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Waring problem
Definition
Given k ∈ Z+, define G(k) to be the least integer having the property that
whenever s ⩾ G(k), then all sufficiently large natural numbers are the sum
of s positive integer k-th powers.
▶ Thus, when k ∈ Z+ and s ⩾ G(k), there exists N0 = N0(s, k) such that,

whenever n ⩾ N0, then there exist x1, . . . , xs ∈ Z+ such that

n = xk
1 + . . .+ xk

s .

▶ A relatively easy exercise shows that G(k) ⩾ k + 1 whenever k ⩾ 2.
The current state of the art for k ∈ [9]
▶ G(2) = 4, a consequence of Lagrange’s theorem from 1770;
▶ G(3) ⩽ 7, due to Linnik, 1942;
▶ G(4) = 16, due to Davenport, 1939;
▶ G(5) ⩽ 17, due to Vaughan and Wooley, 1995;
▶ G(6) ⩽ 24, due to Vaughan and Wooley, 1994;
▶ G(7) ⩽ 31, due to Wooley, 2016;
▶ G(8) ⩽ 39, due to Wooley, 2016 (and it is known that G(8) ⩾ 32 );
▶ G(9) ⩽ 47, due to Wooley, 2016;



The current state of the art for large powers
▶ In general, for large values of k, it was shown 30 years ago that

G(k) ⩽ k(log k + log log k + 2 + o(1)) (Wooley, 1992 and 1995),

where o(1) → 0 as k → ∞.
▶ Within the past year, this longstanding upper bound has been improved

so that for all natural numbers k one has

G(k) ⩽ ⌈k(log k + 4.20032)⌉ (Brüdern and Wooley 2022).

▶ Let us now return to Hardy and Littlewood in 1920, and indeed to
Hardy and Ramanujan in 1918. They considered a power series

gk(z) =
∞∑

m=1

zmk

▶ Note that this series is absolutely convergent for |z| < 1. If one now
considers the expression gk(z)s, one sees that

gk(z)s =

( ∞∑
m1=1

zmk
1

)( ∞∑
m2=1

zmk
2

)
· · ·

( ∞∑
ms=1

zmk
s

)
=

∞∑
m1=1

. . .

∞∑
ms=1

zmk
1+...+mk

s



Hardy–Littlewood–Ramanujan method
▶ Then we can further write

gk(z)s =

( ∞∑
m1=1

zmk
1

)( ∞∑
m2=1

zmk
2

)
· · ·

( ∞∑
ms=1

zmk
s

)

=

∞∑
m1=1

. . .

∞∑
ms=1

zmk
1+...+mk

s =

∞∑
n=1

Rs,k(n)zn,

where Rs,k(n) = #
{
(m1, . . . ,ms) ∈ Zs

+ : mk
1 + . . .+ mk

s = n
}

.
▶ We can recover the coefficients Rs,k(n) by employing Cauchy’s integral

formula to evaluate a suitable contour integral. Thus

Rs,k(n) =
1

2πi

∫
C

gk(z)sz−n−1 dz

where C denotes a circular contour, centered at 0 with radius r ∈ (0, 1).
▶ When k = 1, the series in question is g1(z) = z/(1 − z), and Hardy and

Ramanujan obtained an asymptotic formula for Rs,k(n) by evaluating
their generating functions asymptotically for all values of θ.

▶ The method also applies even in the more delicate situation with k = 2.
However, when k ⩾ 3, the situation is much more involved and here the
innovative circle method of Hardy and Littlewood becomes essential.



Vinogradov’s approach
▶ The basis of this method is the elementary orthogonality identity∫ 1

0
e(kθ)dθ =

∫ 1

0
e2πikθdθ =

{
1 if k = 0,
0 if k ̸= 0.

▶ Fix n ∈ Z+ and let X = n1/k. Using this identity, in a similar way as in
the Vinogradov’s mean value theorem we have

Rs,k(n) = #
{
(m1, . . . ,ms) ∈ Zs

+ : mk
1 + . . .+ mk

s = n
}

=
∑

(m1,...,ms)∈Zs
+

∫ 1

0
e
(
(mk

1 + . . .+ mk
s − n)α

)
dα

=

∫ 1

0

( ∑
1≤x≤X

e(αxk)
)s

e(−nα)dα

▶ Define
f (α) =

∑
1≤x≤X

e(αxk).



Major and minor arcs decomposition
▶ Whenever s ≥ 2k + 1, our goal is to asymptotically evaluate the number

Rs,k(n) =
∫ 1

0
f (α)se(−nα)dα

▶ We divide the interval of integration according to a Hardy–Littlewood
dissection with major arcs Mδ equal to the union of the intervals

Mδ(q, a) =
{
α ∈ [0, 1) : |α− a/q| ⩽ Xδ−k}

with 0 ⩽ a < q ⩽ Xδ and (a, q) = 1, and with minor arcs

mδ = [0, 1]\Mδ.

▶ Subject to the condition 0 < δ < 1/5, the major arcs Mδ defined in this
way are a disjoint union of the arcs Mδ(q, a).

▶ Indeed, if some real number α lies in two distinct major
arcsMδ (q1, a1) and Mδ (q2, a2) lying in Mδ , then by the triangle
inequality, one has

1
q1q2

⩽

∣∣∣∣a1q2 − a2q1

q1q2

∣∣∣∣ ⩽ ∣∣∣∣a1

q1
− a2

q2

∣∣∣∣ ⩽ ∣∣∣∣α− a1

q1

∣∣∣∣+ ∣∣∣∣α− a2

q2

∣∣∣∣ ⩽ 2Xδ−k.

Thus, one finds that 1 ⩽ 2q1q2Xδ−k ⩽ 2X3δ−k. This is plainly
impossible when δ < 1/3 and X is large.



Major and minor arcs decomposition
▶ The exponential sum

f (α) =
∑

1≤x≤X

e(αxk)

can be approximate by the integral on major arcs, whereas on minor
arcs one expects that the sequence from the phase is equidistributed due
to Weyl’s inequality.

▶ We will write

Rs,k(n) =
∫
mδ

f (α)se(−nα)dα+

∫
Mδ

f (α)se(−nα)dα

We first handle the integral over minor arcs.

Lemma (Dirichlet’s approximation theorem)
Let α ∈ R, and suppose that X ⩾ 1 is a real number. Then there exist a ∈ Z
and q ∈ N with (a, q) = 1 and 1 ⩽ q ⩽ X such that |α− a/q| ⩽ 1/(qX).

Proof.
Exercise!



Minor arcs estimates
▶ Given α ∈ [0, 1), by Dirichlet’s approximation theorem, there exist

a ∈ Z and q ∈ N with 1 ⩽ q ⩽ Xk−δ, (a, q) = 1 and

|α− a/q| ⩽ 1/
(
qXk−δ

)
⩽ min{Xδ−k, q−2}.

▶ If q ⩽ Xδ , then we would have α ∈ Mδ . Thus, when α ∈ mδ , we may
suppose that Xδ < q ⩽ Xk−δ . We thus conclude from Weyl’s inequality
that, whenever 0 < δ < 1, one has

|f (α)| = O
(

X1+ε
(
q−1 + X−1 + qX−k)21−k )

= O
(

X1+ε
(
X−δ + X−1 + Xk−δ/Xk)21−k )

= O
(
X1−δ21−k+ε

)
.

▶ Provided that s > (k/δ)2k−1, we may conclude that∣∣∣∣∫
mδ

f (α)se(−nα)dα
∣∣∣∣ ⩽ ( sup

α∈mδ

|f (α)|
)s ∫

mδ

dα

= O
((

X1−δ21−k+ε
)s
)
= o

(
Xs−k) .



Minor arcs estimates
▶ But our goal is to asymptotically evaluate Rs,k(n) assuming that

s ≥ 2k + 1.

Corollary
When s ⩾ 2k + 1, one has∣∣∣ ∫

mδ

f (α)se(−nα)dα
∣∣∣ = O

(
Xs−k−δ2−k)

.

Proof.
By Weyl’s inequality in combination with Hua’s lemma, one obtains∣∣∣∣∫

mδ

f (α)se(−nα)dα
∣∣∣∣ ⩽ ( sup

α∈mδ

| f (α)|
)s−2k ∫ 1

0
| f (α)|2

k
dα

= O
((

X1−δ21−k+ε
)s−2k

X2k−k+ε

)
= O

(
Xs−k−(s−2k)δ21−k+sε

)
.

The conclusion of the corollary follows on recalling that s ⩾ 2k + 1.



Major arcs estimates

▶ For s ⩾ 2k + 1 we have shown that∣∣∣ ∫
mδ

f (α)se(−nα)dα
∣∣∣ = O

(
Xs−k−δ2−k)

= o(ns/k−1).

▶ Let α ∈ Mδ(q, a) ⊆ Mδ . Write β = α− a/q, so that |β| ⩽ Xδ−k. By
breaking the summand into arithmetic progressions modulo q, one has

∑
1⩽x⩽X

e
(
αxk) = q∑

r=1

∑
(1−r)/q⩽y⩽(X−r)/q

e
(
(β + a/q)(yq + r)k) (A)

=

q∑
r=1

e
(
ark/q

) ∑
(1−r)/q⩽y⩽(X−r)/q

e
(
β(yq + r)k) .

▶ Since β is small, we can hope to approximate the inner sum here by a
smooth function with control of the accompanying error terms.

▶ Here, we apply the mean value theorem to the inner sum.



Major arcs estimates
▶ By the mean value theorem, when F(z) is a differentiable function on

[a, b] with a < b, one sees that F(a)− F(b) = (a − b)F′(ξ) for some
ξ ∈ (a, b). Also, trivially, one has

e(F(z)) =
∫ 1/2

−1/2
e(F(z))dη

▶ Hence∣∣∣∣∣e(F(z))−
∫ 1/2

−1/2
e(F(z + η))dη

∣∣∣∣∣ ⩽ sup
|η|⩽1/2

|e(F(z + η))− e(F(z))|

= O
(

sup
|η|⩽1/2

|F′(z + η)|
)
.

▶ Using this approximation, we obtain∑
(1−r)/q⩽y⩽(X−r)/q

e
(
β(yq + r)k)− ∫ (X−r)/q

−r/q
e
(
β(zq + r)k) dz

= O
(

1 + (X/q) sup
0⩽z⩽X/q

∣∣kβq(qz + r)k−1
∣∣ )

= O
(
1 + Xk|β|

)
.



Major arcs estimates
▶ By substituting the last relation into (A), we deduce that

f (α) =
q∑

r=1

e
(
ark/q

)(∫ (X−r)/q

−r/q
e
(
β(zq + r)k) dz + O

(
1 + Xk|β|

))
so that

f (α)−
q∑

r=1

e
(
ark/q

) ∫ (X−r)/q

−r/q
e
(
β(zq + r)k) dz = O

(
q+Xk|qβ|

)
. (B)

▶ By the change of variable γ = zq + r, moreover, we have∫ (X−r)/q

−r/q
e
(
β(zq + r)k) dz = q−1

∫ X

0
e
(
βγk) dγ. (C)

▶ Introducing, for a ∈ Z, q ∈ Z+ and β ∈ R the following objects

S(q, a) =
q∑

r=1

e
(
ark/q

)
, and v(β) =

∫ X

0
e
(
βγk) dγ,

we can summarize our discussion in the form of a lemma.



Major arcs estimates

Lemma
Suppose that α ∈ R, a ∈ Z and q ∈ Z+. Then one has

|f (α)− q−1S(q, a)v(α− a/q)| = O
(
q + Xk|qα− a|

)
.

Proof.
The desired conclusion follows by substituting (C) into (B).

Lemma
When α ∈ Mδ(q, a) ⊆ Mδ , one has

|f (α)− q−1S(q, a)v(α− a/q)| = O(X2δ).

Proof.
When α ∈ Mδ(q, a) ⊆ Mδ , one has |qα− a| = q|α− a/q| ⩽ Xδ · Xδ−k,
whence q + Xk|qα− a| = O(X2δ). The claimed bound now follows from the
previous lemma.



Major arcs estimates
▶ Let us now substitute the conclusion of the previous lemma into the

formula for the major arc contribution. Since

Mδ =
⋃

0⩽a<q⩽Xδ

(a,q)=1

Mδ(q, a),

then∫
Mδ

f (α)se(−nα)dα =
∑

1⩽q⩽Xδ

q∑
a=1

(a,q)=1

∫ Xδ−k

−Xδ−k
f (β+a/q)se(−n(β+a/q))dβ.

▶ Assuming that α ∈ Mδ(q, a) ⊆ Mδ , we set

f ∗(α) = q−1S(q, a)v(α− a/q),

and write
E(α) = f (α)− f ∗(α)

▶ It follows from the previous lemma that E(α) = O(X2δ).



Major arcs estimates
▶ Since

f (α)s − f ∗(α)s = ( f (α)− f ∗(α))
(

f (α)s−1 + . . .+ f ∗(α)s−1)
= O(Xs−1|E(α)|) = O(Xs−1+2δ),

we obtain the asymptotic relation∫
Mδ

f (α)se(−nα)dα

=
∑

1⩽q⩽Xδ

q∑
a=1

(a,q)=1

∫ Xδ−k

−Xδ−k

(
q−1S(q, a)v(β)

)s
e(−n(β + a/q))dβ

+
∑

1⩽q⩽Xδ

q∑
a=1

(a,q)=1

∫ Xδ−k

−Xδ−k
Xs−1+2δ dα.

▶ The second sum is

O
(

Xs−1+2δ
∑

1⩽q⩽Xδ

q · Xδ−k
)
= O(Xs−k−1+3δ · X2δ) = O(Xs−k+(5δ−1)).

▶ This is o
(
Xs−k

)
whenever δ < 1/5.



Major arcs estimates
▶ Turning to the first sum, we find that it factorises in the shape∑

1⩽q⩽Xδ

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−na/q)

∫ Xδ−k

−Xδ−k
v(β)se(−βn)dβ.

▶ When Q ∈ R+, we define the truncated singular series

Ss,k(n;Q) =
∑

1⩽q⩽Q

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−na/q),

and the truncated singular integral

Js,k(n;Q) =

∫ QX−k

−QX−k
v(β)se(−βn)dβ.

▶ Now we can summarize our discussion in the form of a lemma.

Lemma
When 0 < δ < 1, one has∫

Mδ

f (α)se(−nα)dα = Js,k
(
n;Xδ

)
Ss,k

(
n;Xδ

)
+ O

(
Xs−k+(5δ−1)

)
.



Major arcs estimates
Corollary
When s ⩾ 2k + 1 and 0 < δ < 1/5, one has

Rs,k(n) = Js,k
(
n;Xδ

)
Ss,k

(
n;Xδ

)
+ o

(
Xs−k)

in which X = n1/k.

Proof.
Since [0, 1) is the disjoint union of mδ and Mδ , one has

Rs,k(n) =
∫
Mδ

f (α)se(−nα)dα+

∫
mδ

f (α)se(−nα)dα.

The conclusion follows from the previous results.
▶ Our objective is now to analyse the truncated singular series Ss,k (n;Q)

and singular integral Js,k (n;Q).
▶ We first consider the truncated singular integral Js,k(n;Q), our first step

being to complete this integral to obtain the (complete) singular integral

Js,k(n) =
∫ ∞

−∞
v(β)se(−nβ)dβ.



The singular integral
Lemma
Whenever β ∈ R, one has

v(β) = O
(

X
(
1 + Xk|β|

)−1/k
)
.

Proof.
▶ Recall that

v(β) =
∫ X

0
e
(
βγk) dγ.

The estimate |v(β)| ⩽ X is trivial. Also, since |v(β)| = |v(−β)|, we
may assume henceforth that β > X−k.

▶ Changing the variable u = βγk, we find that when β > 0, one has

v(β) = k−1β−1/k
∫ βXk

0
u−1+1/ke(u)du,

whence

|v(β)| ⩽ k−1β−1/k
∣∣∣∣ ∫ βXk

0
u−1+1/ke(u)du

∣∣∣∣.



Proof
▶ Notice that u−1+1/k decreases monotonically to 0 as u → ∞. By

Dirichlet’s test for convergence of an infinite integral the last integral is
uniformly bounded, and indeed∣∣∣∣ ∫ βXk

0
u−1+1/ke(u)du

∣∣∣∣ ⩽ sup
Y⩾0

∣∣∣∣∫ Y

0
u−1+1/ke(u)du

∣∣∣∣ < ∞

▶ When 0 < Y < 1, we are also making use of the inequality∣∣∣∣∫ Y

0
u−1+1/ke(u)du

∣∣∣∣ ⩽ ∫ Y

0
u−1+1/k du = O(1).

▶ Hence we deduce that when |β| > X−k, one has

|v(β)| = O
(
|β|−1/k) = O

(
X
(
1 + Xk|β|

)−1/k
)
.

▶ The desired conclusion follows on combining this estimate with our
earlier bound |v(β)| ⩽ X, applied in circumstances wherein |β| ⩽ X−k.

▶ The proof is completed.



The singular integral
Corollary
Suppose that s ⩾ k + 1. Then the singular series Js,k(n) converges
absolutely, and moreover,

|Js,k(n;Q)− Js,k(n)| = O(Xs−kQ−1/k).

Proof.
▶ By applying the last lemma, one sees that

|Js,k(n)| = O
(∫ ∞

−∞

Xs

(1 + Xk|β|)s/k dβ
)

= O(Xs−k).

▶ Thus, the integral defining Js,k(n) is indeed absolutely convergent, and
the singular integral exists. Moreover, and similarly,

|Js,k(n;Q)− Js,k(n)| = O
(∫ ∞

QX−k

Xs

(1 + Xkβ)
1+1/k

)
= O(Xs−kQ−1/k)

This completes the proof.



The singular integral
Lemma
When s ⩾ k + 1, one has

Js,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1

in which

Γ(z) =
∫ ∞

0
tz−1e−t dt for Re z > 0.

Proof.
▶ We begin by observing that

Js,k(n) = lim
B→∞

∫ B

−B
v(β)se(−βn)dβ

= lim
B→∞

∫ B

−B

∫
[0,X]s

e
(
β
(
γk

1 + . . .+ γk
s − n

))
dγ dβ

= lim
B→∞

∫
[0,X]s

∫ B

−B
e
(
β
(
γk

1 + . . .+ γk
s − n

))
dβ dγ.



The singular integral
▶ We make use of the observation that when ϕ ̸= 0, one has∫ B

−B
e(βϕ)dβ =

sin(2πBϕ)
πϕ

.

▶ For ϕ = 0, we interpret the right hand side of this formula to be 2B.
Thus we obtain the relation

Js,k(n) = lim
B→∞

∫
[0,X]s

sin
(
2πB

(
γk

1 + . . .+ γk
s − n

))
π
(
γk

1 + . . .+ γk
s − n

) dγ

▶ We substitute ui = γk
i for i ∈ [s], and recall that n = Xk. Thus

Js,k(n) = k−s lim
B→∞

I(B),

where we write

I(B) =
∫
[0,n]s

sin (2πB (u1 + . . .+ us − n))
π (u1 + . . .+ us − n)

(u1 . . . us)
−1+1/k du.



The singular integral
▶ A further substitution reduces our task to one of evaluating an integral

in just one variable. We put v = u1 + . . .+ us and make the change of
variable (u1, . . . , us) 7→ (u1, . . . , us−1, v), obtaining the relation

I(B) =
∫ sn

0
Ψ(v)

sin(2πB(v − n))
π(v − n)

dv,

in which

Ψ(v) =
∫
B(v)

(u1 . . . us−1)
1
k −1

(v − u1 − . . .− us−1)
1
k −1 du1 . . . dus−1,

and

B(v) =
{
(u1, . . . , us−1) ∈ [0, n]s−1 : 0 ⩽ v − u1 − . . .− us−1 ⩽ n

}
.

▶ Notice that the condition on u1, . . . , us−1 in the definition of B(v) may
be rephrased as v − n ⩽ u1 + . . .+ us−1 ⩽ v.

▶ Since Ψ(v) is a function of bounded variation, it follows from Fourier’s
integral theorem that since n ∈ (0, sn), one has

lim
B→∞

I(B) = Ψ(n) =
∫
B(n)

(u1 . . . us−1)
1
k −1

(n − u1 − . . .− us−1)
1
k −1 du.



The singular integral
▶ Note that

B(n) =
{
(u1, . . . , us−1) ∈ [0, n]s−1 : 0 ⩽ u1 + . . .+ us−1 ⩽ n

}
.

▶ Thus

Js,k(n) = k−sΨ(n) = k−s
∫
B(n)

(u1 . . . us−1)
1
k −1

(n − u1 − . . .− us−1)
1
k −1 du.

▶ We now apply induction to show that

Js,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1.

▶ First, when s = 2, we have

J2,k(n) = k−2
∫ n

0
u

1
k −1
1 (n − u1)

1
k −1 du1

= k−2n
2
k −1
∫ 1

0
v

1
k −1(1 − v)

1
k −1 dv.

▶ Thus, on recalling the classical Beta function, we obtain the formula

J2,k(n) = k−2n
2
k −1 B(1/k, 1/k) = k−2n

2
k −1 Γ(1/k)2

Γ(2/k)
=

Γ(1 + 1/k)2

Γ(2/k)
n

2
k −1.



The singular integral
▶ Thus, the inductive hypothesis holds for s = 2. Suppose now that the

inductive hypothesis holds for s = t. Then we have

Jt+1,k(n) = k−1
∫ n

0
u

1
k −1
t Jt,k (n − ut) dut

= k−1 Γ(1 + 1/k)t

Γ(t/k)

∫ n

0
u

1
k −1
t (n − ut)

t
k −1 dut.

▶ Recalling once again the classical Beta function, we see that

Jt+1,k(n) = k−1 Γ(1 + 1/k)t

Γ(t/k)
n

t+1
k −1 B(1/k, t/k)

= k−1 Γ(1 + 1/k)t

Γ(t/k)
n

t+1
k −1 Γ(1/k)Γ(t/k)

Γ((t + 1)/k)

=
Γ(1 + 1/k)t+1

Γ((t + 1)/k)
n

t+1
k −1.

▶ This yields the inductive hypothesis with t replaced by t + 1. We have
therefore shown that whenever s ⩾ k + 1, one has

Js,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1.



The singular series

Corollary
Suppose that s ⩾ k + 1. Then one has

Js,k(n;Q) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 + O

(
ns/k−1Q−1/k

)
,

as Q → ∞.

Proof.
The conclusion follows by the previous two results, since X = n1/k.

▶ We next consider the truncated singular series Ss,k(n;Q). Our first step
is to complete this series to obtain the (complete) singular series

Ss,k(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−na/q).

Again, we must consider the tail of the infinite sum.



The singular series
Lemma
Whenever a ∈ Z and q ∈ N satisfy (a, q) = 1, one has

|S(q, a)| = O(q1−21−k+ε).

Proof.
We apply Weyl’s inequality with αk = a/q and X = q to obtain

∣∣∣ q∑
r=1

e
(
ark/q

) ∣∣∣ = O
(

q1+ε
(
q−1 + q−1 + q1−k)21−k )

.

Lemma
Suppose that s ⩾ 2k + 1. Then Ss,k(n) converges absolutely, and

|Ss,k(n)−Ss,k(n;Q)| = O
(
Q−2−k)

uniformly in n ∈ Z+.



Proof

▶ By the previous lemma we estimate the tail of the truncated singular
series as follows

∑
q>Q

q∑
a=1

(a,q)=1

∣∣∣(q−1S(q, a)
)s

e(−na/q)
∣∣∣ = O

(∑
q>Q

ϕ(q)
(

qε−21−k
)s )

.

▶ Thus, when s ⩾ 2k + 1, we deduce that

∑
q>Q

q∑
a=1

(a,q)=1

∣∣∣(q−1S(q, a)
)s

e(−na/q)
∣∣∣ = O

(∑
q>Q

qε−1−21−k
)
= O(Q−2−k

).

▶ It follows that the infinite series Ss,k(n) converges absolutely under
these conditions, and moreover that

|Ss,k(n)−Ss,k(n;Q)| = O(Q−2−k
).

▶ Notice that this estimate is uniform in n.



The singular series
▶ We shall see shortly that there is a close connection between the

singular series Ss,k(n) and the number of solutions of the congruence

xk
1 + . . .+ xk

s ≡ n (mod q),

as q varies. This suggests a multiplicative theme.

Lemma
Suppose that (a, q) = (b, r) = (q, r) = 1. Then one has the
quasimultiplicative relation

S(qr, ar + bq) = S(q, a)S(r, b).

Proof.
▶ Each residue m modulo qr with m ∈ [qr] is in bijective correspondence

with a pair (t, u) with t ∈ [q] and u ∈ [r], with m ≡ tr + uq (mod qr).
▶ Indeed, if we write q̄ for any integer congruent to the multiplicative

inverse of q (mod r), and r̄ for any integer congruent to the
multiplicative inverse of r (mod q), then claimed bijection is as
follows m ≡ (mr̄)r + (mq̄)q (mod qr), which follows from the
Chinese remainder theorem.



Proof

▶ Thus, we see that

S(qr, ar + bq) =
qr∑

m=1

e
(

ar + bq
qr

mk
)

=

q∑
t=1

r∑
u=1

e
(
(ar + bq)(tr + uq)k

qr

)

=

q∑
t=1

r∑
u=1

e
(

a
q
(tr)k +

b
r
(uq)k

)
.

▶ By the change of variable tr 7→ t′(modq) and uq 7→ u′(modr),
bijective owing to the coprimality of q and r, we obtain the relation

S(qr, ar + bq) =

( q∑
v=1

e
(
avk/q

))( r∑
w=1

e
(
bwk/r

))
= S(q, a)S(r, b).

▶ This completes the proof of the lemma.



The singular series
▶ Now define the quantity

A(q, n) =
q∑

a=1
(a,q)=1

(
q−1S(q, a)

)s
e(−na/q)

Lemma
The quantity A(q, n) is a multiplicative function of q.

Proof.
▶ Suppose that (q, r) = 1. Then by the Chinese remainder theorem, there

is a bijection between the residue classes a modulo qr with (a, qr) = 1,
and the ordered pairs (b, c) with b (mod q) and c (mod r) satisfying
(b, q) = (c, r) = 1, via the relation a ≡ br + cq (mod qr).

▶ Thus, we obtain

A(qr, n) =
qr∑

a=1
(a,qr)=1

(
(qr)−1S(qr, a)

)s
e(−na/qr)

=

q∑
b=1

(b,q)=1

r∑
c=1

(c,r)=1

(
(qr)−1S(qr, br + cq)

)s
e
(
−br + cq

qr
n
)
.



Proof
▶ By applying the previous lemma, we infer that

A(qr, n) =
q∑

b=1
(b,q)=1

r∑
c=1

(c,r)=1

(
q−1S(q, b)

)s (
r−1S(r, c)

)s
e(−bn/q)e(−cn/r)

= A(q, n)A(r, n).

▶ Since A(1, n) = 1, this confirms the multiplicative property for A(q, n)
and completes the proof of the lemma.

▶ Observe that

Ss,k(n) =
∞∑

q=1

A(q, n).

▶ The multiplicativity of A(q, n) therefore suggests that Ss,k(n) should
factor as a product over prime numbers p of the p-adic densities

σ(p) =
∞∑

h=0

A
(
ph, n

)
.



The singular series

Theorem
Suppose that s ⩾ 2k + 1. Then the following hold:

(i) The series σ(p) converges absolutely, and one has

|σ(p)− 1| = O(p−1−2−k
).

(ii) The infinite product ∏
p∈P

σ(p)

converges absolutely.

(iii) One has Ss,k(n) =
∏

p∈P σ(p).

(iv) There exists a natural number C = C(k) with the property that

1/2 <
∏

p∈P⩾C(k)

σ(p) < 3/2.



Proof
▶ We begin by establishing (i). We recall from estimates of complete

exponential sums that whenever (a, p) = 1, one has

|S
(
ph, a

)
| = O

(
ph(1−21−k+ε)

)
.

▶ Then, whenever s ⩾ 2k + 1, one finds that

A
(
ph, n

)
=

ph∑
a=1

(a,p)=1

(
p−hS

(
ph, a

))s
e
(
−na/ph)

= O
(
ph(1−s21−k)+ε

)
= O

(
p−h(1+2−k)).

▶ Hence

σ(p)− 1 =

∞∑
h=1

A
(
ph, n

)
= O

( ∞∑
h=1

p−h(1+2−k)
)
= O(p−1−2−k

).

▶ Thus σ(p) converges absolutely, and one has |σ(p)− 1| = O(p−1−2−k
).

▶ We next turn to the proof of (ii). By part (i), there is a positive number
B = B(k) with the property that |σ(p)− 1| ⩽ Bp−1−2−k

.



Proof
▶ Hence, whenever p is sufficiently large, one sees that

log(1 + |σ(p)− 1|) ⩽ log
(

1 + Bp−1−2−k
)
⩽ Bp−1−2−k−1

,

whence∑
p∈P

log(1 + |σ(p)− 1|) = O
(

B
∑
p∈P

p−1−2−k−1
)
= O(1).

▶ Thus we deduce that the infinite product
∏

p σ(p) converges absolutely.
▶ The proof of (iii) employs the multiplicative property of A(q, n)

established in the previous lemma. One finds that

Ss,k(n) =
∞∑

q=1

A(q, n) =
∞∑

q=1

∏
ph∥q

A
(
ph, n

)
▶ Then since

∏
p∈P σ(p) converges absolutely as a product, and∑∞

q=1 A(q, n) converges absolutely as a sum, we may rearrange
summands to deduce that

Ss,k(n) =
∏
p∈P

∞∑
h=0

A
(
ph, n

)
=
∏
p∈P

σ(p).



Proof
▶ Finally, we establish (iv). We begin by observing that from part (i), it

follows that whenever p is sufficiently large in terms of k, one has

1 − p−1−2−k
⩽ σ(p) ⩽ 1 + p−1−2−k

▶ Hence, provided that C = C(k) is sufficiently large, one finds that∣∣∣∣ ∏
p∈P⩾C(k)

σ(p)− 1
∣∣∣∣ ⩽ ∑

n⩾C(k)

n−1−2−k
= O

(
C(k)−2−k)

.

▶ Then, if C(k) is chosen sufficiently large in terms of k, we have that∣∣∣∣ ∏
p∈P⩾C(k)

σ(p)− 1
∣∣∣∣ < 1/2,

and we conclude that

1/2 <
∏

p∈P⩾C(k)

σ(p) < 3/2.

▶ The final conclusion of the theorem therefore follows, and the proof of
the theorem is complete.



The singular series
▶ Our plan is to show that there exists a constant c0 > 0 such that

Ss,k(n) ≥ c0 uniformly in n ∈ Z+.
▶ In view of item (iv) of the previous theorem it suffices to prove that

σ(p) > 0 for p ⩽ C(k) with sufficient uniformity in n.
▶ When q ∈ Z+, we put

Mn(q) = #
{

m ∈ (Z/qZ)s : mk
1 + . . .+ mk

s = n
}
.

Lemma
For each natural number q ∈ Z+, one has∑

d|q

A(d, n) = q1−sMn(q).

Proof.
We make use of the orthogonality relation

q−1
q∑

r=1

e(hr/q) =

{
1, when q | h,
0, when q ∤ h.



Proof
▶ Then

Mn(q) = q−1
q∑

r=1

( q∑
m1=1

· · ·
q∑

ms=1

e
(
r
(
mk

1 + . . .+ mk
s − n

)
/q
))

.

▶ Classifying the values of r according to their common factors q/d with
q, we obtain the relation

Mn(q) = q−1
∑
d|q

d∑
a=1

(a,d)=1

(q/d)s
d∑

m1=1

· · ·
d∑

ms=1

e
(
a
(
mk

1 + . . .+ mk
s − n

)
/d
)

= q−1
∑
d|q

qs
d∑

a=1
(a,d)=1

(
d−1S(d, a)

)s
e(−na/d)

= qs−1
∑
d|q

A(d, n)

▶ Hence ∑
d|q

A(d, n) = q1−sMn(q),

and the proof of the lemma is complete.



The singular series
Corollary
For each prime number p ∈ P, one has

σ(p) = lim
h→∞

ph(1−s)Mn
(
ph) . (*)

Proof.
Take q = ph in the previous lemma to obtain the relation

h∑
l=0

A
(
pl, n

)
=
(
ph)1−s

Mn
(
ph) .

Taking the limit as h → ∞, we obtain (*), since σ(p) =
∑∞

l=0 A
(
pl, n

)
.

Exercise
Show that for the small primes p with p < C(k), and for all large enough
values of h, one has Mn

(
ph
)
≥ c0ph(s−1) for some c0 > 0. From this we

deduce that σ(p) > 0, and the desired conclusion follows from item (iv) of
the previous theorem.



The asymptotic formula in Waring’s problem

▶ We have shown that when s ⩾ 2k + 1 and 0 < δ < 1/5, one has

Rs,k(n) = Js,k
(
n;Xδ

)
Ss,k

(
n;Xδ

)
+ o

(
Xs−k) .

▶ We also know that

Js,k
(
n;Xδ

)
=

Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 + O

(
ns/k−1−δ/k2

)
,

and
Ss,k

(
n;Xδ

)
= Ss,k(n) + O

(
n−δ2−k/k

)
,

where c < Ss,k(n) < C for some C > c > 0.
▶ Thus we conclude that when s ⩾ 2k + 1, one has

Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1Ss,k(n) + o

(
ns/k−1

)
.

▶ Then Rs,k(n) → ∞ as n → ∞, whence G(k) ⩽ 2k + 1.


