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Vinogradov’s mean value theorem

» Letk,n > 1 be integers, and P € Z be a large integer. Let J; ,(P) be
the number of integer solutions of the system of diophantine equations

X+t =X — o —x =0
x%+...+x]%_xi+l_...—x%k:0
: (HE)
X — = =0,
where 1 < xq,...,x < P.

Theorem (Vinogradov’s mean value theorem)
Letr e N,n>2 k>n*+nr and P > Py and define

(n* +n) (1—:l>r.

Jin(P) < (4n)4krP2k_(,,2+n)/2+£.r. -

N\~

Then



Basic estimate

Lemma
For N\,N, € Z such that N\ < N, and o € R, we have

N>

Z e(ozn)‘ < min{N, — Ny, (2]jer])) 7'},

n=N;+1
where ||| is the distance of « to the nearest integer, that is,
o = min {{a},1 - {a}} < 1/2.

Proof.
> If o & Z, then ||« > 0 and e(«) # 0. Thus

N No—N;—1

N))—1

‘ Z e(an)| = le(a(N1 + 1)) Z e(an)‘ _ |ela(Ns —
=N n=0
2 1 1

<

e@ 1] s(alal) = 2ol

> Otherwise we have that | > v elon)| <Ny — Ny

e(a) — 1



Basic estimate

Lemma
Let o = a/q + 0/q* where a,q € 7 are integers such that (a,q) = 1, and
g > 1,and 0 € [—1,1]. Then for arbitrary 3,U € R} and N > 1 we have

. 1 N
Z mm{U, M} <6 (q + 1> (U + qlogq).

Proof.

» Writing
q
+
1

Z +-
g+l

and changing indexes we obtain at most N/g + 1 sums of the form

S = Z min{U, ||an+/31||_l}a

nelq)

n€[N] n= n=

with perhaps different 3; ’s



Proof

It will be sufficient to prove
§<6(U+qlogg). (*)
For n € [g] we have
an+fi = (an+gbi]) g~ +6'(n)g 7,
0'(n) = 0n+ (qB1 — lapr]) g, |0'(n)| < 2g.

We make the change of variable m = an + [¢/1], so that by periodicity of ||x||
and (a,¢) = 1 we may assume that m runs over a complete system of residues
(mod ¢), and |m| < ¢/2. Thus

S

ml<a/2 4

B }7 where 0" (m)| = |6'(m)/q| < 2.

For m = 0, £1, 2, we estimate the min by U in the sum above, and for
2 < |m| < q/2 we have

)

H m 0" (m) H |m| —2
q q q
hence

S<SU+ Y \m|qu < 6(U+qlogq). O
2<|m|<q/2



Exponential sums estimates

Lemma
Suppose thatt > 2 and N € Z. are large, and 1 < M < N < t. Set

ri= LS'?;;?VE;[J. Then

Yo o= O(szr“/5 max |U(n)| + N*/* +Mf1/5°°),

N<n<2N
N<n<N+M

where
“E S (o). anim B K
- mX'Y |, Oy 1= , K:=N".

2rmn™

x€[K]yeK]  melr]

Proof.

> Ifx,y € [K], then

Z n—iz — Z (n +Xy)_it

N<n<N+M N—xy<n<N+M—xy
it it
= Y )T+ D ()
N<n<N+M N—xy<n<N

- Y et

NA+M—xy<n<N+M



Proof

» Therefore, by averaging over x,y € [K] and shifting n — n + xy, we

obtain
Z n—iz _ K—2 Z Z Z n—it

N<n<N+M x€[K] ye[K] N<n<N+M

K23 > )

x€[K] y€[K] N<n+xy<N+M

— K ZZZ Z +xy ”+O(K2),

x€[K] ye[K] N<n<N+M

Y (x| = ‘ > (n+xy)~"

N—xy<n<N N+M—xy<n<N+M

since

= 0(K?).

» Next, since xy/n < N’1/5, observe that

o (147) = S (2 o (2)7)

-3 o).




Proof

» Observe that n=" = e(—tlogn/(2)). This implies that

Z Z n4xy) = Z Z —tlog(n + xy)/(2))

x€[K] ye[K] x€[K] ye[K]

_ Z Z (Z "y ) ( (r~ 1+1/500)))

x€[K] ye[K] me|r]

Z Z (Z X"y ) +0(N4/5f(1+1/500))7

x€[K] ye[K] me(r]

(=D"t

27wmn™

where oy, == for m € [r]. The conclusion of the lemma follows

immediately.



Further estimates

Lemma
Under the assumptions of the previous lemma, for any k € Z., we have

r

Jk (NZ/S)Z . 1 1/(4k%)
|U(n)| §N4/5(7r8k/5H Z I?(li11{3]d\72]/57 }) s
N J=1 —kNY/S < <KN/S ”ajuj”

where Jy (NZ/S) denotes the number of solutions (xy,...,xy) € 73k of the
simultaneous diophantine equations
ko %
Soxi= Y ¥, forall jel] with 1<x <N/
i=1 i=k+1

Proof.
> As before, let K = N?/° and by Héler’s inequality we obtain

U(n) |2k<K2kIZ Z <Zaxmm>

x€[K] ' y€[K] me|r]

2k

Y Y o Tawe (-3 )

XEK] y1,....yu€[K] me|r] i=1 i=k+1



Proof

» Soif we let Ji - (K; A1, . . ., Ar) denote the number of solutions
1y, y%) € Z* of the simultaneous equations

Z)/ Zy’-&-A forall j € [r],

i=k+1
with 1 <y; < K, then we have

U<k S S S S (Zam ,,,x)

xE[K] —kK<A <KK — —kK" <\, <KK” melr

<K ST Y A0 Z(Zamx)‘

—kK<A\ <kK  —KkK"< X\ <KK" x€[K]

> We will abbreviate Y, <k 1O > »- By Holder’s inequality we have

2k
‘U(n)|(2k)2sK2k(2kfl)( Z Jk,r(K;/\l,...,Ar) e( A\ m)‘)
Alyeeny Ar
2k—
51{2"“""’( > Jk,,(K;A],...,/\,)%) Z ‘Z (Zam mx)’

AlyeesAr LA xE[K] me(r]




Proof
» Using Ji ,(K; A, - .., Ar) < Jir(K), we obtain

2k—1
( Z Jk,r(K§ )\1,...,)\,)%2/‘1) < KZk(Zk_l)Jk,r(K)v

AlyeeosAr

since

Z Jk,r(K; Alv T Ar) = K2k'
Al Ar
» Therefore, we have

U ()| B < K@D, ( Z ’Z (Z A )‘
Ar x€[K] melr]

» Expanding the 2k-th power of the last sum as before, we obtain that
[U(n)| "
< K*C=D g (K) Z Jir (K, ... ,ur)E( Z am,um)\m)

ALyl yenes Aryfhr me[r}

SK4k(2k 1) Z H Z e(amum)\m) )

sl mEfr] T —kZm <\, <kZ™




Zeta sum estimate of Vinogradov and Korobov
> We immediately deduce that
U(m)| "

<K*ED ) ST Y T mm{3ka ||Olm,um||}'

[ | <kK | pr | <kK™ me|r]

> Raising both sides to the power 1/ (4k2) , and remembering that
K = N?/5, the bound claimed in the lemma follows. O

Theorem (Vinogradov and Korobov)

There exists a small absolute constant ¢ > 0 such that the following is true.
Forany 1 <M < N <'t, one has

Z n_n‘ —0 (Me—c(log3 N)/log*(t+2) | N4/5)
N<n<N+M

— O(Ne—c(log3 N)/ 10g2(1+2)> )



Proof

We may assume that ¢ > 2 is large and that N > elogz/3 ! since
otherwise the theorem is trivial by adjusting the O constant
appropriately.
5.01logt
log N

‘ 2 : n—it

N<n<N+M

Setting r = { J, we have

- 0(MN‘4/5 max_|U(n)| +NY5 + Me~Y/ 50"),
N<n<aN

where

—1Vt
Z Z e(aixy+ ...+ ax'y"), ajz( )

2mjn
XE[N?/3] ye[N2/3]

Since ¢ > N we have (—1/500 _ ,—(1/500) log t < e—(I/SOO)(10g3 N)/loth’

so the last two terms satisfy the desired bound.

By the previous lemma, for any N < n < 2N and any k € N we have
1/(4k%)

[Um)| _ [ Jer(N?)? 2/s
< 3kN%/
N4/5 — N8k/S H Z min ||ajllj||

JEl] || <kN?/5




Proof

> We take k = Cr? € Zy, where C > 1 is a constant that we will choose
later. Since k > r?, Vinogradov’s mean value theorem implies that

Jk,r(N2/5)2 < (4r)8kFN(4/5)(2k—(1 —5)(1/2)r(r+1))7

where F = |(C — 1)r],and § = (1 — 1/r)F.
> Taking C(r,k,N) := (4r)8FN=(E/H=0)r0+1)/2 e see

)| _ s 1/
< r k,N) min < 3kN¥ }) .
N4/5 ( H Z { ”O‘JMJH

JEI | <73

» It remains to bound the sums over y;. We always have the trivial bound
O(K*N¥/3), and if o; = a;/q; + 6;/4? for some a; € Z, q; € Z., such
that (a;, ¢;) = 1 and |6;| < 1, then we have

KN/ .
) min{3kN21/5 } o (( + 1) (sz-’/s +q; log%))
| 4] <kN/5 HO[J/U'J” q;j

KN4/
= O(max{ ” ,qj} log(g; + 1))
j




Proof

Butif j > (logt)/log N then, remembering that N < n < 2N, we have

(= (—1y g (=1 {2mjn/ [t} g;

P= — = —= and 6, = -
I 2mjn q; +q}’ / 2mjni /t

)

where g; := |27j//t| > 1and |0;] < 1.
If 2(logt)/logN < j < 3(logt)/log N then g; > n/—(log1)/ 108N > Ni/2
and also ¢; = O(jW’N~//3) = O( j2ZN¥/3), so we certainly have

K2NY/5
Z min{?)szj/S } 0(./10),
HaJNJ” N

iyl AN/

whenever 2(logt)/log N < j < 3(logt)/logN.
Remembering that C(r, k, N) := (4r)3K N=(/5)(1=0)r+1)/2 e see

1
U : ‘ o)
|N£75)| < (C(“ LN (Dk2N4j/5) 11 N’/lo)

j=1 2(log 1)/ logN<j<3(logt)/logN

1
< (C(r, k,N) (Dkz)fN(4/5)r(r+1)/2N—(1/1o)((1ogz)/1ogN)2)4k2 7

where D is a large absolute constant.



Proof
» Note that C(I", k,N)N(4/5)r(r+1)/2 _ (4r)8CkrN(4/5)6r(r+1)/2.
» Usingk = Cr? and r = L%J, and choosing C large enough, we
have 6 < 1/280, and therefore
(4/5)6r(r +1)/2 < 145((logt)/log N)> < (1/20)((logt)/log N)?,
and therefore

|U(n)]
N4/5

1L
< ((4’,,)8Ckr (DkZ)’N—(l/ZO)((logt)/log;N)z) e

= ((4r)8c2r3 (DC21’4)rN_(l/m)(logl/logl")z)1/(4C2’4)

The dominant term inside the bracket is N—(1/20)(log/ log N )2, and so the

conclusion of the theorem follows. O
Exercise
Let ¢ > 0. We have uniformly for x > 1, o > oy and |¢| < mx the following
formula




Improved bounds on the Riemann zeta function
Theorem (Richert)

There exists a large absolute constant C > 0 such that the following is true.
For any large t > 2 and any 0 < o < 1, we have

(o +i) = 0(1C0=2" 1067/ 4).

In particular, ifo > 1—1/ log?3 t then (o + it) = 0(log*> ).
Proof.

> By the approximation formula, we have ((o + it) = Zne[l] - +O(1).
» Suppose first that 1 — 1/ logz/3 t <o < 1. Then

1 1
DI E A

1<n<el"%2/z elog?/3 <n<t

1 1
Z ; + Z ‘ Z potit

l§n§e1032/3’ I_logz/3 tJ <j<logt &<n<et!
)

_ 0<10g2/3t+ 3 ‘ 3 n01+it

\_logz/3 tj <j<log: &<n<et!

I¢(o +ir)|

+0(1)

IN




Proof
1

» The sequence - is monotone decreasing, hence, Abel’s summation
lemma implies that

’ Z (i)

d<n<et!

= O(e’cr max

o <n' <et!

E n*it

d<n<n’

» By the previous theorem, we have

—it i —ci/log*t
e/'<rrr1}z)§f+l E/QZQ,H =0(ce s /o8 )-
» Thus we have
(o +it)| = (logz/3 Z 91(1*0)7613/103;5)
Llog>/? 1] <j<log 1
0(log2/3 Z o/ 1og”? 1—c(j/ 10g?/? 1)3)

Llog?/? 1] <j<log 1
Llog!'/3 1] (r+1)[log®? 1]

_ 0(10g2/3t+ Z Z e//log2/3t7c(j/log2/3z)3)'

r=1 Jj= rUOgZ/Z Z‘J

> The final sum is O(log™’ ¢ Dot ¢, and this is clearly O(log?/? 1).



Proof

> Ifinsteado < 1—1/ logz/ 3t then one can proceed in a similar way, but
breaking the sum over 7 at a different place to obtain a saving when
summing over j. In fact, for any large constant C we obtain that

. 1 1
Cotin=" 3 —m+ X mmto)
ngeflog/m eClogiv/T=o<n<i

Va2
¢Clog t(l1—o)

1
<K 70—, " > > ot

[ClogtV/T—0|<j<logt | <n<et!

< (U= 1002/3 3 J(1=0)=c'/log’t
|[Clogtv/1—0 |<j<logt

j(l1—o)—ci(l—0o ,2
< tc(1—a)3/2 1082 143 | o 1/ 125 < <1og €7 TII=E

Provided C is large enough the exponents in the sum over j will all be
negative, and one can bound it as we did above by breaking into
intervals of length |Clogtv/1 — o ].



Theorem of Landau

» In fact, any order of magnitude of {(s) in a certain domain implies a
zero-free region as may be seen in the next result devised by Landau.

Theorem (Landau)

Let 0(t) and ¢(t) be positive functions such that 0(t) is decreasing, ¢(t) is
increasing and e=*") < 0(t) < 1. Assume that ((s) = O(e®")) in the region
o> 1—0(t) and t > 2. Then the following assertions hold.

(i) There exists an absolute constant ¢ > 0 such that ((s) has no zero in
the region

(ii) In the region o > 1 — (c/2) 0(2t + 2)p(2t +2)~!, we have

(0N (02 +2)
c<s>‘0(«:<2r+2>> ) 0<¢<2r+2>>'




Vinogradov—Korobov zero-free region

Theorem
There exists a small absolute constant ¢ > 0 such that the zeta function has
no zeros s = o + it it in the region

—1
{s=arireCioz1-cog (i +2)0sioxl +3)") "}

Proof.

» Richert’s theorem tells us that, for all # > £, (a large constant), we have
(o +if) = 0<tC(IfJ)3/2 10g2/3 t) _ 0<gc(170)3/2 log 1+(2/3) 1og10gt)_
» In particular, if ¢ > 1 — ((loglog )/ log )?/3 then we have
C(U + it) _ 0(€(C+2/3) loglogt)’
so we can apply Landau’s theorem with the choices

o(t) = (C+2/3)loglogt and 6(t) = ((loglog t)/logt)z/S.



Proof

» Hence we conclude that {(o + it) # 0 in the region

0(2t+1)
o2t +1)

1—- 73 , >0
(C +2/3)log®?(2t + 1)(log log(2t + 1))1/3

c>1—c¢

» By relabelling the constants, this gives the assertion of the corollary
when ¢ > #5. One can obtain the analogous result for ¢ < fy using the
known zero-free regions and using symmetry.

Theorem (PNT with the best error term to date)

There exists an absolute constant ¢ € (0, 1) such that as x — oo, one has

P(x)=x+0 (xexp (—c(logx)3/5(log1ogx)*1/5)) ,

7(x) = Li(x) + O (xexp (—c(logx)S/S(log logx)’1/5)> .



Weyl’s method

» Consider a polynomial 1 (x) with real coefficients and the exponential
sum

1<x<X

» An idea of Weyl permits one to reduce the degree inductively to obtain
an estimate in terms of exponential sums with linear phases.

» Since e(¢(x)) = e(—(x)), one finds that

TP = > e®() =Y > e +h) —v(),

1<x,y<X [h|l<X 1<x<X
1<x+h<X

in which we have made the change of variable y = x 4 h. But one has
Y(x+ h) — ¥(x) = hpy(x; k), where ¢ (x; h) is a polynomial in x and &
having degree deg(v)) — 1 with respect to x. Thus, we have

T < ) > e(hwl(x;h))‘
lhj<x ' 1<agX
1<x+h<X

with the inner exponential sum being one having a polynomial
argument of degree one less than that of the original sum 7'(X).



Weyl’s method

» This idea may now be used repeatedly to reduce the degree of the
exponential sum under consideration until one is left in the linear
situation amenable to exponential sums with linear phases.

» When 1) (x) is a real-valued function of x, we denote by A the
difference operator defined by

Ar(p(x);h) =1p(x +h) — (x).
> Then we define A; by

Aj((x);h) = Ay ($(x); s - -, By)
= Al (Aj,1 (’L/J(x);h], e ,/’ljfl) ;/’lj) for ] 2 2.

» By convention, we take A (¢ (x); h) = ¥ (x).
» One may verify that when j € [k], one has

A (xk;h) =hy...hpj(x;hi,... k),

where p; is a polynomial in x of degree k — j with leading coefficient
K/ (k—j).



Weyl’s method

> By the linearity of the operator A;, one sees that
k
A; (akxk + ... +ax; h) = ZaiAj (x’;h)
i=1

and so one is able easily to calculate A;(p(x);h), for polynomial p(x),
by using what is known for monomials.

» For the special case p(x) = x*, we have

h1+...+hk—1).

Ay (¥ h) = hl---hk,lk!(x— :

» We note, in particular, that when j > deg(p), then one has

Aj(p(x);h) = 0.



Weyl differencing
Lemma (Weyl differencing)

Let ¢(x) be a real-valued arithmetic function, and put

1<xX

Then for each j € Z., one has

F@P < @077 3 30 3 e ), )

|| <X |hj| <X x€1;(h)

where I;(h) denotes the interval of integers defined by setting Iy(h) = [1,X],
and, when j € Z, by

Li(hy, b)) =Ly (oo o )0{x € [LX] s x4 By € Loy (.o Ry}
Note that

Ij(hl,...7hj)§1j,1 (h],...,hj,])c .CIL (hl) [1 X]



Proof
» We proceed by induction. When j = 1, one has

F@)IP= > D e@() —v)

1<x<X 1<y<X

o> et ) - )

1<K 1—x<h <X —x

Z Z x);hi)),

‘/11 |<Xx€11 (/’l[)

where I} (hy) = [L,X] N[l — hi, X — ] and (*) follows for j = 1.
» Suppose now that (*) has been proved for all j € [J — 1]. Then, by the
Cauchy—Schwarz inequality, one finds that

P = (PP ) < (@) (2 X

“‘Ll‘<X ‘h/ 1|<X

[I]

where

[I]

=Y Y | X canwwm|

[ <X [hy—1|<X  x€l;—1(h)



Proof

» Asin the case j = 1, one opens the square to write
Y e[ = Y e(A (A @@y
x€l;_(h) |hy|<X x€l;(h)

where
1 (h,/’l]) :I]_](h) N {X S [17X] X+ hy € I]_l(h)}.

» We therefore conclude that

F@)IP <@ o 3 3 e(As(d(x);h)).

[m]<X  |h|<Xx€l;(h)

» This gives (*) for j = J, and the conclusion follows by induction. O



Weyl differencing for polynomial phases

> If we apply Weyl differencing & — 1 times to the exponential sum

fla) = Z e (axk) ,

I<x<X

then we obtain a bound of the shape

@) = 0<x2k*"k DI (k!ah1 .‘.hk,l(x—i- w» >

hyse.shg—y x€I(h)
|hi| <X

» This gives us an exponential sum with a linear phase, but we will need
to average over the products £y . .. h_;.

» This entails a discussion of the r-fold divisor function

7(n) = Z 1 for r=k-—1.
d;eN
d[ ..‘d,:n
» Invoking bounds for the divisor function we have that 7,(n) = O, - (n®)
foreachr € Nand e > 0.



Weyl’s inequality
Lemma (Weyl’s inequality)

Letk > 2and oy, ..., € R. Suppose that a € 7 and q € N satisfy
(a,q) = 1 and |y — a/q| < q~2. Then

5 et boud) [ o5 o ot
1<x<X

Proof.
» Write ¢(x) = ajx + ... + oqx* and

I<a<X

» If ¢ > X¥, the desired estimate is trivial from the bound

Fla) < > 1<X.

1<xX

» Thus, we may suppose without loss that g < X*.



Proof
» By applying the Weyl differencing lemma with j = k — 1, we obtain the

bound
FF —o(x S Y ).

[ <X [he—1| <X

where

Th) = Y e(Ai(®);h),

x€l—1(h)

and I, (h) is a suitable interval of integers contained in [1, X].
> We note that

Ak—l (w(x), h) =klh; .. e xoy 4 v,

where v = 7(a; h) is independent of x.
» Thus, we obtain that

T(h) = O(min {x [kl ...hk_lakH_]}),

whence

|F(a)|2k" :0<X2“—k Z Z min {X, ||k!h1...hk1akl}>.

\h||<X |—1 | <X



Proof

» Separating the summands for which A, - - - | = 0, we are led from
here to the bound

|F(a)|2k_]0<X2k_]k(Xk1+ 3 Tk(n)min{X,HnakHl})).

1<n<kixk—1

» Since 74(n) = O(X®), recalling our assumption that ¢ < X*, and using
the bound

1 N
mindU,——L<eg +1) U+ qlogq),
2 { IIan+6II} <q (Ut qlogq)

n€[N]

with N = k!X*~! and U = X, we therefore obtain the estimate
— 1—k
F(a) :O(Xl_zl k+Xl+g (q_l +X—1 +X1_k+qX_k)2 ),

and the conclusion of the lemma follows. ]



Hua’s lemma

Lemma (Hua’s lemma)
Let X € Ry be a large real number and write

Sfla) = Z e (ax*).

1<x<X

Suppose that k > 2 and j € [k]. Then one has
! j i
[ 7@ da =02+
0

Proof.
» We proceed by induction on j € [k]. When j = 1, then by orthogonality

1 1
/ F()P da :/ fl)f(—a)da = # {1 <xy<X:d =y} = [X],
0 0

and the base case j = 1 of the induction is verified.

» Now suppose that the desired conclusion has been established already
when j € [J] for some integer J € Z satisfying 1 < J < k.



Proof

» By the Weyl differencing lemma we see that
F@F <@ 30 30 3 e(ads (),
|h | <X |hy| <X x€I;(h)

where I;(h) is a suitable subinterval of [1, X]. It follows that

/ F@P" da / £ () | f(@) da
< (2x)¥ T, ()

where
T = Z Z Z /f 211 a)zjfle(aAJ(xk;h))doz.
|h | <X |hy| <X x€I;(h)

» By orthogonality, the quantity 7 is bounded above by the number of
integral solutions of the equation

2]—]

Z(uk—v) Aj(x h)

i=1

with I < u;,v; < Xforie 271, 1 <x< Xand || < X forj € [J].



Proof

Here that we have weakened the condition x € I;(h) to 1 < x < X. This
may increase the potential number of solutions.

The solutions counted by T are of two types. First, there are the

solutions in which
2/—1

Z (uf —vf»‘) =0.

i=1

In this situation, one has A, (x*;h) = 0. By orthogonality, the number
of choices of u and v here is

1 1
[ 7@ e o= [ da = 00 )
0 0

by invoking the inductive hypothesis.
Since Ay (xk; h) = 0, we have

k! k—J

So either h; = 0 for some j € [J], or else x satisfies a polynomial
equation determined by Ay, ..., hy.



Proof

> Then the total number of choices for x and /. .., hy is O (X”). The
contribution of the solutions of this first type to 7 is consequently

o(x’ - X¥~7*5) = o(x*' ).
» For the second class of solutions counted by 7', one has
2./—[
Z (uf — vf‘) =N
i=1
for some non-zero integer N = N(u, v) with |[N| = O(X*).
» For each such choice of u and v, we have

k! k—J

and thus there are O (7,1(N)) = O(X¢) possible choices for hy, ..., hy
and x. The contribution to 7 from this second class of solutions is
therefore

0( 3 TJH(N(u,V))):O(XE 3 1):0(x2’+f).

I<ui,vi<X 1<u;,vi<X
1<ig2/ ! 1<ig2/ !




Proof

» Combining these two estimates, we see that T = 0(X21+E).
» Substituting this bound into (*), which we recall

1
J+1 J—1 J—1 J
/0 Fla)? / £ f—a)? " f(@)P da
< (2x)¥ T, ()
we conclude that

/ If(a ‘2“ ((2X)2J J—1 X2 +5) :O(X21+17(J+1)+5)'

» This proves the case j = J + 1, and the conclusion of the lemma
follows. O



