

Analytic Number Theory

Lecture 10

Mariusz Mirek
Rutgers University

Padova, April 9, 2025.

Supported by the NSF grant DMS-2154712,
and the CAREER grant DMS-2236493.

Vinogradov's system of diophantine equations

► Let $k, n \geq 1$ be integers, and $P \in \mathbb{Z}_+$ be a large integer. Let $J_{k,n}(P)$ be the number of integer solutions of the system of diophantine equations

$$\begin{aligned} x_1 + \cdots + x_k - x_{k+1} - \cdots - x_{2k} &= 0 \\ x_1^2 + \cdots + x_k^2 - x_{k+1}^2 - \cdots - x_{2k}^2 &= 0 \\ &\vdots && \vdots \\ x_1^n + \cdots + x_k^n - x_{k+1}^n - \cdots - x_{2k}^n &= 0, \end{aligned} \tag{HE}$$

where $1 \leq x_1, \dots, x_{2k} \leq P$.

► More generally, for given integers $\lambda_1, \dots, \lambda_n \in \mathbb{Z}$, let us define $J_{k,n}(P; \lambda_1, \dots, \lambda_n)$ as the number of solutions of the system

$$\begin{aligned} x_1 + \cdots + x_k - x_{k+1} - \cdots - x_{2k} &= \lambda_1 \\ x_1^2 + \cdots + x_k^2 - x_{k+1}^2 - \cdots - x_{2k}^2 &= \lambda_2 \\ &\vdots && \vdots \\ x_1^n + \cdots + x_k^n - x_{k+1}^n - \cdots - x_{2k}^n &= \lambda_n, \end{aligned} \tag{IE}$$

where $1 \leq x_1, \dots, x_{2k} \leq P$. Then $J_{k,n}(P) = J_{k,n}(P; 0, \dots, 0)$.

Integral representation of $J_{k,n}(P; \lambda_1, \dots, \lambda_n)$

- The basis of this method is the elementary orthogonality identity

$$\int_0^1 e(kx)dx = \int_0^1 e^{2\pi ikx}dx = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{if } k \neq 0. \end{cases}$$

- Using this identity we note that

$$\begin{aligned} J_{k,n}(P; \lambda_1, \dots, \lambda_n) &= \sum_{1 \leq x_1, \dots, x_{2k} \leq P} \prod_{m=1}^n \delta_{\lambda_m} \left(\sum_{j=1}^k x_j^m - \sum_{j=k+1}^{2k} x_j^m \right) \\ &= \sum_{1 \leq x_1, \dots, x_{2k} \leq P} \prod_{m=1}^n \int_0^1 e \left(\left(\sum_{j=1}^k x_j^m - \sum_{j=k+1}^{2k} x_j^m - \lambda_m \right) \alpha_m \right) d\alpha_m \\ &\quad \int_0^1 \cdots \int_0^1 \left| \sum_{x \in [P]} e(\alpha_1 x + \cdots + \alpha_n x^n) \right|^{2k} e(-\alpha_1 \lambda_1 - \cdots - \alpha_n \lambda_n) d\alpha_1 \cdots d\alpha_n. \end{aligned}$$

- We then immediately see that

$$J_{k,n}(P; \lambda_1, \dots, \lambda_n) \leq J_{k,n}(P),$$

by taking $\lambda_1 = \dots = \lambda_n = 0$.

Simple properties of $J_{k,n}(P; \lambda_1, \dots, \lambda_n)$

- When x_1, \dots, x_{2k} run over all possible P^{2k} values, then the left-hand side of the system (IE) assumes all possible values $\lambda_1, \dots, \lambda_n$, which satisfy

$$|\lambda_1| < kP, |\lambda_2| < kP^2, \dots, |\lambda_n| < kP^n.$$

- By the Fourier inverse transform we have

$$\begin{aligned} & \left| \sum_{x \leq P} e(\alpha_1 x + \dots + \alpha_n x^n) \right|^{2k} \\ &= \sum_{|\lambda_1| < kP, \dots, |\lambda_n| < kP^n} J_{k,n}(\lambda_1, \dots, \lambda_n) e(-\alpha_1 \lambda_1 - \dots - \alpha_n \lambda_n). \end{aligned}$$

- Now taking $\alpha_1 = \dots = \alpha_n = 0$ in the above equation we obtain

$$\sum_{|\lambda_1| < kP, \dots, |\lambda_n| < kP^n} J_{k,n}(\lambda_1, \dots, \lambda_n) = P^{2k}.$$

- Further, we have trivially $J_{k,n}(P) \leq P^{2k}$, and moreover $J_{k,n}(P)$ is clearly nondecreasing as a function of k or P .

Simple properties of $J_{k,n}(P; \lambda_1, \dots, \lambda_n)$

- Our interest will be primarily in the upper bounds for $J_{k,n}(P)$, but we may note here that a lower bound may be obtained as follows.

$$\begin{aligned} P^{2k} &= \sum_{|\lambda_1| < kP, \dots, |\lambda_n| < kP^n} J_{k,n}(\lambda_1, \dots, \lambda_n) \\ &\leq J_{k,n}(P) \sum_{|\lambda_1| < kP, \dots, |\lambda_n| < kP^n} 1 \leq J_{k,n}(P)(2k)P \cdots (2k)P^n \\ &= J_{k,n}(P)(2k)^n P^{n(n+1)/2}, \end{aligned}$$

which gives

$$J_{k,n}(P) \geq (2k)^{-n} P^{2k-n(n+1)/2},$$

and this is a nontrivial bound if $k > \frac{1}{4}(n^2 + n)$.

- If we consider the diagonal solutions $x_j = x_{j+k}$ for all $j \in [k]$, and $1 \leq x_1, \dots, x_k \leq P$, then $J_{k,n}(P) \geq P^n$.
- If we consider only the first $n-1$ equations in (IE), then the number of their solutions is $J_{k,n-1}(\lambda_1, \dots, \lambda_{n-1})$, and if we let $|\lambda_n|$ take all possible values ($< kP^n$) in the last equation in (IE), then we obtain

$$\sum_{|\lambda_n| < kP^n} J_{k,n}(\lambda_1, \dots, \lambda_n) = J_{k,n-1}(\lambda_1, \dots, \lambda_{n-1}).$$

Linnik's lemma

Lemma (Linnik)

Let $m, n \in \mathbb{Z}_+$, and also let $A \in \mathbb{Z}$, let $p > n$ be a prime number, and let $\lambda_1, \dots, \lambda_n \in \mathbb{Z}$. Let T denote the number of solutions $(x_1, \dots, x_n) \in \mathbb{Z}^n$ of the simultaneous congruences

$$\begin{aligned} x_1 + \dots + x_n &\equiv \lambda_1 \pmod{p}, \\ x_1^2 + \dots + x_n^2 &\equiv \lambda_2 \pmod{p^2}, \\ &\vdots \\ x_1^n + \dots + x_n^n &\equiv \lambda_n \pmod{p^n}, \end{aligned} \tag{LE}$$

where x_j are distinct modulo p and $A \leq x_j < A + mp^n$ for all $j \in [n]$. Then for all integers $\lambda_1, \dots, \lambda_n \in \mathbb{Z}$, we have

$$T \leq n!m^n p^{n(n-1)/2}.$$

Proof.

- We can assume that $A = 0$. If x_1, \dots, x_n satisfy (LE) with $A = 0$, then we take $l \in \mathbb{Z}$ such that $lp^n - 1 < A \leq lp^n$ and consider $y_j = x_j + lp^n$, then $A \leq y_j \leq A + mp^n$ for $j \in [n]$, and we readily see that y_1, \dots, y_n satisfy (LE), since $x_j \equiv y_j \pmod{p^n}$ for $j \in [n]$.

Proof

- We can also assume that $m = 1$. If (x_1, \dots, x_n) is a solution of (LE) such that $0 \leq x_j < p^n$ for $j \in [n]$, then $(x_1 + l_1 p^n, \dots, x_n + l_n p^n)$ with $l_1, \dots, l_n \in [m]$ is also a solution of (LE), and there are m^n such solutions.
- For each $\lambda \in \mathbb{Z}$ and $j \in [n]$ there is p^{n-j} choices of the residue class $\mu \pmod{p^n}$ such that $\lambda \equiv \mu \pmod{p^j}$.
- Thus for any given tuple of integers $(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, there are $\prod_{j=1}^{n-1} p^{n-j} = p^{n(n-1)/2}$ different vectors $(\mu_1, \dots, \mu_n) \in \mathbb{Z}/p^n\mathbb{Z}$ so that

$$\mu_j \equiv \lambda_j \pmod{p^j} \quad \text{for all } j \in [n].$$

- It will suffice to prove that for any fixed vector $(\mu_1, \dots, \mu_n) \in \mathbb{Z}/p^n\mathbb{Z}$ there are at most $n!$ solutions $(x_1, \dots, x_n) \in \mathbb{Z}/p^n\mathbb{Z}$ that the x_j are distinct \pmod{p} and satisfy

$$x_1 + \dots + x_n \equiv \mu_1 \pmod{p^n},$$

$$x_1^2 + \dots + x_n^2 \equiv \mu_2 \pmod{p^n},$$

$$\vdots$$

(LEM)

$$x_1^n + \dots + x_n^n \equiv \mu_n \pmod{p^n}.$$

We have “lifted” all of our congruences to be congruences modulo p^n .

Proof

- ▶ Recall the Girard–Newton formulae. For $k \in \mathbb{Z}_+$, let

$$p_k(x_1, \dots, x_n) = \sum_{i=1}^n x_i^k = x_1^k + \dots + x_n^k.$$

- ▶ For $k \in \mathbb{N}$, let $e_k(x_1, \dots, x_n)$ be the elementary symmetric polynomial

$$e_0(x_1, \dots, x_n) = 1,$$

$$e_1(x_1, \dots, x_n) = x_1 + x_2 + \dots + x_n,$$

$$e_2(x_1, \dots, x_n) = \sum_{1 \leq i < j \leq n} x_i x_j,$$

$$\vdots$$

$$e_n(x_1, \dots, x_n) = x_1 x_2 \cdots x_n,$$

$$e_k(x_1, \dots, x_n) = 0, \quad \text{for } k > n.$$

- ▶ Then Newton's identities can be stated as

$$k e_k(x_1, \dots, x_n) = \sum_{i=1}^k (-1)^{i-1} e_{k-i}(x_1, \dots, x_n) p_i(x_1, \dots, x_n),$$

valid for all $n \geq k \geq 1$.

Proof

- ▶ From (LEM) we see that $p_i(x_1, \dots, x_n) \equiv \mu_i \pmod{p^n}$ for $i \in [n]$.
- ▶ Since $(p, n!) = 1$, then the elementary functions $e_j = e_j(x_1, \dots, x_n)$ given as solutions $\pmod{p^n}$ of the following linear equations

$$e_1 = p_1, 2e_2 = (e_1p_1 - p_2), 3e_3 = (e_2p_1 - e_1p_2 + p_3),$$

$$4e_4 = (e_3p_1 - e_2p_2 + e_1p_3 - p_4), \dots, ne_n = \sum_{i=1}^n (-1)^{i-1} e_{n-i} p_i,$$

are uniquely determined by $\mu_i \pmod{p^n}$ for $i \in [n]$.

- ▶ We also know that the polynomial with roots x_1, \dots, x_n may be expressed as

$$\prod_{i \in [n]} (x - x_i) = \sum_{k=0}^n (-1)^k e_k(x_1, \dots, x_n) x^{n-k}.$$

- ▶ Therefore, the polynomial $\prod_{i \in [n]} (x - x_i)$ is also uniquely determined by $\mu_i \pmod{p^n}$ for $i \in [n]$.

Proof

- ▶ Now suppose that there are two solutions $(x_1, \dots, x_n) \in \mathbb{Z}/p^n\mathbb{Z}$ and $(y_1, \dots, y_n) \in \mathbb{Z}/p^n\mathbb{Z}$ with distinct entries \pmod{p} such that

$$\sum_{j \in [n]} x_j^k \equiv \sum_{j \in [n]} y_j^k \equiv \mu_k \pmod{p^n} \quad \text{for all } k \in [n],$$

then we show that (y_1, \dots, y_n) is a permutation of (x_1, \dots, x_n) .

- ▶ By the previous discussion the polynomials

$$P(z) = \prod_{i \in [n]} (z - x_i) \quad \text{and} \quad Q(z) = \prod_{i \in [n]} (z - y_i)$$

are identically congruent $\pmod{p^n}$.

- ▶ But we have $P(x_j) \equiv 0 \pmod{p^n}$ for all $j \in [n]$, and so we must have

$$Q(x_j) = \prod_{i=1}^n (x_j - y_i) \equiv 0 \pmod{p^n} \quad \text{for all } j \in [n].$$

- ▶ If the y_i are distinct modulo p this implies that x_j is congruent to one of the $y_i \pmod{p^n}$, and so (since the x_j are also distinct modulo p) the x_j are forced to be a permutation of the $y_j \pmod{p^n}$. This implies that there are at most $n!$ possible solution vectors (x_1, \dots, x_n) . □

Recursive estimate

We now formulate a recursive estimate for $J_{k,n}(P)$, which will enable us to bound it explicitly. This is the crucial part of the Vinogradov–Korobov method.

Proposition

Let $n \geq 2, P \geq (2n)^{3n}$, and $k \geq n^2 + n$. Then

$$J_{k,n}(P) \leq 4^{2k} P^{2k/n + (3n-5)/2} J_{k-n,n}(P_1), \quad (\text{RE})$$

where P_1 is a number which satisfies $P^{(n-1)/n} \leq P_1 \leq 4P^{(n-1)/n}$.

Proof.

- ▶ Let $p \in \mathbb{P}$ be a prime from $[\frac{1}{2}P^{1/n}, P^{1/n}]$ (such a prime exists by Bertrand's postulate or the prime number theorem).
- ▶ Thus $p > n$, and if we set $P_1 = \lfloor Pp^{-1} \rfloor + 1$, then

$$P^{(n-1)/n} \leq P_1 \leq 4P^{(n-1)/n}, \quad \text{and} \quad P < pP_1.$$

- ▶ This gives $J_{k,n}(P) \leq J_{k,n}(pP_1)$. It will suffice to prove

$$J_{k,n}(pP_1) \leq 4^{2k} Z^{2k/n + (3n-5)/2} J_{k-n,n}(P_1).$$

Proof

- ▶ Let us also note that $p > n$, because of our hypothesis that $P \geq (2n)^{3n}$. We will be able to apply Linnik's lemma to n of our variables.
- ▶ We choose $p \simeq P^{1/n}$ so that the ranges mp^n of the variables in Linnik's lemma will approximately match the ranges P of our variables.
- ▶ Next, let J_1 denote the number of solution vectors (x_1, \dots, x_{2k}) , counted by $J_{k,n}(pP_1)$, in which (x_1, \dots, x_k) and (x_{k+1}, \dots, x_{2k}) each contain n numbers that are distinct modulo p , and let J_2 denote the number of solution vectors not counted by J_1 .
- ▶ Then it suffices to estimate J_1 and J_2 separately, since

$$J_{k,n}(pP_1) = J_1 + J_2.$$

- ▶ Also let J'_1 denote the number of solution vectors (x_1, \dots, x_{2k}) , counted by $J_{k,n}(pP_1)$, for which the first n elements (x_1, \dots, x_n) and $(x_{k+1}, \dots, x_{k+n})$ are distinct modulo p . Then we have

$$J_{k,n}(pP_1) = J_1 + J_2 \leq k^{2n} J'_1 + J_2,$$

since each vector counted by J'_1 corresponds to at most k^{2n} vectors counted by J_1 . This is by noting that the first n entries of a vector from J'_1 may be placed in $k(k-1)\cdots(k-n+1)$ ways in k places without changing the order of the remaining $k-n$ entries of the vector.

Proof

- We now prove that

$$J'_1 \leq \max_{x \in [p]} J'_1(x),$$

where $J'_1(x)$ denotes the number of solution vectors (x_1, \dots, x_{2k}) , counted by J'_1 , for which all of the $2k - 2n$ components (x_{n+1}, \dots, x_k) and $(x_{k+n+1}, \dots, x_{2k})$ are congruent to $x \pmod{p}$.

- Indeed, for $\alpha = (\alpha_1, \dots, \alpha_n) \in [0, 1]^n$, let

$$S_x(\alpha) = \sum_{\substack{z=1 \\ z \equiv x \pmod{p}}}^{P_1} e(\alpha_1 z + \dots + \alpha_n z^n),$$

and observe that

$$J'_1 = \int_{[0,1]^n} \left| \sum_{\substack{x_1, \dots, x_n \in [p] \\ \text{distinct}}} S_{x_1}(\alpha) \cdots S_{x_n}(\alpha) \right|^2 \left| \sum_{x \in [p]} S_x(\alpha) \right|^{2k-2n} d\alpha.$$

- Using Hölder's inequality, pulling out the inner sum $\sum_{x \in [p]}$ and taking $\max_{x \in [p]}$ we obtain

$$J'_1 \leq p^{2k-2n} \max_{x \in [p]} \int_{[0,1]^n} \left| \sum_{\substack{x_1, \dots, x_n \in [p] \\ \text{distinct}}} S_{x_1}(\alpha) \cdots S_{x_n}(\alpha) \right|^2 |S_x(\alpha)|^{2k-2n} d\alpha.$$

- For every $x \in [p]$, the last integral is precisely equal to $J'_1(x)$ as desired.

Proof

- If (x_1, \dots, x_{2k}) is a solution counted by $J'_1(x)$, then it has the form

$$\begin{aligned} & (x_1, \dots, x_n, x_{n+1}, \dots, x_k, x_{k+1}, \dots, x_{k+n}, x_{k+n+1}, \dots, x_{2k}) \\ &= (x_1, \dots, x_n, py_{n+1} + x, \dots, py_k + x, x_{k+1}, \dots, x_{k+n}, py_{k+n+1} + x, \dots, py_{2k} + x), \end{aligned}$$

where (x_1, \dots, x_n) and $(x_{k+1}, \dots, x_{k+n})$ are distinct modulo p , and $y_{n+1}, y_{k+n+1}, \dots, y_k, y_{2k} \in [P_1]$.

- Observe that the system (HE) is translation invariant, which means that if (x_1, \dots, x_{2k}) satisfies (HE), then $(x_1 - x, \dots, x_{2k} - x)$ also does.
- Hence, by the translation invariance, we have

$$\begin{aligned} & \sum_{i=1}^n x_i^j - x_{k+i}^j + \sum_{i=n+1}^k (py_i + x)^j - (py_{k+i} + x)^j = 0 \quad \text{for all } j \in [n], \\ \iff & \sum_{i=1}^n z_i^j - z_{k+i}^j + p^j \sum_{i=n+1}^k y_i^j - y_{k+i}^j = 0 \quad \text{for all } j \in [n], \end{aligned}$$

where $z_i = x_i - x$ and $z_{k+i} = x_{k+i} - x$ for all $i \in [n]$. Moreover, we have

$1 - x \leq z_i, z_{k+i} \leq pP_1 - x$ for $i \in [n]$, and $1 \leq y_i, y_{k+i} \leq P_1$ for $i \in [k] \setminus [n]$, and (z_1, \dots, z_n) and $(z_{k+1}, \dots, z_{k+n})$ are distinct modulo p .

Proof

- The last system of equations can be rewritten as

$$\sum_{i=1}^n z_i^j = \sum_{i=1}^n z_{k+i}^j - p^j \sum_{i=n+1}^k y_i^j - y_{k+i}^j \quad \text{for all } j \in [n].$$

- Fixing z_{k+1}, \dots, z_{k+n} , each vector (z_1, \dots, z_n) satisfies the conditions of Linnik's lemma, with $A = 1 - x$ and $m \geq pP_1p^{-n} > Pp^{-n}$, so that we may take $m = \lfloor Pp^{-n} \rfloor + 1$. Thus by Linnik's lemma

$$T \leq n!m^n p^{n(n-1)/2}.$$

- For any fixed z_1, \dots, z_n and z_{k+1}, \dots, z_{k+n} , the number of vectors $(y_{n+1}, \dots, y_k, y_{k+n+1}, \dots, y_{2k})$ that are counted in $J'_1(x)$ is at most $J_{k-n,n}(P_1)$.
- So in total, using the trivial bound $(pP_1)^n$ for the number of choices of z_{k+1}, \dots, z_{k+n} , we may write

$$J_1 \leq k^{2n} J'_1(x) \leq k^{2n} p^{2k-2n} n!m^n p^{n(n-1)/2} (pP_1)^n J_{k-n,n}(P_1).$$

Proof

- ▶ Since $p \geq \frac{1}{2}P^{1/n}$ we have $Pp^{-n} \leq 2^n$, implying $m^n \leq 2^{n^2+n} \leq 2^k$.
- ▶ Using further $p \leq P^{1/n}$, and $P_1 \leq 4P^{(n-1)/n}$, we obtain

$$\begin{aligned} J_1 &\leq n!2^k k^{2n} P^{2k/n+(3n-5)/2} 4^n J_{k-n,n}(P_1) \\ &\leq \frac{1}{2} 4^{2k} P^{2k/n+(3n-5)/2} J_{k-n,n}(P_1), \end{aligned}$$

because $k \geq n^2 + n$, and $n \geq 2$.

- ▶ Recall that J_2 counts all those vectors $(x_1, \dots, x_k, x_{k+1}, \dots, x_{2k})$, counted by $J_{k,n}(pP_1)$, in which either (x_1, \dots, x_k) or (x_{k+1}, \dots, x_{2k}) contains at most $n - 1$ numbers that are distinct \pmod{p} .
- ▶ In the first case there are at most $p^{n-1}(n-1)^k$ possibilities for $(x_1 \pmod{p}, \dots, x_k \pmod{p})$. Indeed, there are at most p^{n-1} ways of choosing $\{u_1, \dots, u_k\} \subseteq \mathbb{Z}/p\mathbb{Z}$, and then there are at most $(n-1)^k$ possibilities of fixing $(x_1 \pmod{p}, \dots, x_k \pmod{p})$ with coordinates from $\{u_1, \dots, u_k\}$. Hence, there are at most $p^{n-1+k}n^k$ possibilities for $(x_1 \pmod{p}, \dots, x_k \pmod{p}, x_{k+1} \pmod{p}, \dots, x_{2k} \pmod{p})$.
- ▶ We proceed similarly in the second case.
- ▶ Therefore, if \mathcal{A} denote the set of all possible vectors of the form $(x_1 \pmod{p}, \dots, x_k \pmod{p}, x_{k+1} \pmod{p}, \dots, x_{2k} \pmod{p})$ that are counted in J_2 , then $\#\mathcal{A} \leq 2p^{n-1+k}n^k$.

Proof

- Observe that

$$\begin{aligned}
& \left| \sum_{(x_1, \dots, x_{2k}) \in \mathcal{A}} S_{x_1}(\alpha) \cdots S_{x_k}(\alpha) \overline{S_{x_{k+1}}(\alpha) \cdots S_{x_{2k}}(\alpha)} \right| \\
& \leq \left(\sum_{(x_1, \dots, x_{2k}) \in \mathcal{A}} |S_{x_1}(\alpha)|^{2k} \right)^{1/2k} \cdots \left(\sum_{(x_1, \dots, x_{2k}) \in \mathcal{A}} |S_{x_{2k}}(\alpha)|^{2k} \right)^{1/2k} \\
& \leq \sum_{x \in [p]} |S_x(\alpha)|^{2k} \sum_{(x_1, \dots, x_{2k}) \in \mathcal{A}} 1 \leq 2p^{k+n-1} n^k \sum_{x \in [p]} |S_x(\alpha)|^{2k} \\
& \leq 2p^{k+n-1} n^k P_1^{2n} \sum_{x \in [p]} |S_x(\alpha)|^{2(k-n)}.
\end{aligned}$$

since trivially $|S_x(\alpha)| \leq P_1$. Therefore

$$\begin{aligned}
J_2 &= \int_{[0,1]^n} \sum_{(x_1, \dots, x_{2k}) \in \mathcal{A}} S_{x_1}(\alpha) \cdots S_{x_k}(\alpha) \overline{S_{x_{k+1}}(\alpha) \cdots S_{x_{2k}}(\alpha)} d\alpha \\
&\leq p^{k+n-1} n^k P_1^{2n} \int_{[0,1]^n} \sum_{x \in [P_1]} |S_x(\alpha)|^{2(k-n)} d\alpha \\
&= p^{k+n-1} n^k P_1^{2n} J_{k-n,n}(P_1) \leq \frac{1}{2} 4^{2k} P^{2k/n + (3n-5)/2} J_{k-n,n}(P_1).
\end{aligned}$$

- This completes the proof. □

Vinogradov's mean value theorem

Theorem (Vinogradov's mean value theorem)

Let $r \in \mathbb{N}$, $n \geq 2$, $k \geq n^2 + nr$, and $P \geq P_0$ and define

$$c_r = \frac{1}{2} (n^2 + n) \left(1 - \frac{1}{n}\right)^r.$$

Then

$$J_{k,n}(P) \leq (4n)^{4kr} P^{2k - (n^2 + n)/2 + c_r}. \quad (*)$$

Proof.

- We use induction on $r \in \mathbb{N}$. For $r = 0$ inequality $(*)$ is true, since trivially $J_{k,n}(P) \leq P^{2k}$.
- Suppose now that $(*)$ is true for $r = m \geq 0$ and consider $r = m + 1$. If

$$P \geq (2n)^{3n(1+1/(n-1))^r}$$

then $k \geq n^2 + n(m + 1)$, and $P \geq (2n)^{3n(1+1/(n-1))^{m+1}}$.

- An application of the previous proposition gives

$$J_{k,n}(P) \leq 4^{2k} P^{2k/n + (3n-5)/2} J_{k-n,n}(P_1). \quad (\text{A})$$

Proof

- To bound $J_{k-n,n}(P_1)$ we may use the the induction hypothesis, since

$$k - n \geq n^2 + nm, \quad \text{and} \quad P_1 \geq P^{1-1/n} \geq (2n)^{3n(1+1/(n-1))^m}.$$

- It follows that

$$\begin{aligned} J_{k-n,n}(P_1) &\leq (4n)^{4(k-n)m} P_1^{2(k-n)-(n^2+n)/2+c_m} \\ &\leq (4n)^{4(k-n)m} 4^{2(k-n)} P^{(1-1/n)(2k-2n-(n^2+n)/2+c_m)}, \end{aligned}$$

which combined with (A) gives (*).

- Let now

$$P < (2n)^{3n(1+1/(n-1))^r},$$

and use induction again, supposing

$$P < (2n)^{3n(1+1/(n-1))^{m+1}}, \quad \text{and} \quad k \geq n^2 + n(m+1).$$

- Then we have trivially

$$J_{k,n}(P) \leq P^{2n} J_{k-n,n}(P), \tag{B}$$

and if $P \geq (2n)^{3n(1+1/(n-1))^m}$ then by the first part of the proof $J_{k-n,n}(P)$ may be estimated by (*) as before.

Proof

- ▶ Otherwise, we use the induction hypothesis to estimate $J_{k-n,n}(P)$, so that we obtain in any case

$$J_{k-n,n}(P) \leq (4n)^{4km} P^{2(k-n)-(n^2+n)/2+c_m},$$

and (B) gives

$$J_{k,n}(P) \leq (4n)^{4k(m+1)} P^{2k-(n^2+n)/2+c_{m+1}},$$

since

$$P < (2n)^{3n(1+1/(n-1))^{m+1}}, \quad \text{and} \quad k \geq n^2 + n(m+1),$$

implies

$$P^{c_m - c_{m+1}} \leq (4n)^{4k}.$$

- ▶ This completes the proof of the Vinogradov mean value theorem. □