
Analytic Number Theory
Lecture 11

Mariusz Mirek
Rutgers University

Padova, April 10, 2025.

Supported by the NSF grant DMS-2154712,
and the CAREER grant DMS-2236493.



Vinogradov’s mean value theorem
▶ Let k, n ⩾ 1 be integers, and P ∈ Z+ be a large integer. Let Jk,n(P) be

the number of integer solutions of the system of diophantine equations

x1 + · · ·+ xk − xk+1 − · · · − x2k = 0

x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

2k = 0
...

... (HE)
xn

1 + · · ·+ xn
k − xn

k+1 − · · · − xn
2k = 0,

where 1 ⩽ x1, . . . , x2k ⩽ P.

Theorem (Vinogradov’s mean value theorem)
Let r ∈ N, n ≥ 2, k ⩾ n2 + nr, and P ⩾ P0 and define

cr =
1
2
(
n2 + n

)(
1 − 1

n

)r

.

Then
Jk,n(P) ⩽ (4n)4krP2k−(n2+n)/2+cr . (*)



Basic estimate
Lemma
For N1,N2 ∈ Z such that N1 < N2 and α ∈ R+, we have

∣∣∣ N2∑
n=N1+1

e(αn)
∣∣∣ ⩽ min{N2 − N1, (2∥α∥)−1},

where ∥α∥ is the distance of α to the nearest integer, that is,

∥α∥ = min
{
{α}, 1 − {α}

}
≤ 1/2.

Proof.
▶ If α ̸∈ Z, then ∥α∥ > 0 and e(α) ̸= 0. Thus

∣∣∣ N2∑
n=N1+1

e(αn)
∣∣∣ = ∣∣∣e(α(N1 + 1))

N2−N1−1∑
n=0

e(αn)
∣∣∣ = ∣∣∣∣e(α(N2 − N1))− 1

e(α)− 1

∣∣∣∣
≤ 2

|e(α)− 1|
=

1
sin(π∥α∥)

≤ 1
2∥α∥

.

▶ Otherwise we have that
∣∣∑N2

n=N1+1 e(αn)
∣∣ ⩽ N2 − N1.



Basic estimate
Lemma
Let α = a/q + θ/q2, where a, q ∈ Z are integers such that (a, q) = 1, and
q ⩾ 1, and θ ∈ [−1, 1]. Then for arbitrary β,U ∈ R+ and N ⩾ 1 we have∑

n∈[N]

min

{
U,

1
∥αn + β∥

}
⩽ 6

(
N
q
+ 1

)
(U + q log q).

Proof.
▶ Writing ∑

n∈[N]

=

q∑
n=1

+

2q∑
n=q+1

+ · · ·

and changing indexes we obtain at most N/q + 1 sums of the form

S =
∑
n∈[q]

min

{
U, ∥αn + β1∥−1

}
,

with perhaps different β1 ’s.



Proof
▶ It will be sufficient to prove

S ⩽ 6(U + q log q). (*)

▶ For n ∈ [q] we have

αn + β1 = (an + ⌊qβ1⌋) q−1 + θ′(n)q−2,

θ′(n) = θn + (qβ1 − ⌊qβ1⌋) q,
∣∣θ′(n)∣∣ < 2q.

▶ We make the change of variable m = an + [qβ1], so that by periodicity of ∥x∥
and (a, q) = 1 we may assume that m runs over a complete system of residues
(mod q), and |m| ⩽ q/2. Thus

S =
∑

|m|⩽q/2

min

{
U,

∥∥∥∥m
q
+

θ′′(m)

q

∥∥∥∥−1
}
, where

∣∣θ′′(m)
∣∣ = ∣∣θ′(m)/q

∣∣ < 2.

▶ For m = 0,±1,±2, we estimate the min by U in the sum above, and for
2 < |m| ⩽ q/2 we have ∥∥∥∥m

q
+

θ′′(m)

q

∥∥∥∥ >
|m| − 2

q
,

hence
S ⩽ 5U +

∑
2<|m|⩽q/2

q
|m| − 2

< 6(U + q log q).



Exponential sums estimates
Lemma
Suppose that t ≥ 2 and N ∈ Z+ are large, and 1 ≤ M ≤ N ≤ t. Set
r :=

⌊ 5.01 log t
log N

⌋
. Then∑

N<n≤N+M

n−it = O
(

MN−4/5 max
N≤n≤2N

|U(n)|+ N4/5 + Mt−1/500
)
,

where

U(n) :=
∑

x∈[K]

∑
y∈[K]

e
( ∑

m∈[r]

αmxmym
)
, αm :=

(−1)mt
2πmnm , K := N2/5.

Proof.
▶ If x, y ∈ [K], then∑

N<n≤N+M

n−it =
∑

N−xy<n≤N+M−xy

(n + xy)−it

=
∑

N<n≤N+M

(n + xy)−it +
∑

N−xy<n≤N

(n + xy)−it

−
∑

N+M−xy<n≤N+M

(n + xy)−it.



Proof
▶ Therefore, by averaging over x, y ∈ [K] and shifting n → n + xy, we

obtain ∑
N<n≤N+M

n−it = K−2
∑

x∈[K]

∑
y∈[K]

∑
N<n≤N+M

n−it

= K−2
∑

x∈[K]

∑
y∈[K]

∑
N<n+xy≤N+M

(n + xy)−it

= K−2
∑

x∈[K]

∑
y∈[K]

∑
N<n≤N+M

(n + xy)−it + O(K2),

since∣∣∣ ∑
N−xy<n≤N

(n + xy)−it
∣∣∣ = ∣∣∣ ∑

N+M−xy<n≤N+M

(n + xy)−it
∣∣∣ = O(K2).

▶ Next, since xy/n ≤ N−1/5, observe that

log
(

1 +
xy
n

)
=

r∑
j=1

(−1)j−1

j

(xy
n

)j
+ O

((xy
n

)5.01(log t)/ log N
)

=

r∑
j=1

(−1)j−1

j

(xy
n

)j
+ O

(
t−(1+1/500)

)
.



Proof

▶ Observe that n−it = e(−t log n/(2π)). This implies that∑
x∈[K]

∑
y∈[K]

(n + xy)−it =
∑

x∈[K]

∑
y∈[K]

e(−t log(n + xy)/(2π))

=
∑

x∈[K]

∑
y∈[K]

e
( ∑

m∈[r]

αmxmym
)

e
(

O
(
t−(1+1/500)))

∑
x∈[K]

∑
y∈[K]

e
( ∑

m∈[r]

αmxmym
)
+ O

(
N4/5t−(1+1/500)),

where αm := (−1)mt
2πmnm for m ∈ [r]. The conclusion of the lemma follows

immediately.



Further estimates
Lemma
Under the assumptions of the previous lemma, for any k ∈ Z+, we have

|U(n)| ≤ N4/5
(

Jk,r(N2/5)2

N8k/5

r∏
j=1

∑
−kN2j/5≤µj≤kN2j/5

min

{
3kN2j/5,

1
∥αjµj∥

})1/(4k2)

,

where Jk,r
(
N2/5

)
denotes the number of solutions (x1, . . . , x2k) ∈ Z2k of the

simultaneous diophantine equations

k∑
i=1

xj
i =

2k∑
i=k+1

xj
i, for all j ∈ [r] with 1 ≤ xi ≤ N2/5.

Proof.
▶ As before, let K = N2/5 and by Höler’s inequality we obtain

|U(n)|2k ≤ K2k−1
∑

x∈[K]

∣∣∣∣ ∑
y∈[K]

e
( ∑

m∈[r]

αmxmym
)∣∣∣∣2k

= K2k−1
∑

x∈[K]

∑
y1,...,y2k∈[K]

e
( ∑

m∈[r]

αmxm
( k∑

i=1

ym
i −

2k∑
i=k+1

ym
i

))
.



Proof
▶ So if we let Jk,r(K;λ1, . . . , λr) denote the number of solutions

(y1, . . . , y2k) ∈ Z2k of the simultaneous equations

k∑
i=1

yj
i =

2k∑
i=k+1

yj
i + λj for all j ∈ [r],

with 1 ≤ yi ≤ K, then we have

|U(n)|2k ≤ K2k−1
∑
x∈[K]

∑
−kK≤λ1≤kK

. . .
∑

−kKr≤λr≤kKr

Jk,r(K;λ1, . . . , λr)e
( ∑

m∈[r]

αmλmxm
)

≤K2k−1
∑

−kK≤λ1≤kK

. . .
∑

−kKr≤λr≤kKr

Jk,r(K;λ1, . . . , λr)
∣∣∣ ∑

x∈[K]

e
( ∑

m∈[r]

αmλmxm
)∣∣∣.

▶ We will abbreviate
∑

−kKj≤λj≤kKj to
∑

λj
. By Hölder’s inequality we have

|U(n)|(2k)2
≤ K2k(2k−1)

( ∑
λ1,...,λr

Jk,r (K;λ1, . . . , λr)
∣∣∣ ∑

x∈[K]

e
( ∑

m∈[r]

αmλmxm
)∣∣∣)2k

≤ K2k(2k−1)
( ∑

λ1,...,λr

Jk,r(K;λ1, . . . , λr)
2k

2k−1

)2k−1 ∑
λ1,...,λr

∣∣∣ ∑
x∈[K]

e
( ∑

m∈[r]

αmλmxm
)∣∣∣2k

.



Proof
▶ Using Jk,r(K;λ1, . . . , λr) ≤ Jk,r(K), we obtain( ∑

λ1,...,λr

Jk,r(K;λ1, . . . , λr)
2k

2k−1

)2k−1

≤ K2k(2k−1)Jk,r(K),

since ∑
λ1,...,λr

Jk,r(K;λ1, . . . , λr) = K2k.

▶ Therefore, we have

|U(n)|(2k)2
≤ K4k(2k−1)Jk,r(K)

∑
λ1,...,λr

∣∣∣ ∑
x∈[K]

e
( ∑

m∈[r]

αmλmxm
)∣∣∣2k

.

▶ Expanding the 2k-th power of the last sum as before, we obtain that

|U(n)|(2k)2

≤ K4k(2k−1)Jk,r(K)
∑

λ1,µ1,...,λr,µr

Jk,r (K;µ1, . . . , µr) e
( ∑

m∈[r]

αmµmλm

)
≤ K4k(2k−1) (Jk,r(K))

2
∑

µ1,...,µr

∏
m∈[r]

∣∣∣∣ ∑
−kZm≤λm≤kZm

e (αmµmλm)

∣∣∣∣.



Zeta sum estimate of Vinogradov and Korobov

▶ We immediately deduce that

|U(n)|(2k)2

≤ K4k(2k−1) (Jk,r(K))
2

∑
|µ1|≤kK

. . .
∑

|µr|≤kKr

∏
m∈[r]

min

{
3kKm,

1
∥αmµm∥

}
.

▶ Raising both sides to the power 1/
(
4k2

)
, and remembering that

K = N2/5, the bound claimed in the lemma follows.

Theorem (Vinogradov and Korobov)
There exists a small absolute constant c > 0 such that the following is true.
For any 1 ≤ M ≤ N ≤ t, one has∣∣∣ ∑

N<n≤N+M

n−it
∣∣∣ = O

(
Me−c(log3 N)/ log2(t+2) + N4/5

)
= O

(
Ne−c(log3 N)/ log2(t+2)

)
.



Proof
▶ We may assume that t ≥ 2 is large and that N ≥ elog

2/3 t, since
otherwise the theorem is trivial by adjusting the O constant
appropriately.

▶ Setting r =
⌊ 5.01 log t

log N

⌋
, we have∣∣∣ ∑

N<n≤N+M

n−it
∣∣∣ = O

(
MN−4/5 max

N≤n≤2N
|U(n)|+ N4/5 + Mt−1/500

)
,

where

U(n) =
∑

x∈[N2/5]

∑
y∈[N2/5]

e (α1xy + . . .+ αrxryr) , αj =
(−1)jt
2πjnj .

▶ Since t ≥ N we have t−1/500 = e−(1/500) log t ≤ e−(1/500)(log3 N)/ log2 t,
so the last two terms satisfy the desired bound.

▶ By the previous lemma, for any N ≤ n ≤ 2N and any k ∈ N we have

|U(n)|
N4/5 ≤

Jk,r(N2/5)2

N8k/5

∏
j∈[r]

∑
|µj|≤kN2j/5

min

{
3kN2j/5,

1
∥αjµj∥

}1/(4k2)

.



Proof
▶ We take k = Cr2 ∈ Z+, where C ≥ 1 is a constant that we will choose

later. Since k ≥ r2, Vinogradov’s mean value theorem implies that

Jk,r(N2/5)2 ≤ (4r)8kFN(4/5)(2k−(1−δ)(1/2)r(r+1)),

where F = ⌊(C − 1)r⌋, and δ = (1 − 1/r)F.
▶ Taking C(r, k,N) := (4r)8CkrN−(4/5)(1−δ)r(r+1)/2, we see

|U(n)|
N4/5 ≤

(
C(r, k,N)

∏
j∈[r]

∑
|µj|≤kN2j/5

min

{
3kN2j/5,

1
∥αjµj∥

})1/(4k2)

.

▶ It remains to bound the sums over µj. We always have the trivial bound
O(k2N4j/5), and if αj = aj/qj + θj/q2

j for some aj ∈ Z, qj ∈ Z+, such
that (aj, qj) = 1 and |θj| ≤ 1, then we have∑
|µj|≤kN2j/5

min

{
3kN2j/5,

1
∥αjµj∥

}
= O

((
kN2j/5

qj
+ 1

)(
kN2j/5 + qj log qj

))

= O
(
max

{
k2N4j/5

qj
, qj

}
log(qj + 1)

)
.



Proof
▶ But if j ≥ (log t)/ logN then, remembering that N ≤ n ≤ 2N, we have

αj =
(−1)jt
2πjnj =

(−1)j

qj
+
θj

q2
j
, and θj =

(−1)j+1
{

2πjnj/t
}

qj

2πjnj/t
,

where qj :=
⌊
2πjnj/t

⌋
≥ 1 and |θj| ≤ 1.

▶ If 2(log t)/ logN ≤ j ≤ 3(log t)/ logN then qj ≥ nj−(log t)/ log N ≥ N j/2

and also qj = O( jnjN−j/3) = O( j2jN2j/3), so we certainly have∑
|µj|≤kN2j/5

min

{
3kN2j/5,

1
∥αjµj∥

}
= O

(
k2N4j/5

N j/10

)
,

whenever 2(log t)/ logN ≤ j ≤ 3(log t)/ logN.
▶ Remembering that C(r, k,N) := (4r)8CkrN−(4/5)(1−δ)r(r+1)/2, we see

|U(n)|
N4/5 ≤

(
C(r, k,N)

r∏
j=1

(
Dk2N4j/5

) ∏
2(log t)/ log N≤j≤3(log t)/ log N

1
N j/10

) 1
4k2

≤
(

C(r, k,N)
(
Dk2)r

N(4/5)r(r+1)/2N−(1/10)((log t)/ log N)2
) 1

4k2
,

where D is a large absolute constant.



Proof
▶ Note that C(r, k,N)N(4/5)r(r+1)/2 = (4r)8CkrN(4/5)δr(r+1)/2.
▶ Using k = Cr2 and r =

⌊ 5.01 log t
log N

⌋
, and choosing C large enough, we

have δ ≤ 1/280, and therefore
(4/5)δr(r + 1)/2 ≤ 14δ((log t)/ logN)2 ≤ (1/20)((log t)/ logN)2,
and therefore

|U(n)|
N4/5 ≤

(
(4r)8Ckr (Dk2)r

N−(1/20)((log t)/ log N)2
) 1

4k2

=
(
(4r)8C2r3 (

DC2r4)r
N−(1/20)(log t/ log N)2

)1/(4C2r4)

The dominant term inside the bracket is N−(1/20)(log t/ log N)2
, and so the

conclusion of the theorem follows.

Exercise
Let σ0 > 0. We have uniformly for x ⩾ 1, σ ⩾ σ0 and |t| ⩽ πx the following
formula

ζ(s) =
∑
n∈[x]

1
ns +

x1−s

s − 1
+ O

(
x−σ

)
.



Improved bounds on the Riemann zeta function
Theorem (Richert)
There exists a large absolute constant C > 0 such that the following is true.
For any large t ≥ 2 and any 0 < σ ≤ 1, we have

ζ(σ + it) = O
(
tC(1−σ)3/2

log2/3 t
)
.

In particular, if σ ≥ 1 − 1/ log2/3 t then ζ(σ + it) = O(log2/3 t).
Proof.
▶ By the approximation formula, we have ζ(σ + it) =

∑
n∈[t]

1
ns + O(1).

▶ Suppose first that 1 − 1/ log2/3 t ≤ σ ≤ 1. Then

|ζ(σ + it)| =
∣∣∣ ∑

1≤n≤elog2/3 t

1
nσ+it

∣∣∣+ ∣∣∣ ∑
elog2/3

<n≤t

1
nσ+it

∣∣∣+ O(1)

≤
∑

1≤n≤elog2/3 t

1
n
+

∑
⌊log2/3 t⌋≤j≤log t

∣∣∣ ∑
ej<n≤ej+1

1
nσ+it

∣∣∣
= O

(
log2/3 t +

∑
⌊log2/3 t⌋≤j≤log t

∣∣∣ ∑
ej<n≤ej+1

1
nσ+it

∣∣∣),



Proof
▶ The sequence 1

nσ is monotone decreasing, hence, Abel’s summation
lemma implies that∣∣∣ ∑

ej<n≤ej+1

n−(σ+it)
∣∣∣ = O

(
e−jσ max

ej<n′≤ej+1

∣∣∣ ∑
ej<n≤n′

n−it
∣∣∣).

▶ By the previous theorem, we have

max
ej<n′≤ej+1

∣∣∣ ∑
ej<n≤n′

n−it
∣∣∣ = O

(
eje−cj3/ log2 t).

▶ Thus we have

|ζ(σ + it)| = O
(
log2/3 t +

∑
⌊log2/3 t⌋≤j≤log t

ej(1−σ)−cj3/ log2 t
)

= O
(
log2/3 t +

∑
⌊log2/3 t⌋≤j≤log t

ej/ log2/3 t−c(j/ log2/3 t)3
)

= O
(
log2/3 t +

⌊log1/3 t⌋∑
r=1

(r+1)⌊log2/3 t⌋∑
j=r⌊log2/3 t⌋

ej/ log2/3 t−c(j/ log2/3 t)3
)
.

▶ The final sum is O(log2/3 t
∑

r≥1 er−cr3
), and this is clearly O(log2/3 t).



Proof

▶ If instead σ < 1 − 1/ log2/3 t then one can proceed in a similar way, but
breaking the sum over n at a different place to obtain a saving when
summing over j. In fact, for any large constant C we obtain that

ζ(σ + it) =
∑

n≤eC log t
√

1−σ

1
nσ+it +

∑
eC log t

√
1−σ<n≤t

1
nσ+it + O(1)

≪ eC log t(1−σ)3/2

1 − σ
+

∑
⌊C log t

√
1−σ⌋≤j≤log t

∣∣∣∣∣∣
∑

ej<n≤ej+1

1
nσ+it

∣∣∣∣∣∣
≪ tC(1−σ)3/2

log2/3 t +
∑

⌊C log t
√

1−σ⌋≤j≤log t

ej(1−σ)−cj3/ log2 t

≪ tC(1−σ)3/2 log2/3 t+
∑

⌊C log t
√

1−σ⌋≤j≤log t ej(1−σ)−cj(1−σ)C2

.

Provided C is large enough the exponents in the sum over j will all be
negative, and one can bound it as we did above by breaking into
intervals of length ⌊C log t

√
1 − σ⌋.



Theorem of Landau

▶ In fact, any order of magnitude of ζ(s) in a certain domain implies a
zero-free region as may be seen in the next result devised by Landau.

Theorem (Landau)
Let θ(t) and ϕ(t) be positive functions such that θ(t) is decreasing, ϕ(t) is
increasing and e−ϕ(t) ⩽ θ(t) ⩽ 1

2 . Assume that ζ(s) = O(eϕ(t)) in the region
σ ⩾ 1 − θ(t) and t ⩾ 2. Then the following assertions hold.

(i) There exists an absolute constant c0 > 0 such that ζ(s) has no zero in
the region

σ ⩾ 1 − c0
θ(2t + 1)
ϕ(2t + 1)

.

(ii) In the region σ ⩾ 1 − (c0/2) θ(2t + 2)ϕ(2t + 2)−1, we have

1
ζ(s)

= O
(
θ(2t + 2)
φ(2t + 2)

)
and

ζ ′(s)
ζ(s)

= O
(
θ(2t + 2)
φ(2t + 2)

)
.



Vinogradov–Korobov zero-free region
Theorem
There exists a small absolute constant c > 0 such that the zeta function has
no zeros s = σ + it it in the region{

s = σ + it ∈ C : σ ≥ 1 − c
(
log2/3(|t|+ 2)(log log(|t|+ 3))1/3

)−1
}
.

Proof.
▶ Richert’s theorem tells us that, for all t ≥ t0 (a large constant), we have

ζ(σ + it) = O
(

tC(1−σ)3/2
log2/3 t

)
= O

(
eC(1−σ)3/2 log t+(2/3) log log t

)
.

▶ In particular, if σ ≥ 1 − ((log log t)/ log t)2/3 then we have

ζ(σ + it) = O
(
e(C+2/3) log log t),

so we can apply Landau’s theorem with the choices

ϕ(t) = (C + 2/3) log log t and θ(t) = ((log log t)/ log t)2/3.



Proof

▶ Hence we conclude that ζ(σ + it) ̸= 0 in the region

σ ≥ 1 − c
θ(2t + 1)
ϕ(2t + 1)

= 1 − c

(C + 2/3) log2/3(2t + 1)(log log(2t + 1))1/3
, t ≥ t0

▶ By relabelling the constants, this gives the assertion of the corollary
when t ≥ t0. One can obtain the analogous result for t < t0 using the
known zero-free regions and using symmetry.

Theorem (PNT with the best error term to date)
There exists an absolute constant c ∈ (0, 1) such that as x → ∞, one has

ψ(x) = x + O
(

x exp
(
−c(log x)3/5(log log x)−1/5

))
,

π(x) = Li(x) + O
(

x exp
(
−c(log x)3/5(log log x)−1/5

))
.



Weyl’s method
▶ Consider a polynomial ψ(x) with real coefficients and the exponential

sum
T(X) =

∑
1⩽x⩽X

e(ψ(x)).

▶ An idea of Weyl permits one to reduce the degree inductively to obtain
an estimate in terms of exponential sums with linear phases.

▶ Since e(ψ(x)) = e(−ψ(x)), one finds that

|T(X)|2 =
∑

1⩽x,y⩽X

e(ψ(y)− ψ(x)) =
∑
|h|<X

∑
1⩽x⩽X

1⩽x+h⩽X

e(ψ(x + h)− ψ(x)),

in which we have made the change of variable y = x + h. But one has
ψ(x + h)− ψ(x) = hψ1(x; h), where ψ1(x; h) is a polynomial in x and h
having degree deg(ψ)− 1 with respect to x. Thus, we have

|T(X)|2 ⩽
∑
|h|<X

∣∣∣∣ ∑
1⩽x⩽X

1⩽x+h⩽X

e (hψ1(x; h))
∣∣∣∣

with the inner exponential sum being one having a polynomial
argument of degree one less than that of the original sum T(X).



Weyl’s method
▶ This idea may now be used repeatedly to reduce the degree of the

exponential sum under consideration until one is left in the linear
situation amenable to exponential sums with linear phases.

▶ When ψ(x) is a real-valued function of x, we denote by ∆1 the
difference operator defined by

∆1(ψ(x); h) = ψ(x + h)− ψ(x).

▶ Then we define ∆j by

∆j(ψ(x);h) = ∆j (ψ(x); h1, . . . , hj)

= ∆1 (∆j−1 (ψ(x); h1, . . . , hj−1) ; hj) for j ⩾ 2.

▶ By convention, we take ∆0(ψ(x); h) = ψ(x).
▶ One may verify that when j ∈ [k], one has

∆j
(
xk;h

)
= h1 . . . hjpj (x; h1, . . . , hj) ,

where pj is a polynomial in x of degree k − j with leading coefficient
k!/(k − j)!.



Weyl’s method

▶ By the linearity of the operator ∆j, one sees that

∆j
(
akxk + . . .+ a1x;h

)
=

k∑
i=1

ai∆j
(
xi;h

)
and so one is able easily to calculate ∆j(p(x);h), for polynomial p(x),
by using what is known for monomials.

▶ For the special case p(x) = xk, we have

∆k−1(xk;h) = h1 · · · hk−1k!
(

x − h1 + . . .+ hk−1

2

)
.

▶ We note, in particular, that when j > deg(p), then one has

∆j(p(x);h) = 0.



Weyl differencing

Lemma (Weyl differencing)
Let ψ(x) be a real-valued arithmetic function, and put

F(ψ) =
∑

1⩽x⩽X

e(ψ(x)).

Then for each j ∈ Z+, one has

|F(ψ)|2
j
⩽ (2X)2j−j−1

∑
|h1|<X

· · ·
∑
|hj|<X

∑
x∈Ij(h)

e (∆j(ψ(x);h)) , (*)

where Ij(h) denotes the interval of integers defined by setting I0(h) = [1,X],
and, when j ∈ Z+, by

Ij (h1, . . . , hj) = Ij−1 (h1, . . . , hj−1)∩{x ∈ [1,X] : x + hj ∈ Ij−1 (h1, . . . , hj−1)} .

Note that

Ij (h1, . . . , hj) ⊆ Ij−1 (h1, . . . , hj−1) ⊆ . . . ⊆ I1 (h1) ⊆ [1,X].



Proof
▶ We proceed by induction. When j = 1, one has

|F(ψ)|2 =
∑

1⩽x⩽X

∑
1⩽y⩽X

e(ψ(y)− ψ(x))

=
∑

1⩽x⩽X

∑
1−x⩽h1⩽X−x

e (ψ (x + h1)− ψ(x))

=
∑

|h1|<X

∑
x∈I1(h1)

e (∆1 (ψ(x); h1)) ,

where I1 (h1) = [1,X] ∩ [1 − h1,X − h1] and (*) follows for j = 1.
▶ Suppose now that (*) has been proved for all j ∈ [J − 1]. Then, by the

Cauchy–Schwarz inequality, one finds that

|F(ψ)|2
J
=

(
|F(ψ)|2

J−1
)2

⩽
(
(2X)2J−1−J

)2

 ∑
|h1|<X

· · ·
∑

|hJ−1|<X

1

Ξ(ψ),

where

Ξ(ψ) =
∑

|h1|<X

· · ·
∑

|hJ−1|<X

∣∣∣ ∑
x∈IJ−1(h)

e (∆J−1(ψ(x);h))
∣∣∣2.



Proof

▶ As in the case j = 1, one opens the square to write∣∣∣ ∑
x∈IJ−1(h)

e (∆J−1(ψ(x);h))
∣∣∣2 =

∑
|hJ |<X

∑
x∈IJ(h)

e (∆1 (∆J−1(ψ(x);h); hJ)) ,

where

IJ (h, hJ) = IJ−1(h) ∩ {x ∈ [1,X] : x + hJ ∈ IJ−1(h)} .

▶ We therefore conclude that

|F(ψ)|2
J
⩽ (2X)2J−J−1

∑
|h1|<X

· · ·
∑

|hJ |<X

∑
x∈IJ(h)

e (∆J(ψ(x);h)) .

▶ This gives (*) for j = J, and the conclusion follows by induction.



Weyl differencing for polynomial phases
▶ If we apply Weyl differencing k − 1 times to the exponential sum

f (α) =
∑

1⩽x⩽X

e
(
αxk) ,

then we obtain a bound of the shape

|f (α)|2
k−1

= O
(

X2k−1−k
∑

h1,...,hk−1
|hi|<X

∑
x∈I(h)

e
(

k!αh1 . . . hk−1

(
x +

h1 + . . .+ hk−1

2

)))
.

▶ This gives us an exponential sum with a linear phase, but we will need
to average over the products h1 . . . hk−1.

▶ This entails a discussion of the r-fold divisor function

τr(n) =
∑
di∈N

d1...dr=n

1 for r = k − 1.

▶ Invoking bounds for the divisor function we have that τr(n) = Or,ε(nε)
for each r ∈ N and ε > 0.



Weyl’s inequality
Lemma (Weyl’s inequality)
Let k ⩾ 2 and α1, . . . , αk ∈ R. Suppose that a ∈ Z and q ∈ N satisfy
(a, q) = 1 and |αk − a/q| ⩽ q−2. Then∣∣∣ ∑

1⩽x⩽X

e
(
α1x + . . .+ αkxk) ∣∣∣ = O

(
X1+ε

(
q−1 + X−1 + qX−k)21−k )

.

Proof.
▶ Write ψ(x) = α1x + . . .+ αkxk and

F(α) =
∑

1⩽x⩽X

e(ψ(x)).

▶ If q > Xk, the desired estimate is trivial from the bound

|F(α)| ⩽
∑

1⩽x⩽X

1 ⩽ X.

▶ Thus, we may suppose without loss that q ⩽ Xk.



Proof
▶ By applying the Weyl differencing lemma with j = k − 1, we obtain the

bound

|F(α)|2
k−1

= O
(

X2k−1−k
∑

|h1|<X

· · ·
∑

|hk−1|<X

Υ(h)
)
,

where
Υ(h) =

∑
x∈Ik−1(h)

e (∆k−1(ψ(x);h)) ,

and Ik−1(h) is a suitable interval of integers contained in [1,X].
▶ We note that

∆k−1(ψ(x);h) = k!h1 . . . hk−1xαk + γ,

where γ = γ(α;h) is independent of x.
▶ Thus, we obtain that

Υ(h) = O
(
min

{
X, ∥k!h1 . . . hk−1αk∥−1

})
,

whence

|F(α)|2
k−1

= O
(

X2k−1−k
∑

|h1|<X

· · ·
∑

|hk−1|<X

min
{

X, ∥k!h1 . . . hk−1αk∥−1
})

.



Proof

▶ Separating the summands for which h1 · · · hk−1 = 0, we are led from
here to the bound

|F(α)|2
k−1

= O
(

X2k−1−k
(

Xk−1+
∑

1⩽n⩽k!Xk−1

τk(n)min
{

X, ∥nαk∥−1
}))

.

▶ Since τk(n) = O(Xε), recalling our assumption that q ⩽ Xk, and using
the bound∑

n∈[N]

min

{
U,

1
∥αn + β∥

}
⩽ 6

(
N
q
+ 1

)
(U + q log q),

with N = k!Xk−1 and U = X, we therefore obtain the estimate

F(α) = O
(

X1−21−k
+ X1+ε

(
q−1 + X−1 + X1−k + qX−k)21−k )

,

and the conclusion of the lemma follows.



Hua’s lemma
Lemma (Hua’s lemma)
Let X ∈ R+ be a large real number and write

f (α) =
∑

1⩽x⩽X

e
(
αxk) .

Suppose that k ⩾ 2 and j ∈ [k]. Then one has∫ 1

0
| f (α)|2

j
dα = O

(
X2j−j+ε

)
.

Proof.
▶ We proceed by induction on j ∈ [k]. When j = 1, then by orthogonality∫ 1

0
|f (α)|2 dα =

∫ 1

0
f (α)f (−α)dα = #

{
1 ⩽ x, y ⩽ X : xk = yk} = ⌊X⌋,

and the base case j = 1 of the induction is verified.
▶ Now suppose that the desired conclusion has been established already

when j ∈ [J] for some integer J ∈ Z+ satisfying 1 ⩽ J < k.



Proof
▶ By the Weyl differencing lemma we see that

| f (α)|2
J
⩽ (2X)2J−J−1

∑
|h1|<X

· · ·
∑

|hJ |<X

∑
x∈IJ(h)

e
(
α∆J

(
xk;h

))
,

where IJ(h) is a suitable subinterval of [1,X]. It follows that∫ 1

0
| f (α)|2

J+1
dα =

∫ 1

0
f (α)2J−1

f (−α)2J−1
| f (α)|2

J
dα

⩽ (2X)2J−J−1T, (*)

where

T =
∑

|h1|<X

. . .
∑

|hJ |<X

∑
x∈IJ(h)

∫ 1

0
f (α)2J−1

f (−α)2J−1
e
(
α∆J

(
xk;h

))
dα.

▶ By orthogonality, the quantity T is bounded above by the number of
integral solutions of the equation

2J−1∑
i=1

(
uk

i − vk
i

)
= ∆J

(
xk;h

)
,

with 1 ⩽ ui, vi ⩽ X for i ∈ [2J−1], 1 ⩽ x ⩽ X and |hj| < X for j ∈ [J].



Proof
▶ Here that we have weakened the condition x ∈ IJ(h) to 1 ⩽ x ⩽ X. This

may increase the potential number of solutions.
▶ The solutions counted by T are of two types. First, there are the

solutions in which
2J−1∑
i=1

(
uk

i − vk
i

)
= 0.

▶ In this situation, one has ∆J
(
xk;h

)
= 0. By orthogonality, the number

of choices of u and v here is∫ 1

0
f (α)2J−1

f (−α)2J−1
dα =

∫ 1

0
|f (α)|2

J
dα = O

(
X2J−J+ε

)
,

by invoking the inductive hypothesis.
▶ Since ∆J

(
xk;h

)
= 0, we have

h1 . . . hJ

(
k!

(k − J)!
xk−J + . . .

)
= 0.

▶ So either hj = 0 for some j ∈ [J], or else x satisfies a polynomial
equation determined by h1, . . . , hJ .



Proof
▶ Then the total number of choices for x and h1, . . . , hJ is O

(
XJ

)
. The

contribution of the solutions of this first type to T is consequently

O
(
XJ · X2J−J+ε

)
= O

(
X2J+ε

)
.

▶ For the second class of solutions counted by T , one has

2J−1∑
i=1

(
uk

i − vk
i

)
= N

for some non-zero integer N = N(u, v) with |N| = O(Xk).
▶ For each such choice of u and v, we have

h1 . . . hJ

(
k!

(k − J)!
xk−J + . . .

)
= N

and thus there are O (τJ+1(N)) = O
(
Xε

)
possible choices for h1, . . . , hJ

and x. The contribution to T from this second class of solutions is
therefore

O
( ∑

1⩽ui,vi⩽X
1⩽i⩽2J−1

τJ+1(N(u, v))
)
= O

(
Xε

∑
1⩽ui,vi⩽X
1⩽i⩽2J−1

1
)
= O

(
X2J+ε

)
.



Proof

▶ Combining these two estimates, we see that T = O
(
X2J+ε

)
.

▶ Substituting this bound into (*), which we recall∫ 1

0
| f (α)|2

J+1
dα =

∫ 1

0
f (α)2J−1

f (−α)2J−1
| f (α)|2

J
dα

⩽ (2X)2J−J−1T, (*)

we conclude that∫ 1

0
|f (α)|2

J+1
dα = O

(
(2X)2J−J−1 · X2J+ε

)
= O

(
X2J+1−(J+1)+ε

)
.

▶ This proves the case j = J + 1, and the conclusion of the lemma
follows.


