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Waring problem

Definition

Given k € Z, define G(k) to be the least integer having the property that
whenever s > G(k), then all sufficiently large natural numbers are the sum
of s positive integer k-th powers.

» Thus, when k € Z and s > G(k), there exists Nog = Ny(s, k) such that,
whenever n > Ny, then there exist xy, . .., x; € Z4 such that

n=xi+... +x5

> A relatively easy exercise shows that G(k) > k + | whenever k > 2
The current state of the art for k € [9]

> G(Z) = 4, a consequence of Lagrange’s theorem from 1770;
7, due to Linnik, 1942;
G(4) = 16, due to Davenport, 1939;
17, due to Vaughan and Wooley, 1995;
24, due to Vaughan and Wooley, 1994;
31, due to Wooley, 2016;
39, due to Wooley, 2016 (and it is known that G(8) > 32 );
47. due to Wooley, 2016:
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The current state of the art for large powers

» In general, for large values of &, it was shown 30 years ago that
G(k) < k(logk + loglogk+2+0(1)) (Wooley, 1992 and 1995),

where o(1) — 0 as k — oo.
» Within the past year, this longstanding upper bound has been improved
so that for all natural numbers k one has

G(k) < [k(logk +4.20032)]  (Briidern and Wooley 2022).

» Let us now return to Hardy and Littlewood in 1920, and indeed to
Hardy and Ramanujan in 1918. They considered a power series

a@d) = "
m=1

> Note that this series is absolutely convergent for |z| < 1. If one now
considers the expression gx(z)*, one sees that

gk(z)s = (i Zm,f> (i Zm];) cee (i Z"’f) — Z o Z me+...+m§

my=1 my=1 mg=1 my=1 mg=1



Hardy-Littlewood—Ramanujan method
» Then we can further write

(57) (5) - (54)

Sy e +mA—stk 2

mp=1 mg=1

where Ry x(n) = # {(m1,...,m;) € Z% :mk + ...+ ml =n}.
» We can recover the coefficients R; x(n) by employing Cauchy’s integral
formula to evaluate a suitable contour integral. Thus

Rox(n) = - /gk< Jerl g

27i

where C denotes a circular contour, centered at 0 with radius r € (0, 1).
» When k = 1, the series in question is g;(z) = z/(1 — z), and Hardy and
Ramanujan obtained an asymptotic formula for R, ;(n) by evaluating
their generating functions asymptotically for all values of 6.
» The method also applies even in the more delicate situation with & = 2.
However, when k > 3, the situation is much more involved and here the
innovative circle method of Hardy and Littlewood becomes essential.



Vinogradov’s approach

» The basis of this method is the elementary orthogonality identity

1 1 .
‘ | ifk=0
/ e(kf)d = / 2k g — ! ’
0 0 0 if k 7& 0.

» Fix n € Z, and let X = n'/*, Using this identity, in a similar way as in
the Vinogradov’s mean value theorem we have

Rs,k(n):#{(ml,...7ms) GZi:mk—i—...—i—mf:n}

1
- Z /0 e((m’f—s—...—f—m’;—n)a)doz

(ml,“.,mx)EZ:_
:/1( Z e(axk)ye(—na)doz
0 “i<i<x

» Define



Major and minor arcs decomposition
» Whenever s > 2% + 1, our goal is to asymptotically evaluate the number

n):/olf(oz)e—

» We divide the interval of integration according to a Hardy-Littlewood
dissection with major arcs 215 equal to the union of the intervals
Ms(g,a) = {a €[0,1): |a—a/q| < < X0~ k}
with 0 < a < ¢ < X? and (a, ) = 1, and with minor arcs
ms = [0, 1]\Ms.

> Subject to the condition 0 < § < 1/5, the major arcs M defined in this
way are a disjoint union of the arcs M;(q, a).

» Indeed, if some real number « lies in two distinct major
arcs M5 (g1, ar) and Ms (g2, a2) lying in M, then by the triangle
inequality, one has

1 ai1qx — aqi <a1_az<‘a_al
9192 q192 qa 9@ q1

Thus, one finds that 1 < 2¢;¢2X° % < 2X39~%_ This is plainly
impossible when ¢ < 1/3 and X is large.

<
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Major and minor arcs decomposition
» The exponential sum

flay="" e(axt)

1<x<X

can be approximate by the integral on major arcs, whereas on minor
arcs one expects that the sequence from the phase is equidistributed due
to Weyl’s inequality.

> We will write

Ran) = [ flaye(-na)da+ [ fla)e(-na)da
ms mé
We first handle the integral over minor arcs.
Lemma (Dirichlet’s approximation theorem)

Let o € R, and suppose that X > 1 is a real number. Then there exista € 7
and g € Nwith (a,q) = 1 and 1 < g < X such that o — a/q| < 1/(¢X).

Proof.

Exercise! O



Minor arcs estimates

» Given a € [0, 1), by Dirichlet’s approximation theorem, there exist
acZandg e Nwith1 < ¢ <X (a,q) =1and

o —a/q| <1/ (¢x*°) <min{X**,¢7*}.

> If g < X°, then we would have o € 5. Thus, when o € ms, we may
suppose that X° < g < X¥~%. We thus conclude from Weyl’s inequality
that, whenever 0 < § < 1, one has

1—k
V(a)l _ 0<X1+5 (q—l +X—1 +qX_k)2 )
= o(x* (x~ 5+X_1+Xk_5/Xk)2H)
(Xl 52!~ ‘+s)

» Provided that s > (k/§)2¢~!, we may conclude that

< (5335 lf(a)l)x /m(s da

_ 0<(X1_52H+5)S) —0 (Xs—k) .

fla) e(—na)da

ms




Minor arcs estimates

> But our goal is to asymptotically evaluate R, x(n) assuming that
s> 2k 1.

Corollary
When s > 2% + 1, one has

‘ f(a)se(—na)da‘ = O(X’_k_éfk).

Proof.

By Weyl’s inequality in combination with Hua’s lemma, one obtains

<(aisn)”” [ o
_ 0( (X1762]_k+5> -2 szk+e>

-0 (Xsfkf (372")62] _k+s€) .

fla) e(—na)da

ms

The conclusion of the corollary follows on recalling that s > 2% 4 1.



Major arcs estimates
» Fors > 2% + 1 we have shown that
’ f(a)se(—na)da‘ = O(Xs_k_‘ssz) = o(n*/*1).
ms

> Let oo € Ms(g,a) C Ms. Write 8 = a — a/q, so that | 3| < X°~*. By
breaking the summand into arithmetic progressions modulo g, one has

M=

Z e (axk) =

1<x<X r

> e((B+a/g)yg+nr) &)

L (1=r)/q<y<(X—1)/q

e (ar/q) > e(Blyg+r)).

1 (1=r)/q<y<(X—=1)/q

[
M=

r

» Since [ is small, we can hope to approximate the inner sum here by a
smooth function with control of the accompanying error terms.

» Here, we apply the mean value theorem to the inner sum.



Major arcs estimates

> By the mean value theorem, when F(z) is a differentiable function on
[a, b] with a < b, one sees that F(a) — F(b) = (a — b)F’ (&) for some
& € (a,b). Also, trivially, one has

1/2
e(F@) = [ elF@)ay

—-1/2
» Hence
1/2
e(F(z)) */ e(F(z+mn))dn| < sup |e(F(z+n)) —e(F(z))|
-1/2 Inl<1/2
=0( sup |F'(z+n)|).
In|<1/2
» Using this approximation, we obtain
. (X=r)/q B}
> e(ﬁ(qurr))—/ e (Blzq+ 1)) dz
(1-1)/4<y<(X—1) /g /e
= 0( +(X/q) sup |kBq(gz+r)*"| )
0<z<X/q

=0(1+x"8]).



Major arcs estimates
» By substituting the last relation into (A), we deduce that

(X-n/q
fl) =Y e(ar/q) (/ e (B(zq+1r)) dZ+0(1+X"IBI))

r=1 —r/q

so that
9 (X-r)/q . .
Ze ar /q / ) e(ﬁ(zq+r) )dZZO(q—i—X |qﬁ|). (B)
r=1 —r/q

» By the change of variable v = zq + r, moreover, we have

X-r)/q X
/ e(B(zqg+r))dz=q"" /0 e (87%) dv. (©)

—r/q

» Introducing, fora € Z, g € Z and § € R the following objects

q X
Ze ark/q and v(f) :/0 e(ka) d~,
r=1

we can summarize our discussion in the form of a lemma.



Major arcs estimates

Lemma
Suppose that o € R,a € Z and q € Z.. Then one has

[f(a) = q7'S(g,a)v(a — a/q)| = O(q + X'|qa — al).

Proof.
The desired conclusion follows by substituting (C) into (B). O

Lemma
When oo € Ms(q,a) C Ms, one has

f() —q~'S(g, a)v(a —a/q)| = O(X*).

Proof.

When o € Ms(q,a) C My, one has |ga — a| = gla —a/q| < X° - X7,
whence g + X¥|ga — a| = O(X?%). The claimed bound now follows from the
previous lemma. O



Major arcs estimates

» Let us now substitute the conclusion of the previous lemma into the
formula for the major arc contribution. Since

9326 = U 93?5 (qa a))
0<a<q<x?®
(a7Q):1

then

XJA

[ sty S / (B+a/q)e(—n(p+a/q))dp

1<q<X‘5 a=1
(a,q)=1

> Assuming that o € M;(g,a) C My, we set

f*(Oé) = qilS(qa Cl)V(OZ - a/Q)?

and write
E(a) =f(a) = f(a)

» It follows from the previous lemma that E(a) = O(X??).



Major arcs estimates
> Since

F(@) —f* (@) = (f(0) —f*(@)) (£} + ... +f* ()"
= 0(x*E(a)]) = O(x*1+29),

we obtain the asymptotic relation

fla)*e(—na)da
M

_YS—k
1<q<x® a=1 77X
(a,q)=1
q x°—*
n Z / X—1428 4o,
_YS—k
1<q<xs  a=1 77X
(a,q)=1

» The second sum is

O(Xs—l+26 Z q.X(S—k) = O(x* k1438 . x26) — o(xskHI-D),
1<q<X8

> This is o (X**) whenever § < 1/5.



Major arcs estimates
» Turning to the first sum, we find that it factorises in the shape

Xéfk

Z Z (q_lS(q,a))se(—na/q)/ v(B)*e(—pBn)dps.

_Xo—k
1<g<X®  a=1 X
(a,9)=

> When Q € R;, we define the truncated singular series

sumo =Y Y (4 "e(~nalg),

1<9<0  a=1
(a,9)=1

and the truncated singular integral

ox*
Jox(:0) = / W(B)e(—Bn)dp.

_QX—k
» Now we can summarize our discussion in the form of a lemma.

Lemma
When 0 < 6 < 1, one has

M

fla)e(—na)da = Jyx (n; X ) Gy (n;X‘S) ) (Xs—k+(56—1)) .



Major arcs estimates

Corollary
When s > 28+ 1 and 0 < § < 1/5, one has

R (n) = Jsx (”?Xg) Sy k (n;X‘s) +o0 (X‘Y_k)

in which X = n'/*.

Proof.

Since [0, 1) is the disjoint union of ms and i, one has

Ry i(n) = fla)e(—na)da+ [ f(a)'e(—na)da.
M s mg
The conclusion follows from the previous results. O
» Our objective is now to analyse the truncated singular series S, 4 (1; Q)
and singular integral J, x (n; Q).
> We first consider the truncated singular integral J, 4 (n; Q), our first step
being to complete this integral to obtain the (complete) singular integral

Ji(n) = /00 v(B)'e(—np)ds.

— 00



The singular integral

Lemma
Whenever 3 € R, one has

Proof.
» Recall that

v(B) = /O e (87") dy.

The estimate |v(8)| < X is trivial. Also, since [v(8)| = [v(—0)|, we
may assume henceforth that 3 > X~

» Changing the variable u = B~*, we find that when 3 > 0, one has

k

B
v(B) = kilﬁfl/k/ u71+1/ke(u)du,

0

whence .

BX
v(B)| < k' 1k / u™ ' *e(u)du).
0




Proof

Notice that u~'+!/* decreases monotonically to 0 as u — co. By
Dirichlet’s test for convergence of an infinite integral the last integral is
uniformly bounded, and indeed

Bx* Y
/ u 'k e(u)du / u™ % e(u)du| < oo
0

0

< sup
Y>0

When 0 < Y < 1, we are also making use of the inequality

Y
/ u” "k e(u)du

Y
g/ w4y = 0(1).
0 0

Hence we deduce that when |3| > X, one has

M@= 0137 = 0(x (1 x450) ")

The desired conclusion follows on combining this estimate with our
earlier bound |v(53)| < X, applied in circumstances wherein |3| < X .

The proof is completed. O



The singular integral
Corollary

Suppose that s > k + 1. Then the singular series Js (n) converges
absolutely, and moreover,

‘Js,k(”; Q) - Js7k(l’l)| = O(XS*kal/k).

Proof.
» By applying the last lemma, one sees that

gt =o( [~ <1+XX|/3>/ a5 ) = o).

» Thus, the integral defining J, x(n) is indeed absolutely convergent, and
the singular integral exists. Moreover, and similarly,

o0 XS
\J‘Yyk(n; Q) — Js’k(}’l)| = 0<‘/QX_1( (]+Xk6)1+1/k> = O(XS*kal/k)

This completes the proof. O



The singular integral

Lemma
When s > k + 1, one has

[(s/k)
in which -
I'(z) :/ £~ le7"dt for Rez>0.
0
Proof.
> We begin by observing that
B
Jou(n) = lim [ v(B)’e(—pn)df
B—oo B
B
= lim/ / e(BOYF 4.+ =n))dydB
jm [ [ et )

= lim /Be(ﬁ(k k
= ‘ Y+ ...+ —n))dBdy.



The singular integral

» We make use of the observation that when ¢ # 0, one has

B .
/ e(36)dB = sm(27rB¢).
—B TP

» For ¢ = 0, we interpret the right hand side of this formula to be 2B.
Thus we obtain the relation

- sin(ZﬁB('y{‘—&-...—i—’yf—n))
B—oo J1o x)s T ('y{‘ +.. k= n)

dy

> We substitute u; = +* fori € [s], and recall that n = X*. Thus

Jox(n) =k~ lim I(B),

B— oo

where we write

I(B):/ sin (27B (uy + ... + u; — n)) (. u) " du
o0 (.. +ug—n) Do Us ,




The singular integral

» A further substitution reduces our task to one of evaluating an integral
in just one variable. We put v = u; + ... + u, and make the change of

variable (u1,...,us) — (uy,...,us_1,v), obtaining the relation
s in(2rB(v —
I(B) = / w () SnE2TB =) 4,
0 m(v—n)
in which
U(v) = / (uy . ..us_l)%_l v—u—...— us_l)%_] duy ... du_q,
B(v)
and
B(v) = {(ul,...,us,l) € [O,n]“1 0<v—u; — ... —uy_1 < n}.
» Notice that the condition on uy, . . ., u,— in the definition of B (v) may

be rephrased asv —n < u; + ... +us— <.
» Since ¥(v) is a function of bounded variation, it follows from Fourier’s
integral theorem that since n € (0, sn), one has

lim I(B) = ¥(n) :/ (uy ...ux_l)%_l m—u—...— us_l)%_l du.
B(n)

B— oo



The singular integral

> Note that
B(n) = {(ur,...,u—1) € 0,7 0<us + ... +u_y <n}.
» Thus
Jou(n) =k (n) = ks/%( ) (uy . ..M_v—l)%71 (n—u —...— us_1)%71 du.

» We now apply induction to show that
L1+ 1/k) s/k=1

B = T

» First, when s = 2, we have

n 1 1
Jz,k(n) = kiz/ I/tf : (}’l — ul)’l‘ ! duy
0

1
= k_zn%_l/ v%_l(l — )iy
0
» Thus, on recalling the classical Beta function, we obtain the formula
(/K2 T+ /AR -

Joa(n) = k=2t~ B(1/k, 1/k) = ki T Tk "




The singular integral

» Thus, the inductive hypothesis holds for s = 2. Suppose now that the
inductive hypothesis holds for s = 7. Then we have

TR A O
Jpix(n) =k 1/ uf  Jox (n—uy) du,
0

_ kfll“(l + 1/k)’ /nu%l
L(/k) Sy
» Recalling once again the classical Beta function, we see that

L+ 1/k)
J, =kl B(1/k,t/k
I-‘rl,k(n) P([/k) nk ( / ’ / )
1+ l/k)tn#_l T(1/k)T(t/k)
L(t/k) L((r+1)/k)
DL+ 1/l i
=——" -
L((r+1)/k)
» This yields the inductive hypothesis with ¢ replaced by ¢ + 1. We have
therefore shown that whenever s > k + 1, one has
(1 + 1/k)sns/k71
L(s/k) ’

[

(n—u)* " du,.

-]s,k(n) =



The singular series

Corollary
Suppose that s > k + 1. Then one has

(14 1/k)° St
Joi(n; Q) = ( /)n/k 1+O<n/k 0 1/1<)7

['(s/k)
as Q — oo.
Proof.
The conclusion follows by the previous two results, since X = n'/. O

> We next consider the truncated singular series &, x(n; Q). Our first step
is to complete this series to obtain the (complete) singular series

Sox(n)=>_ > (q7'S(q,a)) e(—na/q).

Again, we must consider the tail of the infinite sum.



The singular series

Lemma
Whenever a € Z and q € N satisfy (a,q) = 1, one has

1S(g,a)] = O(g'2"+9).

Proof.
We apply Weyl’s inequality with oy = a/q and X = g to obtain

q

‘Ze (ar*/q) ‘ _ 0(q1+5 (¢ +q +ql—k>2"k)_

r=1

Lemma
Suppose that s > 2% + 1. Then &; (n) converges absolutely, and

16,4(n) — S,4(n; Q)| = 0(Q2 )

uniformly inn € Z...



Proof

» By the previous lemma we estimate the tail of the truncated singular
series as follows

> Zq: |(47'8(0,0)" e(—na/q)| = 0( 3" éla) (4727) ).

>0 a=1 >0
(a,9)=1

» Thus, when s > 2 + 1, we deduce that

Z zq: ‘(q*ls(%a) e(— na/q‘ (qu 1-2'- k) :O(sz_k).

>0 a=1 >0
(a,q)=1

» It follows that the infinite series S, x(n) converges absolutely under
these conditions, and moreover that

18,4(n) — Syi(n; Q)| = 0(Q ).

» Notice that this estimate is uniform in .



The singular series
» We shall see shortly that there is a close connection between the
singular series S; (n) and the number of solutions of the congruence
K+ +x¥=n (modg),
as g varies. This suggests a multiplicative theme.
Lemma

Suppose that (a,q) = (b,r) = (q,r) = 1. Then one has the
quasimultiplicative relation

S(gr,ar + bg) = S(q,a)S(r, D).

Proof.

» Each residue m modulo gr with m € [gr] is in bijective correspondence
with a pair (f,u) with ¢ € [¢] and u € [r], withm = tr + ug (mod gr).

» Indeed, if we write g for any integer congruent to the multiplicative
inverse of ¢ (mod r), and 7 for any integer congruent to the
multiplicative inverse of r (mod ¢), then claimed bijection is as
follows m = (m7)r + (mg)q (mod gr), which follows from the
Chinese remainder theorem.



Proof

» Thus, we see that

qr
b
S(gr,ar + bq) e <ar+ el k)

r

q
( ar+bq tr+uq) )

e <;’(n)k + l;(uq)k> .

> By the change of variable 7 — #'(modgq) and ug — u’(modr),
bijective owing to the coprimality of g and r, we obtain the relation

S(gr,ar + bq) = (Z e (avk/q)> (Z e (bwk/r)> = S(q,a)S(r,b).

v=1 w=1

» This completes the proof of the lemma. O



The singular series
» Now define the quantity
q
Agm) = 3 (q7'S(q.0))" e(-na/q)
a=1
Lemma (o=t
The quantity A(q,n) is a multiplicative function of q.

Proof.

» Suppose that (¢, r) = 1. Then by the Chinese remainder theorem, there
is a bijection between the residue classes a modulo gr with (a, gr) = 1,
and the ordered pairs (b, ¢) with b (mod g) and ¢ (mod r) satisfying
(b,q) = (c,r) = 1, via the relation a = br + c¢q (mod gr).

» Thus, we obtain

3

= s r) "' S(gr,br + cq))’ e —errcqn
= 320 () staroreq)e ().



Proof

By applying the previous lemma, we infer that

b=1 =1

(b,9)=1 (c,r)=1

=A(gq,n)A(r,n)
Since A(1,n) = 1, this confirms the multiplicative property for A(g, n)
and completes the proof of the lemma. [
Observe that

Gox(n) = > Alg,n).

The multiplicativity of A(g, n) therefore suggests that &, 4 (n) should
factor as a product over prime numbers p of the p-adic densities

olp) = ZA (p",n).
h=0



The singular series

Theorem
Suppose that s > 2% + 1. Then the following hold:

(i) The series o(p) converges absolutely, and one has

lo(p) — 1] = 0(p~'27").

[To®)

peP

(i1) The infinite product

converges absolutely.

(iii) One has &Gy y(n) = [[,cpo(p).
(iv) There exists a natural number C = C(k) with the property that

12< [ o) <3/2

PEP>cw)



Proof

> We begin by establishing (i). We recall from estimates of complete
exponential sums that whenever (a,p) = 1, one has

K (Ph,a) | = 0(ph(172“k+e))'

» Then, whenever s > 2¥ + 1, one finds that

h

A = 3 (7S ()’ e (—nap!
(ap)

» Hence
p)=1=32A0"n) = 0(3op ) =0,
h=1 h=1

» Thus o(p) converges absolutely, and one has |o(p) — 1] = 0(17*1’24).
» We next turn to the proof of (ii). By part (i), there is a positive number
B = B(k) with the property that |o(p) — 1| < Bp~1=2""



Proof

Hence, whenever p is sufficiently large, one sees that

log(1 + [o(p) — 1]) < log (1 —l—Bp_l_ﬂ) < Bp_l_szfl’
whence
> log(1 +[o(p) ~ 1) =0(B3p™ ) = 0(1).
peP =

Thus we deduce that the infinite product ] |, o(p) converges absolutely.
The proof of (iii) employs the multiplicative property of A(g,n)
established in the previous lemma. One finds that

n) = ZA(q, n) = Z HA (»",n)
q=1

q=1p"lq
Then since [[,.p o(p) converges absolutely as a product, and

Zgil A(g, n) converges absolutely as a sum, we may rearrange
summands to deduce that

HZA p".n) Ho(p).

peEP h= peP



Proof

» Finally, we establish (iv). We begin by observing that from part (i), it
follows that whenever p is sufficiently large in terms of k, one has

1—p 2 <op) <14p 172"
» Hence, provided that C = C(k) is sufficiently large, one finds that
[T o~ 1‘ < Y ' = o(c).
PEP> ) n>=C(k)

» Then, if C(k) is chosen sufficiently large in terms of k, we have that

11 U(p)—1‘<1/2,

PEP> iy
and we conclude that

12< [ o) <3/2
PEP> )

» The final conclusion of the theorem therefore follows, and the proof of
the theorem is complete. OJ



The singular series
» OQur plan is to show that there exists a constant ¢y > 0 such that
G, x(n) > co uniformly inn € Z,..
» In view of item (iv) of the previous theorem it suffices to prove that
o(p) > 0 for p < C(k) with sufficient uniformity in n.
> Wheng € Z., we put

M,(q) =#{me (Z/qZ)s:mlf—F...—Fm';:n}.

Lemma
For each natural number q € 7., one has

> A(d,n) = q' M, (q).

dlq

Proof.

We make use of the orthogonality relation

_lzq: (hr/q) 1, whengq|h,
e(hr/q) =
1 1 0, whengq1h.

r=1



Proof

» Then

0= 3 (3 el k=) 0]

r=1 \m=1

» Classifying the values of r according to their common factors ¢/d with
g, we obtain the relation

@=q"> Z (q/d)* zd_: zd_: A+ mf —n)/d)

W Gt
d o
=q'> ¢ Y (d7'S(d,a)) e(—na/d)
d|q a=1
(a,d)=1
=q¢') A(d,n)
dlq

» Hence
ZA(d, n) = qlisMn(Q)a
dlq
and the proof of the lemma is complete. O



The singular series

Corollary
For each prime number p € P, one has
o(p) = lim p"'=Im, (p") . ()
h—o0
Proof.

Take g = p" in the previous lemma to obtain the relation

h

Sa(phn) = """ M (")

1=0
Taking the limit as & — oo, we obtain (¥), since o(p) = 3,5 A (p,n). [

Exercise

Show that for the small primes p with p < C(k), and for all large enough
values of h, one has M, (p") > cop"= Y for some ¢o > 0. From this we
deduce that o(p) > 0, and the desired conclusion follows from item (iv) of
the previous theorem.



The asymptotic formula in Waring’s problem

» We have shown that when s > 28+ 1and 0 < § < 1/5, one has
Roi(n) = Jsi (m:X°) Gyp (1 X°) + 0 (X*7F).
> We also know that
Toi (m; X°) = Mns/k_l +0 (ns/"_]_‘s/kz) ,
and
Gy (n;X‘s) =G (n)+0 <n752_k/k) ,

where ¢ < S 4(n) < C for some C > ¢ > 0.
» Thus we conclude that when s > 2% + 1, one has

T(1+ 1/k)*
I'(s/k)

» Then R, ;(n) — oo as n — oo, whence G(k) < 28 + 1.

Ry i(n) = n‘Y/k_1657k(n) +o0 (n‘?/k_l) )



