2,P ⩾ (2n)3n, and k ⩾ n2 + n. Then

Jk,n(P) ⩽ 42kP2k/n+(3n−5)/2Jk−n,n (P1) , (RE)

where P1 is a number which satisfies P(n−1)/n ⩽ P1 ⩽ 4P(n−1)/n.

Proof.
▶ Let p ∈ P be a prime from

[ 1
2 P1/n,P1/n

]
(such a prime exists by

Bertrand’s postulate or the prime number theorem).
▶ Thus p > n, and if we set P1 = ⌊Pp−1⌋+ 1, then

P(n−1)/n ⩽ P1 ⩽ 4P(n−1)/n, and P < pP1.

▶ This gives Jk,n(P) ⩽ Jk,n (pP1). It will suffices to prove

Jk,n (pP1) ≤ 42kZ2k/n+(3n−5)/2Jk−n,n (P1) .



Proof
▶ Let us also note that p > n, because of our hypothesis that P ≥ (2n)3n.

We will be able to apply Linnik’s lemma to n of our variables.
▶ We choose p ≃ P1/n so that the ranges mpn of the variables in Linnik’s

lemma will approximately match the ranges P of our variables.
▶ Next, let J1 denote the number of solution vectors (x1, . . . , x2k), counted

by Jk,n (pP1), in which (x1, . . . , xk) and (xk+1, . . . , x2k) each contain n
numbers that are distinct modulo p, and let J2 denote the number of
solution vectors not counted by J1.

▶ Then it suffices to estimate J1 and J2 separately, since

Jk,n (pP1) = J1 + J2.

▶ Also let J′1 denote the number of solution vectors (x1, . . . , x2k), counted
by Jk,n (pP1), for which the first n elements (x1, . . . , xn) and
(xk+1, . . . , xk+n) are distinct modulo p. Then we have

Jk,n (pP1) = J1 + J2 ≤ k2nJ′1 + J2,

since each vector counted by J′1 corresponds to at most k2n vectors
counted by J1. This is by noting that the first n entries of a vector from
J′1 may be placed in k(k − 1) · · · (k − n + 1) ways in k places without
changing the order of the remaining k − n entries of the vector.



Proof
▶ We now prove that

J′
1 ≤ max

x∈[p]
J′

1(x),

where J′
1(x) denotes the number of solution vectors (x1, . . . , x2k), counted by

J′
1, for which all of the 2k − 2n components (xn+1, . . . , xk) and
(xk+n+1, . . . , x2k) are congruent to x (mod p).

▶ Indeed, for α = (α1, . . . , αn) ∈ [0, 1)n, let

Sx(α) =

P1∑
z=1

z≡x( mod p)

e(α1z + . . .+ αnzn),

and observe that

J′
1 =

∫
[0,1)n

∣∣∣ ∑
x1,...,xn∈[p]

distinct

Sx1 (α) · · · Sxn (α)
∣∣∣2∣∣∣ ∑

x∈[p]

Sx(α)
∣∣∣2k−2n

dα.

▶ Using Hölder’s inequality, pulling out the inner sum
∑

x∈[p] and taking
maxx∈[p] we obtain

J′
1 ≤ p2k−2n max

x∈[p]

∫
[0,1)n

∣∣∣ ∑
x1,...,xn∈[p]

distinct

Sx1 (α) · · · Sxn (α)
∣∣∣2
|Sx(α)|2k−2ndα.

▶ For every x ∈ [p], the last integral is precisely equal to J′
1(x) as desired.



Proof
▶ If (x1, . . . , x2k) is a solution counted by J′

1(x), then it has the form

(x1, . . . , xn, xn+1, . . . , xk, xk+1, . . . , xk+n, xk+n+1, . . . , x2k)

= (x1, . . . , xn, pyn+1 + x, . . . , pyk + x, xk+1, . . . , xk+n, pyk+n+1 + x, . . . , py2k + x),

where (x1, . . . , xn) and (xk+1, . . . , xk+n) are distinct modulo p, and
yn+1, yk+n+1, . . . , yk, y2k ∈ [P1].

▶ Observe that the system (HE) is translation invariant, which means that if
(x1, . . . , x2k) satisfies (HE), then (x1 − x, . . . , x2k − x) also does.

▶ Hence, by the translation invariance, we have

n∑
i=1

xj
i − xj

k+i +

k∑
i=n+1

(pyi + x)j − (pyk+i + x)j = 0 for all j ∈ [n],

⇐⇒
n∑

i=1

zj
i − zj

k+i + pj
k∑

i=n+1

yj
i − yj

k+i = 0 for all j ∈ [n],

where zi = xi − x and zk+i = xk+i − x for all i ∈ [n]. Moreover, we have
1 − x ≤ zi, zk+i ≤ pP1 − x for i ∈ [n], and 1 ≤ yi, yk+i ≤ P1 for i ∈ [k] \ [n],
and (z1, . . . , zn) and (zk+1, . . . , zk+n) are distinct modulo p.



Proof
▶ The last system of equations can be rewritten as

n∑
i=1

zj
i =

n∑
i=1

zj
k+i − pj

k∑
i=n+1

yj
i − yj

k+i for all j ∈ [n].

▶ Fixing zk+1, . . . , zk+n, each vector (z1, . . . , zn) satisfies the conditions
of Linnik’s lemma, with A = 1 − x and m ≥ pP1p−n > Pp−n, so that
we may take m = ⌊Pp−n⌋+ 1. Thus by Linnik’s lemma

T ≤ n!mnpn(n−1)/2.

▶ For any fixed z1, . . . , zn and zk+1, . . . , zk+n, the number of vectors
(yn+1, . . . , yk, yk+n+1, . . . , y2k) that are counted in J′1(x) is at most
Jk−n,n (P1).

▶ So in total, using the trivial bound (pP1)
n for the number of choices of

zk+1, . . . , zk+n, we may write

J1 ≤ k2nJ′1(x) ≤ k2np2k−2nn!mnpn(n−1)/2 (pP1)
n Jk−n,n (P1) .



Proof
▶ Since p ⩾ 1

2 P1/n we have Pp−n ⩽ 2n, implying mn ⩽ 2n2+n ⩽ 2k.
▶ Using further p ⩽ P1/n, and P1 ⩽ 4P(n−1)/n, we obtain

J1 ⩽ n!2kk2nP2k/n+(3n−5)/24nJk−n,n (P1)

⩽
1
2

42kP2k/n+(3n−5)/2Jk−n,n (P1) ,

because k ⩾ n2 + n, and n ⩾ 2.
▶ Recall that J2 counts all those vectors (x1, . . . , xk, xk+1, . . . , x2k),

counted by Jk,n (pP1), in which either (x1, . . . , xk) or (xk+1, . . . , x2k)
contains at most n − 1 numbers that are distinct (mod p).

▶ In the first case there are at most pn−1(n − 1)k possibilities for
(x1 (mod p), . . . , xk (mod p)). Indeed, there are at most pn−1 ways of
choosing {u1, . . . , uk} ⊆ Z/pZ, and then there are at most (n − 1)k

possibilities of fixing (x1 (mod p), . . . , xk (mod p)) with coordinates
from {u1, . . . , uk}. Hence, there are at most pn−1+knk possibilities for
(x1 (mod p), . . . , xk (mod p), xk+1 (mod p), . . . , x2k (mod p)).

▶ We proceed similarly in the second case.
▶ Therefore, if A denote the set of all possible vectors of the form

(x1 (mod p), . . . , xk (mod p), xk+1 (mod p), . . . , x2k (mod p)) that
are counted in J2, then #A ≤ 2pn−1+knk.



Proof
▶ Observe that∣∣∣∣ ∑

(x1,...,x2k)∈A

Sx1(α) · · · Sxk (α)Sxk+1(α) · · · Sx2k (α)

∣∣∣∣
⩽

( ∑
(x1,...,x2k)∈A

|Sx1(α)|
2k
)1/2k

· · ·
( ∑

(x1,...,x2k)∈A

|Sx2k (α)|
2k
)1/2k

⩽
∑
x∈[p]

|Sx(α)|2k
∑

(x1,...,x2k)∈A

1 ⩽ 2pk+n−1nk
∑
x∈[p]

|Sx(α)|2k

⩽ 2pk+n−1nkP2n
1

∑
x∈[p]

|Sx(α)|2(k−n).

since trivially |Sx(α)| ⩽ P1. Therefore

J2 =

∫
[0,1)n

∑
(x1,...,x2k)∈A

Sx1(α) · · · Sxk (α)Sxk+1(α) · · · Sx2k (α)dα

⩽pk+n−1nkP2n
1

∫
[0,1)n

∑
x∈[P1]

|Sx(α)|2(k−n)dα

=pk+n−1nkP2n
1 Jk−n,n (P1) ⩽

1
2

42kP2k/n+(3n−5)/2Jk−n,n (P1) .

▶ This completes the proof.



Vinogradov’s mean value theorem
Theorem (Vinogradov’s mean value theorem)
Let r ∈ N, n ≥ 2, k ⩾ n2 + nr, and P ⩾ P0 and define

cr =
1
2
(
n2 + n

)(
1 − 1

n

)r

.

Then
Jk,n(P) ⩽ (4n)4krP2k−(n2+n)/2+cr . (*)

Proof.
▶ We use induction on r ∈ N. For r = 0 inequality (*) is true, since

trivially Jk,n(P) ⩽ P2k.
▶ Suppose now that (*) is true for r = m ⩾ 0 and consider r = m + 1. If

P ⩾ (2n)3n(1+1/(n−1))r

then k ⩾ n2 + n(m + 1), and P ⩾ (2n)3n(1+1/(n−1))m+1
.

▶ An application of the previous proposition gives

Jk,n(P) ⩽ 42kP2k/n+(3n−5)/2Jk−n,n (P1) . (A)



Proof
▶ To bound Jk−n,n (P1) we may use the the induction hypothesis, since

k − n ⩾ n2 + nm, and P1 ⩾ P1−1/n ⩾ (2n)3n(1+1/(n−1))m
.

▶ It follows that

Jk−n,n (P1) ⩽ (4n)4(k−n)mP2(k−n)−(n2+n)/2+cm
1

⩽ (4n)4(k−n)m42(k−n)P(1−1/n)(2k−2n−(n2+n)/2+cm),

which combined with (A) gives (*).
▶ Let now

P < (2n)3n(1+1/(n−1))r
,

and use induction again, supposing

P < (2n)3n(1+1/(n−1))m+1
, and k ⩾ n2 + n(m + 1).

▶ Then we have trivially

Jk,n(P) ⩽ P2nJk−n,n(P), (B)

and if P ⩾ (2n)3n(1+1/(n−1))m
then by the first part of the proof

Jk−n,n(P) may be estimated by (*) as before.



Proof

▶ Otherwise, we use the induction hypothesis to estimate Jk−n,n(P), so
that we obtain in any case

Jk−n,n(P) ⩽ (4n)4kmP2(k−n)−(n2+n)/2+cm ,

and (B) gives

Jk,n(P) ⩽ (4n)4k(m+1)P2k−(n2+n)/2+cm+1 ,

since

P < (2n)3n(1+1/(n−1))m+1
, and k ⩾ n2 + n(m + 1),

implies
Pcm−cm+1 ⩽ (4n)4k.

▶ This completes the proof of the Vinogradov mean value theorem.


