

Analytic Number Theory

Lecture 12

Mariusz Mirek
Rutgers University

Padova, April 15, 2025.

Supported by the NSF grant DMS-2154712,
and the CAREER grant DMS-2236493.

Waring problem

Definition

Given $k \in \mathbb{Z}_+$, define $G(k)$ to be the least integer having the property that whenever $s \geq G(k)$, then all sufficiently large natural numbers are the sum of s positive integer k -th powers.

- ▶ Thus, when $k \in \mathbb{Z}_+$ and $s \geq G(k)$, there exists $N_0 = N_0(s, k)$ such that, whenever $n \geq N_0$, then there exist $x_1, \dots, x_s \in \mathbb{Z}_+$ such that

$$n = x_1^k + \dots + x_s^k.$$

- ▶ A relatively easy exercise shows that $G(k) \geq k + 1$ whenever $k \geq 2$.

The current state of the art for $k \in [9]$

- ▶ $G(2) = 4$, a consequence of Lagrange's theorem from 1770;
- ▶ $G(3) \leq 7$, due to Linnik, 1942;
- ▶ $G(4) = 16$, due to Davenport, 1939;
- ▶ $G(5) \leq 17$, due to Vaughan and Wooley, 1995;
- ▶ $G(6) \leq 24$, due to Vaughan and Wooley, 1994;
- ▶ $G(7) \leq 31$, due to Wooley, 2016;
- ▶ $G(8) \leq 39$, due to Wooley, 2016 (and it is known that $G(8) \geq 32$);
- ▶ $G(9) \leq 47$, due to Wooley, 2016;

The current state of the art for large powers

- ▶ In general, for large values of k , it was shown 30 years ago that

$$G(k) \leq k(\log k + \log \log k + 2 + o(1)) \quad (\text{Wooley, 1992 and 1995}),$$

where $o(1) \rightarrow 0$ as $k \rightarrow \infty$.

- ▶ Within the past year, this longstanding upper bound has been improved so that for all natural numbers k one has

$$G(k) \leq \lceil k(\log k + 4.20032) \rceil \quad (\text{Brüdern and Wooley 2022}).$$

- ▶ Let us now return to Hardy and Littlewood in 1920, and indeed to Hardy and Ramanujan in 1918. They considered a power series

$$g_k(z) = \sum_{m=1}^{\infty} z^{m^k}$$

- ▶ Note that this series is absolutely convergent for $|z| < 1$. If one now considers the expression $g_k(z)^s$, one sees that

$$g_k(z)^s = \left(\sum_{m_1=1}^{\infty} z^{m_1^k} \right) \left(\sum_{m_2=1}^{\infty} z^{m_2^k} \right) \cdots \left(\sum_{m_s=1}^{\infty} z^{m_s^k} \right) = \sum_{m_1=1}^{\infty} \cdots \sum_{m_s=1}^{\infty} z^{m_1^k + \cdots + m_s^k}$$

Hardy–Littlewood–Ramanujan method

- Then we can further write

$$\begin{aligned} g_k(z)^s &= \left(\sum_{m_1=1}^{\infty} z^{m_1^k} \right) \left(\sum_{m_2=1}^{\infty} z^{m_2^k} \right) \cdots \left(\sum_{m_s=1}^{\infty} z^{m_s^k} \right) \\ &= \sum_{m_1=1}^{\infty} \cdots \sum_{m_s=1}^{\infty} z^{m_1^k + \dots + m_s^k} = \sum_{n=1}^{\infty} R_{s,k}(n) z^n, \end{aligned}$$

where $R_{s,k}(n) = \# \{ (m_1, \dots, m_s) \in \mathbb{Z}_+^s : m_1^k + \dots + m_s^k = n \}$.

- We can recover the coefficients $R_{s,k}(n)$ by employing Cauchy's integral formula to evaluate a suitable contour integral. Thus

$$R_{s,k}(n) = \frac{1}{2\pi i} \int_{\mathcal{C}} g_k(z)^s z^{-n-1} dz$$

where \mathcal{C} denotes a circular contour, centered at 0 with radius $r \in (0, 1)$.

- When $k = 1$, the series in question is $g_1(z) = z/(1 - z)$, and Hardy and Ramanujan obtained an asymptotic formula for $R_{s,k}(n)$ by evaluating their generating functions asymptotically for all values of θ .
- The method also applies even in the more delicate situation with $k = 2$. However, when $k \geq 3$, the situation is much more involved and here the innovative circle method of Hardy and Littlewood becomes essential.

Vinogradov's approach

- The basis of this method is the elementary orthogonality identity

$$\int_0^1 e(k\theta) d\theta = \int_0^1 e^{2\pi i k\theta} d\theta = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{if } k \neq 0. \end{cases}$$

- Fix $n \in \mathbb{Z}_+$ and let $X = n^{1/k}$. Using this identity, in a similar way as in the Vinogradov's mean value theorem we have

$$\begin{aligned} R_{s,k}(n) &= \# \{ (m_1, \dots, m_s) \in \mathbb{Z}_+^s : m_1^k + \dots + m_s^k = n \} \\ &= \sum_{(m_1, \dots, m_s) \in \mathbb{Z}_+^s} \int_0^1 e((m_1^k + \dots + m_s^k - n)\alpha) d\alpha \\ &= \int_0^1 \left(\sum_{1 \leq x \leq X} e(\alpha x^k) \right)^s e(-n\alpha) d\alpha \end{aligned}$$

- Define

$$f(\alpha) = \sum_{1 \leq x \leq X} e(\alpha x^k).$$

Major and minor arcs decomposition

- Whenever $s \geq 2^k + 1$, our goal is to asymptotically evaluate the number

$$R_{s,k}(n) = \int_0^1 f(\alpha)^s e(-n\alpha) d\alpha$$

- We divide the interval of integration according to a Hardy–Littlewood dissection with major arcs \mathfrak{M}_δ equal to the union of the intervals

$$\mathfrak{M}_\delta(q, a) = \left\{ \alpha \in [0, 1] : |\alpha - a/q| \leq X^{\delta-k} \right\}$$

with $0 \leq a < q \leq X^\delta$ and $(a, q) = 1$, and with minor arcs

$$\mathfrak{m}_\delta = [0, 1] \setminus \mathfrak{M}_\delta.$$

- Subject to the condition $0 < \delta < 1/5$, the major arcs \mathfrak{M}_δ defined in this way are a disjoint union of the arcs $\mathfrak{M}_\delta(q, a)$.
- Indeed, if some real number α lies in two distinct major arcs $\mathfrak{M}_\delta(q_1, a_1)$ and $\mathfrak{M}_\delta(q_2, a_2)$ lying in \mathfrak{M}_δ , then by the triangle inequality, one has

$$\frac{1}{q_1 q_2} \leq \left| \frac{a_1 q_2 - a_2 q_1}{q_1 q_2} \right| \leq \left| \frac{a_1}{q_1} - \frac{a_2}{q_2} \right| \leq \left| \alpha - \frac{a_1}{q_1} \right| + \left| \alpha - \frac{a_2}{q_2} \right| \leq 2X^{\delta-k}.$$

Thus, one finds that $1 \leq 2q_1 q_2 X^{\delta-k} \leq 2X^{3\delta-k}$. This is plainly impossible when $\delta < 1/3$ and X is large.

Major and minor arcs decomposition

- ▶ The exponential sum

$$f(\alpha) = \sum_{1 \leq x \leq X} e(\alpha x^k)$$

can be approximate by the integral on major arcs, whereas on minor arcs one expects that the sequence from the phase is equidistributed due to Weyl's inequality.

- ▶ We will write

$$R_{s,k}(n) = \int_{\mathfrak{m}_\delta} f(\alpha)^s e(-n\alpha) d\alpha + \int_{\mathfrak{M}_\delta} f(\alpha)^s e(-n\alpha) d\alpha$$

We first handle the integral over minor arcs.

Lemma (Dirichlet's approximation theorem)

Let $\alpha \in \mathbb{R}$, and suppose that $X \geq 1$ is a real number. Then there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ with $(a, q) = 1$ and $1 \leq q \leq X$ such that $|\alpha - a/q| \leq 1/(qX)$.

Proof.

Exercise!

Minor arcs estimates

- Given $\alpha \in [0, 1)$, by Dirichlet's approximation theorem, there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ with $1 \leq q \leq X^{k-\delta}$, $(a, q) = 1$ and

$$|\alpha - a/q| \leq 1/(qX^{k-\delta}) \leq \min\{X^{\delta-k}, q^{-2}\}.$$

- If $q \leq X^\delta$, then we would have $\alpha \in \mathfrak{M}_\delta$. Thus, when $\alpha \in \mathfrak{m}_\delta$, we may suppose that $X^\delta < q \leq X^{k-\delta}$. We thus conclude from Weyl's inequality that, whenever $0 < \delta < 1$, one has

$$\begin{aligned} |f(\alpha)| &= O\left(X^{1+\varepsilon} (q^{-1} + X^{-1} + qX^{-k})^{2^{1-k}}\right) \\ &= O\left(X^{1+\varepsilon} (X^{-\delta} + X^{-1} + X^{k-\delta}/X^k)^{2^{1-k}}\right) \\ &= O\left(X^{1-\delta 2^{1-k} + \varepsilon}\right). \end{aligned}$$

- Provided that $s > (k/\delta)2^{k-1}$, we may conclude that

$$\begin{aligned} \left| \int_{\mathfrak{m}_\delta} f(\alpha)^s e(-n\alpha) d\alpha \right| &\leq \left(\sup_{\alpha \in \mathfrak{m}_\delta} |f(\alpha)| \right)^s \int_{\mathfrak{m}_\delta} d\alpha \\ &= O\left((X^{1-\delta 2^{1-k} + \varepsilon})^s\right) = o(X^{s-k}). \end{aligned}$$

Minor arcs estimates

- But our goal is to asymptotically evaluate $R_{s,k}(n)$ assuming that $s \geq 2^k + 1$.

Corollary

When $s \geq 2^k + 1$, one has

$$\left| \int_{\mathfrak{m}_\delta} f(\alpha)^s e(-n\alpha) d\alpha \right| = O(X^{s-k-\delta 2^{-k}}).$$

Proof.

By Weyl's inequality in combination with Hua's lemma, one obtains

$$\begin{aligned} \left| \int_{\mathfrak{m}_\delta} f(\alpha)^s e(-n\alpha) d\alpha \right| &\leq \left(\sup_{\alpha \in \mathfrak{m}_\delta} |f(\alpha)| \right)^{s-2^k} \int_0^1 |f(\alpha)|^{2^k} d\alpha \\ &= O\left(\left(X^{1-\delta 2^{1-k} + \varepsilon} \right)^{s-2^k} X^{2^k-k+\varepsilon} \right) \\ &= O\left(X^{s-k-(s-2^k)\delta 2^{1-k} + s\varepsilon} \right). \end{aligned}$$

The conclusion of the corollary follows on recalling that $s \geq 2^k + 1$. □

Major arcs estimates

- ▶ For $s \geq 2^k + 1$ we have shown that

$$\left| \int_{\mathfrak{m}_\delta} f(\alpha)^s e(-n\alpha) d\alpha \right| = O(X^{s-k-\delta 2^{-k}}) = o(n^{s/k-1}).$$

- ▶ Let $\alpha \in \mathfrak{M}_\delta(q, a) \subseteq \mathfrak{M}_\delta$. Write $\beta = \alpha - a/q$, so that $|\beta| \leq X^{\delta-k}$. By breaking the summand into arithmetic progressions modulo q , one has

$$\begin{aligned} \sum_{1 \leq x \leq X} e(\alpha x^k) &= \sum_{r=1}^q \sum_{(1-r)/q \leq y \leq (X-r)/q} e((\beta + a/q)(yq + r)^k) \quad (\text{A}) \\ &= \sum_{r=1}^q e(ar^k/q) \sum_{(1-r)/q \leq y \leq (X-r)/q} e(\beta(yq + r)^k). \end{aligned}$$

- ▶ Since β is small, we can hope to approximate the inner sum here by a smooth function with control of the accompanying error terms.
- ▶ Here, we apply the mean value theorem to the inner sum.

Major arcs estimates

- By the mean value theorem, when $F(z)$ is a differentiable function on $[a, b]$ with $a < b$, one sees that $F(a) - F(b) = (a - b)F'(\xi)$ for some $\xi \in (a, b)$. Also, trivially, one has

$$e(F(z)) = \int_{-1/2}^{1/2} e(F(z)) d\eta$$

- Hence

$$\begin{aligned} \left| e(F(z)) - \int_{-1/2}^{1/2} e(F(z + \eta)) d\eta \right| &\leq \sup_{|\eta| \leq 1/2} |e(F(z + \eta)) - e(F(z))| \\ &= O\left(\sup_{|\eta| \leq 1/2} |F'(z + \eta)|\right). \end{aligned}$$

- Using this approximation, we obtain

$$\begin{aligned} \sum_{(1-r)/q \leq y \leq (X-r)/q} e(\beta(yq + r)^k) - \int_{-r/q}^{(X-r)/q} e(\beta(zq + r)^k) dz \\ &= O\left(1 + (X/q) \sup_{0 \leq z \leq X/q} |k\beta q(qz + r)^{k-1}|\right) \\ &= O(1 + X^k |\beta|). \end{aligned}$$

Major arcs estimates

- By substituting the last relation into (A), we deduce that

$$f(\alpha) = \sum_{r=1}^q e(ar^k/q) \left(\int_{-r/q}^{(X-r)/q} e(\beta(zq+r)^k) dz + O(1+X^k|\beta|) \right)$$

so that

$$f(\alpha) - \sum_{r=1}^q e(ar^k/q) \int_{-r/q}^{(X-r)/q} e(\beta(zq+r)^k) dz = O(q+X^k|q\beta|). \quad (\text{B})$$

- By the change of variable $\gamma = zq + r$, moreover, we have

$$\int_{-r/q}^{(X-r)/q} e(\beta(zq+r)^k) dz = q^{-1} \int_0^X e(\beta\gamma^k) d\gamma. \quad (\text{C})$$

- Introducing, for $a \in \mathbb{Z}$, $q \in \mathbb{Z}_+$ and $\beta \in \mathbb{R}$ the following objects

$$S(q, a) = \sum_{r=1}^q e(ar^k/q), \quad \text{and} \quad v(\beta) = \int_0^X e(\beta\gamma^k) d\gamma,$$

we can summarize our discussion in the form of a lemma.

Major arcs estimates

Lemma

Suppose that $\alpha \in \mathbb{R}$, $a \in \mathbb{Z}$ and $q \in \mathbb{Z}_+$. Then one has

$$|f(\alpha) - q^{-1}S(q, a)v(\alpha - a/q)| = O(q + X^k|q\alpha - a|).$$

Proof.

The desired conclusion follows by substituting (C) into (B). □

Lemma

When $\alpha \in \mathfrak{M}_\delta(q, a) \subseteq \mathfrak{M}_\delta$, one has

$$|f(\alpha) - q^{-1}S(q, a)v(\alpha - a/q)| = O(X^{2\delta}).$$

Proof.

When $\alpha \in \mathfrak{M}_\delta(q, a) \subseteq \mathfrak{M}_\delta$, one has $|q\alpha - a| = q|\alpha - a/q| \leq X^\delta \cdot X^{\delta-k}$, whence $q + X^k|q\alpha - a| = O(X^{2\delta})$. The claimed bound now follows from the previous lemma. □

Major arcs estimates

- ▶ Let us now substitute the conclusion of the previous lemma into the formula for the major arc contribution. Since

$$\mathfrak{M}_\delta = \bigcup_{\substack{0 \leq a < q \leq X^\delta \\ (a, q) = 1}} \mathfrak{M}_\delta(q, a),$$

then

$$\int_{\mathfrak{M}_\delta} f(\alpha)^s e(-n\alpha) d\alpha = \sum_{1 \leq q \leq X^\delta} \sum_{\substack{a=1 \\ (a, q) = 1}}^q \int_{-X^{\delta-k}}^{X^{\delta-k}} f(\beta + a/q)^s e(-n(\beta + a/q)) d\beta.$$

- ▶ Assuming that $\alpha \in \mathfrak{M}_\delta(q, a) \subseteq \mathfrak{M}_\delta$, we set

$$f^*(\alpha) = q^{-1} S(q, a) v(\alpha - a/q),$$

and write

$$E(\alpha) = f(\alpha) - f^*(\alpha)$$

- ▶ It follows from the previous lemma that $E(\alpha) = O(X^{2\delta})$.

Major arcs estimates

- Since

$$\begin{aligned} f(\alpha)^s - f^*(\alpha)^s &= (f(\alpha) - f^*(\alpha)) (f(\alpha)^{s-1} + \dots + f^*(\alpha)^{s-1}) \\ &= O(X^{s-1} |E(\alpha)|) = O(X^{s-1+2\delta}), \end{aligned}$$

we obtain the asymptotic relation

$$\begin{aligned} & \int_{\mathfrak{M}_\delta} f(\alpha)^s e(-n\alpha) d\alpha \\ &= \sum_{1 \leq q \leq X^\delta} \sum_{\substack{a=1 \\ (a,q)=1}}^q \int_{-X^{\delta-k}}^{X^{\delta-k}} (q^{-1} S(q, a) v(\beta))^s e(-n(\beta + a/q)) d\beta \\ &+ \sum_{1 \leq q \leq X^\delta} \sum_{\substack{a=1 \\ (a,q)=1}}^q \int_{-X^{\delta-k}}^{X^{\delta-k}} X^{s-1+2\delta} d\alpha. \end{aligned}$$

- The second sum is

$$O\left(X^{s-1+2\delta} \sum_{1 \leq q \leq X^\delta} q \cdot X^{\delta-k}\right) = O(X^{s-k-1+3\delta} \cdot X^{2\delta}) = O(X^{s-k+(5\delta-1)}).$$

- This is $o(X^{s-k})$ whenever $\delta < 1/5$.

Major arcs estimates

- ▶ Turning to the first sum, we find that it factorises in the shape

$$\sum_{\substack{1 \leq q \leq X^\delta \\ (a,q)=1}} \sum_{a=1}^q \left(q^{-1} S(q, a) \right)^s e(-na/q) \int_{-X^{\delta-k}}^{X^{\delta-k}} v(\beta)^s e(-\beta n) d\beta.$$

- ▶ When $Q \in \mathbb{R}_+$, we define the truncated singular series

$$\mathfrak{S}_{s,k}(n; Q) = \sum_{\substack{1 \leq q \leq Q \\ (a,q)=1}} \sum_{a=1}^q \left(q^{-1} S(q, a) \right)^s e(-na/q),$$

and the truncated singular integral

$$J_{s,k}(n; Q) = \int_{-QX^{-k}}^{QX^{-k}} v(\beta)^s e(-\beta n) d\beta.$$

- ▶ Now we can summarize our discussion in the form of a lemma.

Lemma

When $0 < \delta < 1$, one has

$$\int_{\mathfrak{M}_\delta} f(\alpha)^s e(-n\alpha) d\alpha = J_{s,k}(n; X^\delta) \mathfrak{S}_{s,k}(n; X^\delta) + O\left(X^{s-k+(5\delta-1)}\right).$$

Major arcs estimates

Corollary

When $s \geq 2^k + 1$ and $0 < \delta < 1/5$, one has

$$R_{s,k}(n) = J_{s,k}(n; X^\delta) \mathfrak{S}_{s,k}(n; X^\delta) + o(X^{s-k})$$

in which $X = n^{1/k}$.

Proof.

Since $[0, 1)$ is the disjoint union of \mathfrak{m}_δ and \mathfrak{M}_δ , one has

$$R_{s,k}(n) = \int_{\mathfrak{M}_\delta} f(\alpha)^s e(-n\alpha) d\alpha + \int_{\mathfrak{m}_\delta} f(\alpha)^s e(-n\alpha) d\alpha.$$

The conclusion follows from the previous results. □

- ▶ Our objective is now to analyse the truncated singular series $\mathfrak{S}_{s,k}(n; Q)$ and singular integral $J_{s,k}(n; Q)$.
- ▶ We first consider the truncated singular integral $J_{s,k}(n; Q)$, our first step being to complete this integral to obtain the (complete) singular integral

$$J_{s,k}(n) = \int_{-\infty}^{\infty} v(\beta)^s e(-n\beta) d\beta.$$

The singular integral

Lemma

Whenever $\beta \in \mathbb{R}$, one has

$$v(\beta) = O\left(X \left(1 + X^k |\beta|\right)^{-1/k}\right).$$

Proof.

- Recall that

$$v(\beta) = \int_0^X e(\beta \gamma^k) d\gamma.$$

The estimate $|v(\beta)| \leq X$ is trivial. Also, since $|v(\beta)| = |v(-\beta)|$, we may assume henceforth that $\beta > X^{-k}$.

- Changing the variable $u = \beta \gamma^k$, we find that when $\beta > 0$, one has

$$v(\beta) = k^{-1} \beta^{-1/k} \int_0^{\beta X^k} u^{-1+1/k} e(u) du,$$

whence

$$|v(\beta)| \leq k^{-1} \beta^{-1/k} \left| \int_0^{\beta X^k} u^{-1+1/k} e(u) du \right|.$$

Proof

- ▶ Notice that $u^{-1+1/k}$ decreases monotonically to 0 as $u \rightarrow \infty$. By Dirichlet's test for convergence of an infinite integral the last integral is uniformly bounded, and indeed

$$\left| \int_0^{\beta X^k} u^{-1+1/k} e(u) du \right| \leq \sup_{Y \geq 0} \left| \int_0^Y u^{-1+1/k} e(u) du \right| < \infty$$

- ▶ When $0 < Y < 1$, we are also making use of the inequality

$$\left| \int_0^Y u^{-1+1/k} e(u) du \right| \leq \int_0^Y u^{-1+1/k} du = O(1).$$

- ▶ Hence we deduce that when $|\beta| > X^{-k}$, one has

$$|v(\beta)| = O(|\beta|^{-1/k}) = O\left(X \left(1 + X^k |\beta|\right)^{-1/k}\right).$$

- ▶ The desired conclusion follows on combining this estimate with our earlier bound $|v(\beta)| \leq X$, applied in circumstances wherein $|\beta| \leq X^{-k}$.
- ▶ The proof is completed. □

The singular integral

Corollary

Suppose that $s \geq k + 1$. Then the singular series $J_{s,k}(n)$ converges absolutely, and moreover,

$$|J_{s,k}(n; Q) - J_{s,k}(n)| = O(X^{s-k} Q^{-1/k}).$$

Proof.

- ▶ By applying the last lemma, one sees that

$$|J_{s,k}(n)| = O\left(\int_{-\infty}^{\infty} \frac{X^s}{(1 + X^k |\beta|)^{s/k}} d\beta\right) = O(X^{s-k}).$$

- ▶ Thus, the integral defining $J_{s,k}(n)$ is indeed absolutely convergent, and the singular integral exists. Moreover, and similarly,

$$|J_{s,k}(n; Q) - J_{s,k}(n)| = O\left(\int_{QX^{-k}}^{\infty} \frac{X^s}{(1 + X^k \beta)^{1+1/k}} d\beta\right) = O(X^{s-k} Q^{-1/k})$$

This completes the proof. □

The singular integral

Lemma

When $s \geq k + 1$, one has

$$J_{s,k}(n) = \frac{\Gamma(1 + 1/k)^s}{\Gamma(s/k)} n^{s/k-1}$$

in which

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt \quad \text{for} \quad \operatorname{Re} z > 0.$$

Proof.

► We begin by observing that

$$\begin{aligned} J_{s,k}(n) &= \lim_{B \rightarrow \infty} \int_{-B}^B v(\beta)^s e(-\beta n) d\beta \\ &= \lim_{B \rightarrow \infty} \int_{-B}^B \int_{[0,X]^s} e(\beta(\gamma_1^k + \dots + \gamma_s^k - n)) d\gamma d\beta \\ &= \lim_{B \rightarrow \infty} \int_{[0,X]^s} \int_{-B}^B e(\beta(\gamma_1^k + \dots + \gamma_s^k - n)) d\beta d\gamma. \end{aligned}$$

The singular integral

- We make use of the observation that when $\phi \neq 0$, one has

$$\int_{-B}^B e(\beta\phi) d\beta = \frac{\sin(2\pi B\phi)}{\pi\phi}.$$

- For $\phi = 0$, we interpret the right hand side of this formula to be $2B$. Thus we obtain the relation

$$J_{s,k}(n) = \lim_{B \rightarrow \infty} \int_{[0,X]^s} \frac{\sin(2\pi B(\gamma_1^k + \dots + \gamma_s^k - n))}{\pi(\gamma_1^k + \dots + \gamma_s^k - n)} d\gamma$$

- We substitute $u_i = \gamma_i^k$ for $i \in [s]$, and recall that $n = X^k$. Thus

$$J_{s,k}(n) = k^{-s} \lim_{B \rightarrow \infty} I(B),$$

where we write

$$I(B) = \int_{[0,n]^s} \frac{\sin(2\pi B(u_1 + \dots + u_s - n))}{\pi(u_1 + \dots + u_s - n)} (u_1 \dots u_s)^{-1+1/k} d\mathbf{u}.$$

The singular integral

- ▶ A further substitution reduces our task to one of evaluating an integral in just one variable. We put $v = u_1 + \dots + u_s$ and make the change of variable $(u_1, \dots, u_s) \mapsto (u_1, \dots, u_{s-1}, v)$, obtaining the relation

$$I(B) = \int_0^{sn} \Psi(v) \frac{\sin(2\pi B(v - n))}{\pi(v - n)} dv,$$

in which

$$\Psi(v) = \int_{\mathfrak{B}(v)} (u_1 \dots u_{s-1})^{\frac{1}{k}-1} (v - u_1 - \dots - u_{s-1})^{\frac{1}{k}-1} du_1 \dots du_{s-1},$$

and

$$\mathfrak{B}(v) = \{(u_1, \dots, u_{s-1}) \in [0, n]^{s-1} : 0 \leq v - u_1 - \dots - u_{s-1} \leq n\}.$$

- ▶ Notice that the condition on u_1, \dots, u_{s-1} in the definition of $\mathfrak{B}(v)$ may be rephrased as $v - n \leq u_1 + \dots + u_{s-1} \leq v$.
- ▶ Since $\Psi(v)$ is a function of bounded variation, it follows from Fourier's integral theorem that since $n \in (0, sn)$, one has

$$\lim_{B \rightarrow \infty} I(B) = \Psi(n) = \int_{\mathfrak{B}(n)} (u_1 \dots u_{s-1})^{\frac{1}{k}-1} (n - u_1 - \dots - u_{s-1})^{\frac{1}{k}-1} du.$$

The singular integral

- ▶ Note that

$$\mathfrak{B}(n) = \{(u_1, \dots, u_{s-1}) \in [0, n]^{s-1} : 0 \leq u_1 + \dots + u_{s-1} \leq n\}.$$

- ▶ Thus

$$J_{s,k}(n) = k^{-s} \Psi(n) = k^{-s} \int_{\mathfrak{B}(n)} (u_1 \dots u_{s-1})^{\frac{1}{k}-1} (n - u_1 - \dots - u_{s-1})^{\frac{1}{k}-1} \, \mathbf{d}\mathbf{u}.$$

- ▶ We now apply induction to show that

$$J_{s,k}(n) = \frac{\Gamma(1 + 1/k)^s}{\Gamma(s/k)} n^{s/k-1}.$$

- ▶ First, when $s = 2$, we have

$$\begin{aligned} J_{2,k}(n) &= k^{-2} \int_0^n u_1^{\frac{1}{k}-1} (n - u_1)^{\frac{1}{k}-1} \, \mathbf{d}u_1 \\ &= k^{-2} n^{\frac{2}{k}-1} \int_0^1 v^{\frac{1}{k}-1} (1 - v)^{\frac{1}{k}-1} \, \mathbf{d}v. \end{aligned}$$

- ▶ Thus, on recalling the classical Beta function, we obtain the formula

$$J_{2,k}(n) = k^{-2} n^{\frac{2}{k}-1} \mathbf{B}(1/k, 1/k) = k^{-2} n^{\frac{2}{k}-1} \frac{\Gamma(1/k)^2}{\Gamma(2/k)} = \frac{\Gamma(1 + 1/k)^2}{\Gamma(2/k)} n^{\frac{2}{k}-1}.$$

The singular integral

- Thus, the inductive hypothesis holds for $s = 2$. Suppose now that the inductive hypothesis holds for $s = t$. Then we have

$$\begin{aligned} J_{t+1,k}(n) &= k^{-1} \int_0^n u_t^{\frac{1}{k}-1} J_{t,k}(n-u_t) du_t \\ &= k^{-1} \frac{\Gamma(1+1/k)^t}{\Gamma(t/k)} \int_0^n u_t^{\frac{1}{k}-1} (n-u_t)^{\frac{t}{k}-1} du_t. \end{aligned}$$

- Recalling once again the classical Beta function, we see that

$$\begin{aligned} J_{t+1,k}(n) &= k^{-1} \frac{\Gamma(1+1/k)^t}{\Gamma(t/k)} n^{\frac{t+1}{k}-1} B(1/k, t/k) \\ &= k^{-1} \frac{\Gamma(1+1/k)^t}{\Gamma(t/k)} n^{\frac{t+1}{k}-1} \frac{\Gamma(1/k)\Gamma(t/k)}{\Gamma((t+1)/k)} \\ &= \frac{\Gamma(1+1/k)^{t+1}}{\Gamma((t+1)/k)} n^{\frac{t+1}{k}-1}. \end{aligned}$$

- This yields the inductive hypothesis with t replaced by $t+1$. We have therefore shown that whenever $s \geq k+1$, one has

$$J_{s,k}(n) = \frac{\Gamma(1+1/k)^s}{\Gamma(s/k)} n^{s/k-1}.$$

The singular series

Corollary

Suppose that $s \geq k + 1$. Then one has

$$J_{s,k}(n; Q) = \frac{\Gamma(1 + 1/k)^s}{\Gamma(s/k)} n^{s/k-1} + O\left(n^{s/k-1} Q^{-1/k}\right),$$

as $Q \rightarrow \infty$.

Proof.

The conclusion follows by the previous two results, since $X = n^{1/k}$. □

- We next consider the truncated singular series $\mathfrak{S}_{s,k}(n; Q)$. Our first step is to complete this series to obtain the (complete) singular series

$$\mathfrak{S}_{s,k}(n) = \sum_{q=1}^{\infty} \sum_{\substack{a=1 \\ (a,q)=1}}^q \left(q^{-1}S(q,a)\right)^s e(-na/q).$$

Again, we must consider the tail of the infinite sum.

The singular series

Lemma

Whenever $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfy $(a, q) = 1$, one has

$$|S(q, a)| = O(q^{1-2^{1-k}+\varepsilon}).$$

Proof.

We apply Weyl's inequality with $\alpha_k = a/q$ and $X = q$ to obtain

$$\left| \sum_{r=1}^q e(ar^k/q) \right| = O\left(q^{1+\varepsilon} (q^{-1} + q^{-1} + q^{1-k})^{2^{1-k}}\right).$$

□

Lemma

Suppose that $s \geq 2^k + 1$. Then $\mathfrak{S}_{s,k}(n)$ converges absolutely, and

$$|\mathfrak{S}_{s,k}(n) - \mathfrak{S}_{s,k}(n; Q)| = O(Q^{-2^{-k}})$$

uniformly in $n \in \mathbb{Z}_+$.

Proof

- ▶ By the previous lemma we estimate the tail of the truncated singular series as follows

$$\sum_{q>Q} \sum_{\substack{a=1 \\ (a,q)=1}}^q \left| (q^{-1}S(q,a))^s e(-na/q) \right| = O \left(\sum_{q>Q} \phi(q) \left(q^{\varepsilon-2^{1-k}} \right)^s \right).$$

- ▶ Thus, when $s \geq 2^k + 1$, we deduce that

$$\sum_{q>Q} \sum_{\substack{a=1 \\ (a,q)=1}}^q \left| (q^{-1}S(q,a))^s e(-na/q) \right| = O \left(\sum_{q>Q} q^{\varepsilon-1-2^{1-k}} \right) = O(Q^{-2^{-k}}).$$

- ▶ It follows that the infinite series $\mathfrak{S}_{s,k}(n)$ converges absolutely under these conditions, and moreover that

$$|\mathfrak{S}_{s,k}(n) - \mathfrak{S}_{s,k}(n; Q)| = O(Q^{-2^{-k}}).$$

- ▶ Notice that this estimate is uniform in n .

The singular series

- We shall see shortly that there is a close connection between the singular series $\mathfrak{S}_{s,k}(n)$ and the number of solutions of the congruence

$$x_1^k + \dots + x_s^k \equiv n \pmod{q},$$

as q varies. This suggests a multiplicative theme.

Lemma

Suppose that $(a, q) = (b, r) = (q, r) = 1$. Then one has the quasimultiplicative relation

$$S(qr, ar + bq) = S(q, a)S(r, b).$$

Proof.

- Each residue m modulo qr with $m \in [qr]$ is in bijective correspondence with a pair (t, u) with $t \in [q]$ and $u \in [r]$, with $m \equiv tr + uq \pmod{qr}$.
- Indeed, if we write \bar{q} for any integer congruent to the multiplicative inverse of $q \pmod{r}$, and \bar{r} for any integer congruent to the multiplicative inverse of $r \pmod{q}$, then claimed bijection is as follows $m \equiv (m\bar{r})r + (m\bar{q})q \pmod{qr}$, which follows from the Chinese remainder theorem.

Proof

- ▶ Thus, we see that

$$\begin{aligned} S(qr, ar + bq) &= \sum_{m=1}^{qr} e\left(\frac{ar + bq}{qr}m^k\right) \\ &= \sum_{t=1}^q \sum_{u=1}^r e\left(\frac{(ar + bq)(tr + uq)^k}{qr}\right) \\ &= \sum_{t=1}^q \sum_{u=1}^r e\left(\frac{a}{q}(tr)^k + \frac{b}{r}(uq)^k\right). \end{aligned}$$

- ▶ By the change of variable $tr \mapsto t'(\bmod q)$ and $uq \mapsto u'(\bmod r)$, bijective owing to the coprimality of q and r , we obtain the relation

$$S(qr, ar + bq) = \left(\sum_{v=1}^q e\left(av^k/q\right)\right) \left(\sum_{w=1}^r e\left(bw^k/r\right)\right) = S(q, a)S(r, b).$$

- ▶ This completes the proof of the lemma. □

The singular series

- Now define the quantity

$$A(q, n) = \sum_{\substack{a=1 \\ (a,q)=1}}^q (q^{-1}S(q, a))^s e(-na/q)$$

Lemma

The quantity $A(q, n)$ is a multiplicative function of q .

Proof.

- Suppose that $(q, r) = 1$. Then by the Chinese remainder theorem, there is a bijection between the residue classes a modulo qr with $(a, qr) = 1$, and the ordered pairs (b, c) with $b \pmod{q}$ and $c \pmod{r}$ satisfying $(b, q) = (c, r) = 1$, via the relation $a \equiv br + cq \pmod{qr}$.
- Thus, we obtain

$$\begin{aligned} A(qr, n) &= \sum_{\substack{a=1 \\ (a,qr)=1}}^{qr} ((qr)^{-1}S(qr, a))^s e(-na/qr) \\ &= \sum_{\substack{b=1 \\ (b,q)=1}}^q \sum_{\substack{c=1 \\ (c,r)=1}}^r ((qr)^{-1}S(qr, br + cq))^s e\left(-\frac{br + cq}{qr}n\right). \end{aligned}$$

Proof

- ▶ By applying the previous lemma, we infer that

$$\begin{aligned} A(qr, n) &= \sum_{\substack{b=1 \\ (b,q)=1}}^q \sum_{\substack{c=1 \\ (c,r)=1}}^r \left(q^{-1}S(q, b)\right)^s \left(r^{-1}S(r, c)\right)^s e(-bn/q)e(-cn/r) \\ &= A(q, n)A(r, n). \end{aligned}$$

- ▶ Since $A(1, n) = 1$, this confirms the multiplicative property for $A(q, n)$ and completes the proof of the lemma. □
- ▶ Observe that

$$\mathfrak{S}_{s,k}(n) = \sum_{q=1}^{\infty} A(q, n).$$

- ▶ The multiplicativity of $A(q, n)$ therefore suggests that $\mathfrak{S}_{s,k}(n)$ should factor as a product over prime numbers p of the p -adic densities

$$\sigma(p) = \sum_{h=0}^{\infty} A(p^h, n).$$

The singular series

Theorem

Suppose that $s \geq 2^k + 1$. Then the following hold:

- (i) The series $\sigma(p)$ converges absolutely, and one has

$$|\sigma(p) - 1| = O(p^{-1-2^{-k}}).$$

- (ii) The infinite product

$$\prod_{p \in \mathbb{P}} \sigma(p)$$

converges absolutely.

- (iii) One has $\mathfrak{S}_{s,k}(n) = \prod_{p \in \mathbb{P}} \sigma(p)$.

- (iv) There exists a natural number $C = C(k)$ with the property that

$$1/2 < \prod_{p \in \mathbb{P}_{\geq C(k)}} \sigma(p) < 3/2.$$

Proof

- We begin by establishing (i). We recall from estimates of complete exponential sums that whenever $(a, p) = 1$, one has

$$|S(p^h, a)| = O(p^{h(1-2^{1-k}+\varepsilon)}).$$

- Then, whenever $s \geq 2^k + 1$, one finds that

$$\begin{aligned} A(p^h, n) &= \sum_{\substack{a=1 \\ (a,p)=1}}^{p^h} (p^{-h} S(p^h, a))^s e(-na/p^h) \\ &= O(p^{h(1-s2^{1-k})+\varepsilon}) = O(p^{-h(1+2^{-k})}). \end{aligned}$$

- Hence

$$\sigma(p) - 1 = \sum_{h=1}^{\infty} A(p^h, n) = O\left(\sum_{h=1}^{\infty} p^{-h(1+2^{-k})}\right) = O(p^{-1-2^{-k}}).$$

- Thus $\sigma(p)$ converges absolutely, and one has $|\sigma(p) - 1| = O(p^{-1-2^{-k}})$.
- We next turn to the proof of (ii). By part (i), there is a positive number $B = B(k)$ with the property that $|\sigma(p) - 1| \leq B p^{-1-2^{-k}}$.

Proof

- ▶ Hence, whenever p is sufficiently large, one sees that

$$\log(1 + |\sigma(p) - 1|) \leq \log \left(1 + Bp^{-1-2^{-k}} \right) \leq Bp^{-1-2^{-k-1}},$$

whence

$$\sum_{p \in \mathbb{P}} \log(1 + |\sigma(p) - 1|) = O \left(B \sum_{p \in \mathbb{P}} p^{-1-2^{-k-1}} \right) = O(1).$$

- ▶ Thus we deduce that the infinite product $\prod_p \sigma(p)$ converges absolutely.
- ▶ The proof of (iii) employs the multiplicative property of $A(q, n)$ established in the previous lemma. One finds that

$$\mathfrak{S}_{s,k}(n) = \sum_{q=1}^{\infty} A(q, n) = \sum_{q=1}^{\infty} \prod_{p^h \parallel q} A(p^h, n)$$

- ▶ Then since $\prod_{p \in \mathbb{P}} \sigma(p)$ converges absolutely as a product, and $\sum_{q=1}^{\infty} A(q, n)$ converges absolutely as a sum, we may rearrange summands to deduce that

$$\mathfrak{S}_{s,k}(n) = \prod_{p \in \mathbb{P}} \sum_{h=0}^{\infty} A(p^h, n) = \prod_{p \in \mathbb{P}} \sigma(p).$$

Proof

- Finally, we establish (iv). We begin by observing that from part (i), it follows that whenever p is sufficiently large in terms of k , one has

$$1 - p^{-1-2^{-k}} \leq \sigma(p) \leq 1 + p^{-1-2^{-k}}$$

- Hence, provided that $C = C(k)$ is sufficiently large, one finds that

$$\left| \prod_{p \in \mathbb{P}_{\geq C(k)}} \sigma(p) - 1 \right| \leq \sum_{n \geq C(k)} n^{-1-2^{-k}} = O(C(k)^{-2^{-k}}).$$

- Then, if $C(k)$ is chosen sufficiently large in terms of k , we have that

$$\left| \prod_{p \in \mathbb{P}_{\geq C(k)}} \sigma(p) - 1 \right| < 1/2,$$

and we conclude that

$$1/2 < \prod_{p \in \mathbb{P}_{\geq C(k)}} \sigma(p) < 3/2.$$

- The final conclusion of the theorem therefore follows, and the proof of the theorem is complete. □

The singular series

- ▶ Our plan is to show that there exists a constant $c_0 > 0$ such that $\mathfrak{S}_{s,k}(n) \geq c_0$ uniformly in $n \in \mathbb{Z}_+$.
- ▶ In view of item (iv) of the previous theorem it suffices to prove that $\sigma(p) > 0$ for $p \leq C(k)$ with sufficient uniformity in n .
- ▶ When $q \in \mathbb{Z}_+$, we put

$$M_n(q) = \# \left\{ \mathbf{m} \in (\mathbb{Z}/q\mathbb{Z})^s : m_1^k + \dots + m_s^k = n \right\}.$$

Lemma

For each natural number $q \in \mathbb{Z}_+$, one has

$$\sum_{d|q} A(d, n) = q^{1-s} M_n(q).$$

Proof.

We make use of the orthogonality relation

$$q^{-1} \sum_{r=1}^q e(hr/q) = \begin{cases} 1, & \text{when } q \mid h, \\ 0, & \text{when } q \nmid h. \end{cases}$$

Proof

► Then

$$M_n(q) = q^{-1} \sum_{r=1}^q \left(\sum_{m_1=1}^q \cdots \sum_{m_s=1}^q e \left(r (m_1^k + \dots + m_s^k - n) / q \right) \right).$$

► Classifying the values of r according to their common factors q/d with q , we obtain the relation

$$\begin{aligned} M_n(q) &= q^{-1} \sum_{d|q} \sum_{\substack{a=1 \\ (a,d)=1}}^d (q/d)^s \sum_{m_1=1}^d \cdots \sum_{m_s=1}^d e \left(a (m_1^k + \dots + m_s^k - n) / d \right) \\ &= q^{-1} \sum_{d|q} q^s \sum_{\substack{a=1 \\ (a,d)=1}}^d (d^{-1} S(d, a))^s e(-na/d) \\ &= q^{s-1} \sum_{d|q} A(d, n) \end{aligned}$$

► Hence

$$\sum_{d|q} A(d, n) = q^{1-s} M_n(q),$$

and the proof of the lemma is complete. □

The singular series

Corollary

For each prime number $p \in \mathbb{P}$, one has

$$\sigma(p) = \lim_{h \rightarrow \infty} p^{h(1-s)} M_n(p^h). \quad (*)$$

Proof.

Take $q = p^h$ in the previous lemma to obtain the relation

$$\sum_{l=0}^h A(p^l, n) = (p^h)^{1-s} M_n(p^h).$$

Taking the limit as $h \rightarrow \infty$, we obtain $(*)$, since $\sigma(p) = \sum_{l=0}^{\infty} A(p^l, n)$. □

Exercise

Show that for the small primes p with $p < C(k)$, and for all large enough values of h , one has $M_n(p^h) \geq c_0 p^{h(s-1)}$ for some $c_0 > 0$. From this we deduce that $\sigma(p) > 0$, and the desired conclusion follows from item (iv) of the previous theorem.

The asymptotic formula in Waring's problem

- We have shown that when $s \geq 2^k + 1$ and $0 < \delta < 1/5$, one has

$$R_{s,k}(n) = J_{s,k}(n; X^\delta) \mathfrak{S}_{s,k}(n; X^\delta) + o(X^{s-k}).$$

- We also know that

$$J_{s,k}(n; X^\delta) = \frac{\Gamma(1 + 1/k)^s}{\Gamma(s/k)} n^{s/k-1} + O\left(n^{s/k-1 - \delta/k^2}\right),$$

and

$$\mathfrak{S}_{s,k}(n; X^\delta) = \mathfrak{S}_{s,k}(n) + O\left(n^{-\delta 2^{-k}/k}\right),$$

where $c < \mathfrak{S}_{s,k}(n) < C$ for some $C > c > 0$.

- Thus we conclude that when $s \geq 2^k + 1$, one has

$$R_{s,k}(n) = \frac{\Gamma(1 + 1/k)^s}{\Gamma(s/k)} n^{s/k-1} \mathfrak{S}_{s,k}(n) + o\left(n^{s/k-1}\right).$$

- Then $R_{s,k}(n) \rightarrow \infty$ as $n \rightarrow \infty$, whence $G(k) \leq 2^k + 1$.